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1.1. Notes. .

In this lecture we follow Jost, [5, Sec. 1.1].

p. 1: We assume in our lecture that the reader is familiar with basic
concepts of point set topology; note that Jost gives a quick summary of
most of the pertinent definitions on his [5, p. 1]. One basic concept which
Jost does not define, but which appears in his Def. 1.1.1 (= our Def. 1 on
p. 1) is the following: A topological space M is said to be connected if M
cannot be written as a union of two disjoint nonempty open subsets. One
can prove that a topological manifold is in fact path-connected, meaning that
any two points can be joined by a curve;1 indeed see Problem 1. We will
use this fact a lot! (Path-connectedness is apriori a stronger property than
connectedness, i.e. for an arbitrary topological space, path-connectedness
implies connectedness.)

p. 1: Note that the requirement that a (connected) topological mani-
fold M should be paracompact is equivalent to M being second countable2!
Slightly more generally: If M is any topological space which is Hausdorff
and locally Euclidean3 then M is second countable iff [M is paracompact
and has countably many connected components].
Indeed, cf. math.stackexchange.com/questions/527642.

An example of topological space which is connected, Hausdorff, and lo-
cally Euclidean but not paracompact is the so called “Long Line”; see
wikipedia!

p. 1: In Definition 1, the assumption that M should be Hausdorff is
certainly not redundant. For a simple example showing this, see the solution
to Problem 10.

p. 2: A basic notion appearing here is that of a map in several real
variables being C∞ (=smooth). We recall the definition here: If V is an open
subset of Rd then a map f : V → Rn is said to be Cm (m ≥ 0) if, writing
f(x) = (f1(x), . . . , fn(x)) and x = (x1, . . . , xd), for every j ∈ {1, . . . , n},
k ∈ {0, . . . ,m} and (`1, . . . , `k) ∈ {1, . . . , d}k, the partial derivative

∂kf j(x1, . . . , xd)

∂x`1 · · · ∂x`k

1A “curve” is by definition a continuous function from an interval I ⊂ R to a topological
space.

2Recall that a topological space is said to be second countable if it has a countable
base, i.e. a countable family U of open subsets of M such that every open subset of M is
a union of some sets in U .

3Sometimes one defines a topological manifold to be such a space, i.e. a topological
space which is Hausdorff and locally Euclidean.

https://math.stackexchange.com/questions/527642/
https://en.wikipedia.org/wiki/Long\_line\_\(topology\)
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exists and is continuous for all x = (x1, . . . , xd) ∈ V . (In particular f : V →
Rn is C0 iff f is continuous.) Finally the map f : V → Rn is said to be C∞

if it is Cm for every m ≥ 0.

In the situation above, f : V → Rn is said to be a diffeomorphism (onto
its image) if f is injective, the image W := f(V ) is an open subset of Rn,
and the inverse map f−1 : f(V ) → V is also C∞. In this situation we
necessarily have n = d.
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2. Tangent spaces and the tangent bundle
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2.1. Notes. .

In this lecture we follow Jost, [5, Sec. 1.2].

p. 7, Def. 4: I most often prefer to use the notation “dfp”, whereas Jost
writes “df(p)”. Example: Later we will work a lot with a certain map
“expp” which is a C∞ map from an open subset Dp of TpM to M . We will
often consider the differential of this map at a point v ∈ Dp. Note that
this is a map Tv(Dp) → Texpp(v)(M), but as mentioned on p. 5 we identify

Tv(Dp) = TpM . Thus I most often write

“(d expp)v : Tp(M)→ Texpp(v)(M)”

for this map, whereas Jost writes

“(d expp)(v) : Tp(M)→ Texpp(v)(M)”.

p. 7, Def. 5: Here we also wish to mention the concept of submanifolds
(cf. [5, Sec. 1.3]). We will not have time in the course to develop the basic
facts about submanifolds in any detail; however we state here the most
important facts. Cf. also, e.g., [2, Ch. III.4-5].

Let N be a C∞ manifold. There exist some different notions of “sub-
manifolds” which are often considered. An immersed submanifold of N is
defined to be a subset M ⊂ N which is endowed with a structure of a C∞

manifold such that the inclusion map i : M → N is a C∞ immersion. Note
that in general the topology of M does not agree with the relative topology
of M as a subset of N ! (Of course the topology of M must be at least
as strong as the relative topology, since i is continuous.) If the topology
of M agrees with the relative topology, then Jost calls M a differentiable
submanifold of N (this is often also called an embedded submanifold or a
regular submanifold ; cf. wikipedia).

Let n = dimN and take 1 ≤ m ≤ n. It turns out that an arbitrary subset
M ⊂ N has a structure as a differentiable submanifold of N of dimension m
if and only if for every p ∈M there is a C∞ chart (U,ϕ) ofN such that p ∈ U ,
ϕ(p) = 0, ϕ(U) is an open cube (−ε, ε)n, and ϕ(U∩M) = (−ε, ε)m×{0}n−m;
furthermore the C∞ manifold structure of M is then uniquely determined;
indeed a C∞ atlas is made out of all charts of the form (U ∩M,pr ◦ϕ) with
(U,ϕ) as above, where pr is the projection map Rn = Rm × Rn−m → Rm.
(Cf., e.g., [2, Sec. III.5].)

Note that Jost’s [5, Lemma 1.3.2] gives an often convenient way to prove
that a subset of a manifold is a submanifold. We here repeat that result,
with a somewhat more precise statement of the conclusion: Let M and N
be C∞ manifolds, and assume m = dimM ≥ dimN = n. Let p ∈ N , and
let f : M → N be a C∞ map such that dfx has rank n for all x ∈ M with
f(x) = p. Then each connected component of the subset f−1(p) ⊂ M is a
closed differentiable submanifold of M of dimension m− n.

https://en.wikipedia.org/wiki/Submanifold
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3. Riemannian manifolds
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3.1. Notes. .

In this lecture we follow (in some sense) Jost [5, start of Sec. 1.4].

p. 4 (in Def. 2, and many times later): Here we consider a “C∞ curve”
defined on the closed interval [a, b]. This raises a technical point: Recall
that a curve on a manifold M is simply a continuous function from an
interval (in R) to M . Similarly, a C∞ curve on a C∞ manifold is a C∞

function from an interval to M . If the interval is open then this is a well-
defined concept since Lecture #1, since an open interval is itself a (1-dim)
C∞ manifold. However if the interval is closed (or half-closed) then the
interval is no longer a C∞ manifold4 and so we need to define the concept
here. Thus: A function f : [a, b]→M is said to be C∞ if f is continuous, and
the derivatives of all orders exist (at the endpoints a and b the appropriate
one-sided derivatives exist)5 and are continuous on all [a, b]. It turns out
that this is equivalent to requiring that f can be extended to a C∞ function
from the open interval (a− ε, b+ ε) to M , for some ε > 0. For the proof of
this equivalence, one immediately reduces to the case of M = Rd, and there
it follows from a lemma of Borel (cf., e.g., wikipedia).

We also need to extend the above definition to higher dimension, since
later in the lecture we consider “C∞ variations” of a curve (and in later
lectures we may also consider multi-parameter variations). Thus we define:
A map

f : [a, b]× (−ε1, ε1)× · · · × (−εm, εm)→M

is said to be C∞ if all partial derivatives of all orders exist (for any derivative
wrt the first variable, we consider the appropriate one-sided derivative when
at an endpoint) and are continuous throughout [a, b] × (−ε1, ε1) × · · · ×
(−εm, εm). Again by using the lemma of Borel mentioned above, one can
prove that this is equivalent to requiring that f can be extended to a C∞

function from the open set (a− ε, b+ ε)× (−ε1, ε1)× · · · × (−εm, εm) to M ,
for some ε > 0.

p. 4 (bottom): Here I plan to mention the concept of isometry in passing,
without writing out the definition. See [5, Def. 1.4.5]; of course you should
learn this definition!

p. 8, as stated here, we make (just as Jost, is seems) the simplifying
assumption that all of γ is contained in a single coordinate chart. However
this is not necessary for the derivation of the Euler-Lagrange equations, and
the key fact to see this is the following: By linearity, for any given covering

4it is not even a topological manifold; however it is a C∞ manifold with boundary (cf.,
e.g., [2, Ch. VI.4]), but we won’t introduce this concept in this course.

5Of course we mean: “With respect to any C∞ chart on M containing the point under
consideration”. — Our presentation here is somewhat sloppy, since anyway the main point
we wish to make is that: “There is no serious complication involved and we will generally
not worry about this technical issue”.

https://en.wikipedia.org/wiki/Borel's_lemma
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of [a, b] by open intervals I1, . . . , In, we have d
dsE(γ(·, s))s=0 for all proper

variations of γ iff for each j, d
dsE(γ(·, s))s=0 holds for all proper variations

of γ trivial outside Ij . We do not discuss this in further details, since we
will anyway rederive the Euler-Lagrange equations again later in the course,
working in a more intrinsic (coordinate independent) language.
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4. Geodesics
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4.1. Notes. .

In this lecture we continue to follow (in some sense) Jost [5, Sec. 1.4].

p. 1: For the proof of Theorem 1 we refer to the following basic theorem
of analysis; this theorem plays an important role at several junctures in the
development of the foundations of C∞ manifolds.

Theorem (Existence theorem for ODEs; cf., e.g., [7, Ch. IV] or [2, Sec.
IV.4].) Consider the equations

dxi

dt
= f i(t, x), for i = 1, . . . , n,(1)

where f1, . . . , fn are given real-valued Cr functions (r ≥ 1) on Iε × U , with
U ⊂ Rn being an open set and ε > 0, Iε := (−ε, ε). Then for each x ∈ U
there exist δ > 0 and an open neighborhood V of x, V ⊂ U , such that
there exists a Cr function x : Iδ × V → U such that for each a ∈ V we
have x(0, a) = a and, writing x(t, a) = (x1(t, a), . . . , xn(t, a)), the function
t 7→ x(t, a) satisfies (1) for all t ∈ Iδ, a ∈ V .

Uniqueness: Any solution to (1) is unique in the following strong sense:
If I, J ⊂ R are two open intervals both containing 0, and if

(i) x : I → U is C1 and satisfies (1) for all t ∈ I,

(ii) x : J → U is C1 and satisfies (1) for all t ∈ J , and

(iii) x(0) = x(0);

then x(t) = x(t) for all t ∈ I ∩ J .

Remark: In this course, we will only apply the theorem with r =∞, i.e.
dealing only with C∞ functions.

In order to prove Theorem 1 (on p. 1 in the lecture), after passing to local
coordinates the task is to prove existence of solutions to the ODE

ẍj(t) + Γjik(x(t)) · ẋi(t)ẋk(t) = 0.

In order to be able to apply the above existence theorem, one first applies
the standard trick of vieweing also ẋ1, . . . , ẋd as unknowns to be solved for
(we call these unknowns y1, . . . , yd). Thus one studies instead the system of
2d equations

ẋj(t) = yj(t) (j = 1, . . . , d);

ẏj(t) = −Γjik(x(t)) · yi(t)yk(t) (j = 1, . . . , d).

This system is of the form (1) above, with [new x] = (x1, . . . , xd, y1, . . . , yd),
thus n = 2d. For further details, cf., e.g., Boothby [2, Lemma 5.4].
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p. 5, Theorem 3: We remark that the largest possible r > 0 which works in
this theorem is called the injectivity radius of p, i(p). (It is not immediately
clear that this definition of injectivity radius agrees with the one in Jost, [5,
Def. 1.4.6]; however we will prove later that the two definitions agree, as an
application of the theory of Jacobi fields.)

p. 5: In the proof of Theorem 3 we refer to:

The Inverse Function Theorem: Let M,N be C∞ manifolds of the same
dimension, let f : M → N be a C∞ function, and let p ∈ M . Assume that
the linear map dfp is nonsingular. Then there exists an open neighborhood
V of p in M such that f(V ) is open in N and f|V is a C∞ diffeomorphism
of V onto f(V ).
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5. Geodesics: Hopf–Rinow etc.
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6. The fundamental group. The theorem of Seifert-van Kampen
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6.1. Notes. .

In this lecture we follow Hatcher, [3, Ch. 1.1-2]. Note that this book is
freely available from Allen Hatcher’s web page. (In our lecture, “t” and
“s” have switched roles versus Hatcher’s presentation, since we follow Jost’s
usage.)

p. 2: The fact that π1(X,x0) is indeed a group is [3, Prop. 1.3]; the proof
occupies most of [3, p. 27]. (Regarding the proof of [γ] · [γ] = e; see also
http://mathworld.wolfram.com for an animation illustrating this fact.)

p. 3, here we mention the fact that π1 is an invariant that only depends on
homotopy type, i.e. if X and Y are homotopy equivalent then π1(X) ∼= π1(Y )
[3, Prop. 1.18]. Unfortunately we won’t have time to introduce and discuss
the notion of “homotopy equivalence” [3, p. 3] in the course, and I will
simply say that intuitively speaking, two spaces are homotopy equivalent if
they can be deformed continuously into one another. This means that some
of the material in this lecture stands on a less firm ground than most of the
other (non-expository) material in the course. For example, on p. 9 in the
lecture, the reason for π1(A1) ∼= Z is that A1 is homotopy equivalent with
S1; similarly on p. 10 we have π1(C ∩D) ∼= Z for the same reason.

p. 3, bottom: Regarding the fact that π1(T
2) = Z × Z, again see

http://mathworld.wolfram.com for an animation illustrating the fact that
[a] · [b] = [b] · [a], where [a] and [b] are the two standard generators of π1(T

2).

p. 8: Note that we never give a careful definition of the “genus” of a
surface in this course; we’ll simply say (e.g.) “a compact surface of genus
g is any surface that can be obtained as the connected sum of g tori. (Cf.
Wikipedia: Connected sum and here.)

pp. 8–10: Let us note that the computation of π1(X) which we give here is
basically the same as in [3, p. 51 (above Cor. 1.27)], although we do not make
use of notions such as cell complexes, wedge sums and homotopy equivalence.
(As extracurricular reading we recommend learning about these concepts
from Hatcher’s book!) Namely: Our open subset C ⊂ X is homotopy
equivalent to the CW complex consisting of a point (viz., a 0-cell) with 2g
1-cells attached to it; this is equivalent to a wedge sum of 2g circles, and
as discussed in [3, Ex. 1.21] van Kampen’s Theorem easily implies that its
fundamental group is a free group on 2g generators; this application of van
Kamplen’s Theorem is completely analogous to what we do on p. 9. Next
our discussion on p. 10 corresponds exactly to the proof of [3, Prop. 1.26(a)],
in the special case of attaching a single 2-cell to the 1-skeleton just discussed.

https://www.math.cornell.edu/~hatcher/
http://mathworld.wolfram.com/FundamentalGroup.html
http://mathworld.wolfram.com/FundamentalGroup.html
https://en.wikipedia.org/wiki/Connected_sum
https://en.wikipedia.org/wiki/Surface_\(topology\)#Classification_of_closed_surfaces
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Finally, as extracurricular material, we recommend reading Hatcher’s [3,
Ch. 1.3] about covering spaces. Covering spaces are very closely related
to fundamental groups, and they will appear later in the course when we
discuss classification of Riemannian manifolds of constant curvature. We
give below a brief summary of some of the most pertinent facts from [3,
Ch. 1.3], and indicate how they apply to (C∞ or topological) manifolds, as
opposed to general topological spaces.

A covering space of a topological spaceX is a topological space X̃ together

with a continuous map π : X̃ → X satisfying the following condition: Each
point x ∈ X has an open neighborhood U in X such that π−1(U) is a union

of disjoint open sets in X̃, each of which is mapped homeomorphically onto
U by π. It turns out that if M is a topological manifold, then also any

connected covering space M̃ of M is a topological manifold, of the same
dimension (Problem 32(a)). Any additional structure carried by M is often
inherited by any covering space; for example if M is a C∞ (or Riemannian)

manifold then also M̃ gets equipped with a natural structure of a C∞ (resp.,
Riemannian) manifold, such that π is a local diffeomorphism (resp., local
isometry); cf. Problem 32(b),(c).

Two covering spaces π1 : M̃1 → M and π2 : M̃2 → M are said to be

isomorphic if there is a homeomorphism h : M̃1 → M̃2 satisfying π1 = π2◦h.

An isomorphism of a covering π : M̃ → M with itself is called a deck
transformation. If M is a C∞ (or Riemannian) manifold then each deck

transformation of π : M̃ → M is a diffeomorphism (resp., an isometry) of

M̃ onto itself.6

Any topological manifold M has a universal cover, i.e. a covering space

π : M̃ → M with M̃ simply connected. The universal cover is unique up to

isomorphism [3, Prop. 1.37]. If π : M̃ → M is a universal cover then given

any two points p̃1, p̃2 ∈ M̃ with π(p̃1) = π(p̃2), there exists a unique deck

transformation of π : M̃ →M which maps p̃1 to p̃2. The set of deck transfor-

mations of π : M̃ → M clearly forms a group under composition, and after

6Proof: Suppose that M is a C∞ manifold; then also M̃ has a natural C∞ manifold

structure, as mentioned above. Suppose that h : M̃ → M̃ is a deck transformation, and

let p ∈ M̃ . Then since π(p) = π(h(p)), there is an open neighborhood U of π(p) in M , and

two open sets Ũ1, Ũ2 in M̃ , either disjoint or equal, such that p ∈ Ũ1, h(p) ∈ Ũ2, and π

maps each of Ũ1, Ũ2 diffeomorphically onto U (cf. Problem 32(b)). We can assume that U
is path-connected. Then by unique lifting property [3, Prop. 1.34], h|Ũ1

= (π|Ũ2
)−1 ◦ π|Ũ1

(since the two maps agree at the point p, and they are both lifts of the map π|Ũ1
). Hence

h|Ũ1
is a diffeomorphism, being a composition of two diffeomorphisms. Since each point

p ∈ M̃ has such a neighborhood Ũ1 (and we know from start that h is a homeomorphism

of M̃ onto itself), it follows that h is indeed a diffeomorphism of M̃ onto itself. The proof
in the Riemannian case is completely similar.
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fixing a point p̃0 ∈ M̃ and setting p0 := π(p̃0), one obtains an identifica-
tion between the group of deck transformations and the fundamental group
π1(M,p0) [3, Prop. 1.39]. In particular, with this identification, π1(M,p0)
is a subgroup of Homeo(M), the group of homeomorphisms of M . Now for

any subgroup Γ of π1(M,p0), the quotient manifold Γ\M̃ (cf. Problem 9 7)
is a covering space of M , and this gives a bijective correspondence between
the family of all isomorphism classes of connected covering spaces of M , and
the family of conjugacy classes of subgroups of π1(M,p0) [3, Thm. 1.38]. In
particular we have an identification

M = π1(M,p0)\M̃.

7Problem 9 applies, since π1(M,p0) can be verified to act freely and properly discon-

tinuously on M̃ . Indeed the fact that the action is free is an immediate consequence of
the unique lifting property, [3, Prop. 1.34]. In order to prove the proper discontinuity,

let K ⊂ M̃ be a compact set. Then also π(K) is compact, and so π(K) can be covered
by a finite family of connected open sets U1, . . . , Un such that each Uj has the property

that π−1(Uj) is a union of disjoint open sets in M̃ each of which is mapped homeomor-
phically onto Uj by π. Since K is compact, it follows that K can be covered by a family

of open sets Ũ1, . . . , Ũm such that for each j ∈ {1, . . . ,m}, π|Ũj
is a homeomorphism of

Ũj onto Uk for some k = k(j) ∈ {1, . . . , n}. Note that for any two j, j′ ∈ {1, . . . ,m}
with k(j) = k(j′), there is exactly one deck transformation γ ∈ π1(M,p0) satisfying
γ(Uj) ∩ Uj′ 6= ∅. (Indeed, take p ∈ Uj with γ(p) ∈ Uj′ ; then π(p) = π(γ(p)) since γ is

a deck transformation, and thus γ(p) = (π|U′
j
)−1 ◦ π|Uj

(p). Hence γ|Uj
= (π|U′

j
)−1 ◦ π|Uj

(cf. footnote 6). Therefore if γ, γ′ ∈ π1(M,p0) both satisfy γ(Uj) ∩ Uj′ 6= ∅ and
γ′(Uj) ∩ Uj′ 6= ∅, then γ′|Uj

= γ|Uj
, and so by the unique lifting property γ′ ≡ γ.)

Let us call the deck transformation whose uniqueness we have just proved γ[j, j′]. Then
{γ ∈ π1(M,p0) : γ(K) ∩K 6= ∅} ⊂ {γ[j, j′] : j, j′ ∈ {1, . . . ,m}, k(j) = k(j′)}, which is a
finite set. Done!
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7. Vector bundles
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7.1. Notes. .

In Lectures #7 and #8 we wish to cover the material in [5, Sec. 2.1], up
to and including [5, Thm. 2.1.5].

p. 7, Def. 6: Cf. [5, Def. 2.1.8] and below. Note that we write “E1 ⊕E2”
(which is also standard notation) for the vector bundle which Jost calls
“E1 × E2” (“product bundle”). This is also called the “direct sum bundle”
or “Whitney sum” of E1 and E2.
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7.2. Review of tensor products and exterior algebra. .

In the following we work in the setting of R-modules, where R is an
arbitrary (fixed) commutative ring8. Recall that if R is a field then any
R-module is a vector space over R. In the course, we will need the theory
developed below in for two choices of R, namely R = R (the field of real
numbers), and R = C∞(M) (the ring of C∞ functions M → R).

Tensor product. (Cf. Lang [8, Ch. XVI.1-2].)

Prop 1. Given any two R-modules V,W there exists an R-module

“V ⊗W”

and an R-bilinear map

ϕ : V ×W → V ⊗W

such that for any R-module Z and any R-bilinear map h : V ×W → Z, there
exists a unique R-linear map g : V ⊗W → Z such that h = g ◦ ϕ 9. The

pair 〈V ⊗W,ϕ〉 is unique in the following sense: If 〈Ṽ ⊗W, ϕ̃〉 is another
pair satisfying the same conditions, then there exists a unique isomorphism

of R-modules, J : Ṽ ⊗W ∼−→ V ⊗W , such that ϕ = J ◦ ϕ̃.

More generally, given n R-modules V1, . . . , Vn, there exists an R-module
V1 ⊗ · · · ⊗ Vn and an R-bilinear map ϕ : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn with
the completely analogous properties as in the case n = 2 described above.

For a proof of Prop. A see e.g. [8, Ch. XVI.1]. The standard construction
of a tensor product V ⊗W is to define it to be the quotient M/N , where M
is the free R-module generated by the set V ×W , and N is the R-submodule
of M generated by all the elements

(v + v′, w)− (v, w)− (v′, w)

(v, w + w′)− (v, w)− (v, w′)

(av, w)− a(v, w)

(v, aw)− a(v, w)

for all v, v′ ∈ V , w,w′ ∈ W , a ∈ R. We also remark that the uniqueness
statement in Proposition A is proved by standard “abstract nonesense”.

In the above situation, we write “v ⊗ w” for ϕ(v, w) (for any v ∈ V ,
w ∈ W ). An element of V ⊗W that can be written in the form v ⊗ w is
called a pure tensor. A general element in V ⊗W can always be expressed
(in a non-unique way) as a finite sum of pure tensors.

8We always assume that R has a multiplicative identity, 1. Of course R also has an
identity element for addition, 0. (And 0 6= 1, for non-triviality.)

9This property is called the universal property of the tensor product.

https://en.wikipedia.org/wiki/Abstract_nonsense
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Using the universal property of the tensor product one easily proves that
there exists a unique isomorphism of R-modules

V ⊗W ∼−→W ⊗ V
mapping v ⊗ w 7→ w ⊗ v for all v ∈ V , w ∈ W [8, Prop. 1.2]. Similarly, if
also U is an R-module, then there exist unique isomorphism

U ⊗ (V ⊗W )
∼−→ (U ⊗ V )⊗W ∼−→ U ⊗ V ⊗W

mapping u⊗ (v⊗w) 7→ (u⊗v)⊗w and (u⊗v)⊗w 7→ u⊗v⊗w, respectively
(∀u ∈ U, v ∈ V,w ∈W ) [8, Prop. 1.1]. In view of the last fact, we will often
identify the three R-modules U⊗(V ⊗W ) and (U⊗V )⊗W and U⊗V ⊗W .

Next, if V , W , X, Y are R-modules, and f : V → X and g : W → Y are
R-linear maps, then there exists a unique R-linear map

f ⊗ g : V ⊗W → X ⊗ Y
satisfying

(f ⊗ g)(v ⊗ w) = f(v)⊗ g(w) (∀v ∈ V, w ∈W ).

(Cf. [8, pp. 605–606], where this map is first denoted “T (f, g)”.) This con-
struction satisfies the following “functoriality property”: If also h : X → Z
and i : Y → U are R-linear maps then

(h⊗ i) ◦ (f ⊗ g) = (h ◦ f)⊗ (i ◦ g).

(Obviously we also have 1V ⊗ 1W = 1V⊗W , where 1U denotes the identity
map on the R-module U . In this way, the tensor product becomes a bifunctor
from the category of R-modules to itself, covariant in both arguments.)

Let us recall some facts which hold when V and W are free and finite
dimensional over R (in particular these facts hold for finite dimensional
vector spaces over R, or over any other field):

Prop 2. Let V and W be free and finite dimensional modules over R. Then:

(a) V ⊗W is also free and finite dimensional over R, and if V and W have
bases {v1, . . . , vn} and {w1, . . . , wm}, respectively, then V ⊗W has a basis

{vi ⊗ wj : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.
(Thus dim(V ⊗W ) = (dimV )(dimW ).)

(b) There is a natural isomorphism of R-modules V ∗⊗W ∼= Hom(V,W ), 10

under which α⊗ w ∈ V ∗ ⊗W corresponds to v 7→ α(v)w in Hom(V,W ).

(c) There is also a natural isomorphism of R-modules V ∗⊗W ∗ ∼= (V ⊗W )∗,
under which α⊗β ∈ V ∗⊗W ∗ corresponds to the element in (V ⊗W )∗ which
maps v ⊗ w to α(v)β(w) for all v ∈ V , w ∈W .

(Cf. [8, Cor. 2.4 and Cor. 5.5, Cor. 5.6].)

10Here Hom(V,W ) is the R-module of R-linear maps V →W .
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The tensor algebra. (Cf. [8, Ch. XVI.7].) Let V be an R-module as
before. Then for each integer r ≥ 0, we let

T r(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

(if r ≥ 1), and T 0(V ) = R.

The tensor algebra of V is defined to be the direct sum

T (V ) :=
∞⊕
r=0

T r(V ).

Thus, T (V ) as a set consists of all infinite sequences (α0, α1, α2, . . .) such
that αr ∈ T r(V ) for each r and αr = 0 for all except finitely many r’s. T (V )
is an R-module, where addition and R-multiplication is defined “entry by
entry”. We often write “α0 +α1 +α2 + · · · ” in place of (α0, α1, α2, . . .), and
in that sum we can leave out any term αr which is 0. Note that there is a
natural R-bilinear map

T r(V )× T s(V )→ T r+s(V ), (α, β) 7→ α⊗ β.(2)

This map extends by R-linearity to endow T (V ) with the structure of a
ring (where the multiplication operation is denoted “⊗”); thus T (V ) is an
R-algebra. (In fact T (V ) is a graded R-algebra, exactly since it can be
written as a direct sum of R-submodules T 0(V ), T 1(V ), T 2(V ), . . . satisfying
T r(V )⊗ T s(V ) ⊂ T r+s(V ) for all r, s ≥ 0.)
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The exterior algebra. We here only discuss the exterior algebra of V ∗

for V a finite dimensional vector space over R, since this is the case that
is most relevant for differential forms – and it seems to be the only case
which we will be concerned with in this course. Details can be found in,
e.g., Boothby [2, Ch. V.5–6] and Lee, [10, Ch. 14].

Note that outside of differential geometry – and always when dealing with general

modules – one most often defines
∧r(V ∗) differently, namely as a certain quotient (as

opposed to a subspace) of T r(V ∗). Also it is then more natural to speak directly about∧r(V ) rather than
∧r(V ∗). Anyway the definitions can be shown to be equivalent in the

case of free modules of finite dimension (thus in particular for finite dimensional vector

spaces over R), except that there exist different conventions for the normalizing factor in

(3). This is carefully explained in [10, Ch. 14]. Cf. also Lang [8, Ch. XIX.1 (esp. Exercise

3)].

Let V be a finite dimensional vector space over R. By the definition of
tensor product together with Prop. 2(c) (extended to r-fold tensor products),
the space T r(V ∗) can be identified with the space of multilinear forms

F : V (r) := V × · · · × V︸ ︷︷ ︸
r times

−→ R.

Under this identification, α1 ⊗ · · · ⊗ αr ∈ T r(V ∗) corresponds to the multi-
linear form

F (v1, . . . , vr) =
r∏
j=1

αj(vj), ∀〈v1, . . . , vr〉 ∈ V (r).

Note also that under our identification, the product operation T r(V ∗) ×
T s(V ∗)→ T r+s(V ∗) (cf. (2)) is given by

(F1 ⊗ F2)(v1, . . . , vr+s) = F1(v1, . . . , vr)F2(vr+1, . . . , vr+s)

(also when F1, F2 do not correspond to pure tensors).

Now we define
∧
r(V ∗) to be the subspace of alternating forms in T r(V ∗),

i.e. forms F ∈ T r(V ∗) such that F (v1, . . . , vr) = 0 whenever vi = vj for
some i 6= j. In particular

∧
0(V ∗) = R and

∧
1(V ∗) = V ∗. We also define

the exterior algebra of V ∗, to be the direct sum

∧
(V ∗) :=

∞⊕
r=0

∧r(V ∗).

(In fact this sum turns out to be finite, since Λr(V ∗) = {0} whenever
r > dimV ; it’s a nice exercise to prove this fact already here; cf. also
Prop. 3 below.) Thus

∧
(V ∗) is a linear subspace of the tensor algebra

T (V ∗); however it is certainly not a subalgebra of T (V ∗), since typically
F ⊗G /∈

∧
(V ∗) even if F,G ∈

∧
(V ∗). Instead we will introduce a different

product operation, “∧” (“wedge product”), on
∧

(V ∗).
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Let Sr be the group of permutations of {1, . . . , r}. For σ ∈ Sr and
F ∈ T r(V ∗) we define the form σ · F ∈ T r(V ∗) by

(σ · F )(v1, . . . , vr) := F (vσ(1), . . . , vσ(r)), ∀〈v1, . . . , vr〉 ∈ V (r).

Then we have that F ∈ T r(V ∗) is alternating if and only if σ ·F = (sgnσ)F
for all σ ∈ Sr. We define the following linear map:

A : T r(V ∗)→
∧r(V ∗); A(F ) =

1

r!

∑
σ∈Sr

(sgnσ) (σ · F ).

One verifies thatA is indeed a linear map from T r(V ∗) into
∧
r(V ∗), and that∧

r(V ∗) is exactly the set of those F ∈ T r(V ∗) satisfying A(F ) = F . Using
the map A, we now define the following product operation “∧” (“wedge
product”), for any r, s ≥ 0:∧r(V ∗)×

∧s(V ∗)→
∧r+s(V ∗),

〈F1, F2〉 7→ F1 ∧ F2 :=
(r + s)!

r!s!
A(F1 ⊗ F2).(3)

This map extends by R-linearity It is more or less immediate that this
product operation is R-bilinear, hence it has a unique extension to an R-
bilinear map ∧

(V ∗)×
∧

(V ∗)→
∧

(V ∗).

By a somewhat longer computation one also verifies that ∧ is associative.
(In fact one finds that

(F1 ∧ F2) ∧ F3 =
(r + s+ t)!

r!s!t!
A(F1 ⊗ F2 ⊗ F3) = F1 ∧ (F2 ∧ F3)

for all F1 ∈
∧
r(V ∗), F2 ∈

∧
s(V ∗), F3 ∈

∧
t(V ∗).) Hence

∧
(V ∗) with the

multiplication operation “∧” is an associative graded R-algebra.

Prop 3. If n = dimV and β1, . . . , βn is any basis for V ∗ then
∧
r(V ∗) = {0}

for all r > n, while for 0 ≤ r ≤ n one has dim
∧
r(V ∗) =

(
n
r

)
and a basis for∧

r(V ∗) is given by

{βi1 ∧ · · · ∧ βir : 1 ≤ i1 < i2 < · · · < ir ≤ n}.
In particular

∧
n(V ∗) is 1-dimensional and spanned by

β1 ∧ β2 ∧ · · · ∧ βn.
Explicitly this form is given by:

[
β1 ∧ β2 ∧ · · · ∧ βn

]
(v1, . . . , vn) = det(βi(vj))i,j =

∣∣∣∣∣∣∣
β1(v1) · · · β1(vn)

...
...

βn(v1) · · · βn(vn)

∣∣∣∣∣∣∣ .
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8. Vector bundles; exterior calculus
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8.1. Notes. .

p. 5, Def. 3: This definition of “weak algebra bundle” is not standard as
far as I know11, I introduce it only to give, with minimal effort, a conceptual
framework for the material that comes later. A much more common concept
is that of an algebra bundle. The definition is as follows: Let A be a fixed
(finite dimensional) algebra over R (that is, a vector space over R provided
with a “product rule”, i.e. an R-bilinear map A×A→ A). Then an “algebra
bundle with standard fiber A” is a weak algebra bundle (E, π,M) with the
property that for each point p ∈ M there exists a bundle chart (U,ϕ) with
p ∈ U and an R-linear bijection j : Rn → A (n = rankE) such that j ◦ϕp is

an algebra isomorphism Ep
∼−→ A for each p ∈ U . (Cf., e.g., [11, Def. 1.40].)

We remark that all the “weak algebra bundles” which we give as examples
later on p. 5, are in fact (“genuine”) algebra bundles!

Note that Jost in his book does not introduce the notion of an algebra
bundle explicitly; however he often works with objects which are in fact
algebra bundles.

11However the notion of a “weak Lie algebra bundle” appears to be standard, and our
definition corresponds naturally with it. Namely: In our notation, a weak Lie algebra
bundle is a weak algebra bundle such that Ep (with the given product operation) is a Lie
algebra for each p ∈M .

https://en.wikipedia.org/wiki/Lie_algebra_bundle
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9. Connections
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9.1. Notes. .

p. 7: Note that ṡ(t) is well-defined at any t where γ̇(t) 6= 0, by Problem 46
together with Problem 53. Also at t where γ̇(t) = 0, the formula on p. 8
makes sense – indeed, in this case the formula says simply that

ṡ(t) = ȧk(t)sk(γ(t))(4)

– and we take this as the definition of ṡ(t). Here one must verify that this
definition does not depend on the choice of the basis of sections, s1, . . . , sn
(the formula is obviously independent of the choice of the chart (U, x)).
This is done as follows: Assume that σ1, . . . , σn is another basis of sec-
tions in some open neighborhood V of the point γ(t); then there exist
τ `k ∈ C∞(U ∩ V ) (k, ` ∈ {1, . . . , n}) such that sk = τ `kσ` in U ∩ V . Hence

s(t1) = ak(t1)sk(γ(t1)) = ak(t1)τ
`
k(γ(t1))σ`(γ(t1)) for all t1 near t, and so

the above formula, applied with respect to the basis of sections σ1, . . . , σn,
says that

ṡ(t) =

(
d

dt

(
ak(t)τ `k(γ(t))

))
· σ`(γ(t))

=

(
ȧk(t) · τ `k(γ(t)) + ak(t) · (τ `k ◦ γ)′(t)

)
· σ`(γ(t))

= ȧk(t) · τ `k(γ(t)) · σ`(γ(t))

= ȧk(t) · sk(γ(t)),

where the third equality holds since γ̇(t) = 0, thus (τ `k ◦ γ)′(t) = 0. This
proves that ṡ(t) is well-defined also when γ̇(t) = 0.

[Let us also note that using the pullback connection γ∗D which we will
introduce later in Problem 57, ṡ(t) can be defined by the simple and intrinsic
formula

ṡ(t) := (γ∗D)1t(s),(5)

where 1t is the tangent vector “1” in Tt([a, b]) = R. Indeed, for any t with
γ̇(t) 6= 0, the fact that the above formula gives the same answer as the
definition on p. 7 in the lecture is clear from the defining relation for γ∗D
(cf. Problem 57(a)), applied in an appropriate small neighborhood of t in
[a, b]. On the other hand for t with γ̇(t) = 0, one verifies the claim by
comparing the explicit formula (4) above with the explicit formula for γ∗D
in terms of such a local basis of sections s1, . . . , sn for E (cf. equation (150)
in the solution to Problem 57(a)).]

p. 9(top): The statement about unique existence of a C∞ solution to a
first order linear system of ODEs; see [4, p. 399 (Corollary)] or [1, Sec. 1.2].

p. 9, Def 2: It is possible to build up the theory of connections by starting
from the notion of parallel transport. One then defines a system of parallel
transport on a vector bundle E to be a system of lifts “Pγv” of the C∞
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curves on M – such a “system of parallel transport” is assumed to satisfy
certain conditions (some of which appear in Lemma 3). One can then get
back “our” D by Prop. 1 on p. 10. Cf., e.g., Poor [11, Ch. 2].

p. 10, Prop. 1: This is the formula from Jost [5, p. 135 (just above (4.1.8))].
Our proof is in principle the same as Jost’s; however by using the pulled back
connection γ∗D (cf. Problem 57) we avoid the following slight issue: Jost
refers to (4.1.6) for the deduction of (4.1.9), but (4.1.6) concerns the case
when µ1, . . . , µn is a basis of sections in an open subset of M ; and this
assumption is used in the deduction of (4.1.6); if we wish to make sense of
(4.1.6) when µ1, . . . , µn is merely a basis of sections along γ 12 then certain
questions on interpretation arise, and these are exactly taken care of by
introducing the pulled back bundle γ∗E and connection γ∗D.

Following the computation at the bottom of our p. 10: The equality
Dγ̇(0)(µ) = (γ∗D)10(µ ◦ γ) holds by the defining relation for γ∗D, cf. Prob-
lem 57(a). The next two equalities are clear. Finally we use the fact that
(γ∗D)10(µj) = µ̇j(0) = 0; the first of these equalities holds by (5) above,
and the second by our choice of µj .

12or along c, in Jost’s notation.
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10. Connections II
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10.1. Notes. .

p. 5: Note that the symbol “R” is also used for the curvature “F”, espe-
cially when viewing curvature as an element of Ω2(EndE), and even more
often in Riemannian geometry, when E = TM and D is the Levi-Civita
connection. It should also be noted right from the start that

F (X,Y ) = −F (Y,X) in Γ(EndE), ∀X,Y ∈ Γ(TM).(6)

(Or equivalently: R(X,Y ) = −R(Y,X).) Indeed this holds for any section
in Ω2(EndE), since any such section by definition is an alternating map
from Γ(TM)⊗ Γ(TM) to Γ(EndE). Cf. Problem 51(a).

(Since the relation (6) is immediate from start, it seems somewhat strange
that Jost refers to [5, Thm. 4.1.2] in his proof of that relation; cf. [5, Cor.
4.1.1].)

p. 7 (bottom): Here we arrive at the formula F|U = Fjk⊗(dxj ∧dxk) with

Fjk =
∂Ak
∂xj

+AjAk (in Γ(EndE|U )).

Of course, since dxj ∧ dxk = −dxk ∧ dxj , we then also have F|U = F̃jk ⊗
(dxj ∧ dxk) for any choice of F̃jk ∈ Γ(EndE|U ) (j, k ∈ {1, . . . , d}) satisfying

F̃jk − F̃kj = Fjk − Fkj (∀j, k). One natural choice is to require F̃jk = −F̃kj
(∀j, k); this determines F̃jk uniquely as:

F̃jk =
1

2
(Fjk − Fkj) =

1

2

(∂Ak
∂xj

− ∂Aj
∂xk

+AjAk −AkAj
)
.

This choice of F̃jk appears in [5, (4.1.27–28), and also (4.1.31–32)]. Note

also that this F̃jk can be defined by

F̃jk =
1

2
F
( ∂

∂xj
,
∂

∂xk

)
.

(In the right hand side we view F as a bilinear map Γ(TM) × Γ(TM) →
Γ(EndE); cf. Problem 51(a).)

p. 8, transition maps: We could ((should?)) have discussed these early on
when we introduced vector bundles in #7! Indeed, Jost discusses transition
maps already on the second page of [5, Ch. 2].

pp. 11–12: Here we carry out the calculation which Jost refers to (without
showing it) just above [5, (4.1.29)].
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11. More on curvature. Metric connections.
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11.1. Notes. .

p. 3: Note here that Rkjim = −Rkjmi; this is immediate from the definition

of Rkjim and the antisymmetry R(X,Y ) = −R(Y,X) (cf. (6) above; also [5,

Cor. 4.1.2]).

p. 4, Theorem 1: This is Jost’s [5, Thm. 4.1.2] and we follow Jost’s proof
(in principle), expanding on some details.

p. 6: Here we derive Jost’s formula [5, (4.1.24)] without introducing ex-
plicit “coefficients” for A as Jost does.

p. 7: Note that our computation here is the same as in Jost, p. 139
(just above Theorem 4.1.1), [5], except that there is no need to introduce
the explicit expansion “A = Aidx

i”, since we can refer to the associativ-
ity relation in Problem 49(d). Here are some more details from the end of
Jost’s computation, i.e. not using Problem 49(d) but instead working di-
rectly with “[Aidx

i, Ajdx
j ∧Akdxk]” and only using the definition of vector-

wedge-product:

[Aidx
i, Ajdx

j ∧Akdxk] = [Ai ⊗ dxi, (Aj ◦Ak)⊗ (dxj ∧ dxk)]

= [Ai, Aj ◦Ak]⊗ (dxi ∧ dxj ∧ dxk)

= (Ai ◦Aj ◦Ak)⊗ (dxi ∧ dxj ∧ dxk)− (Aj ◦Ak ◦Ai)⊗ (dxi ∧ dxj ∧ dxk)

= (Ai ◦Aj ◦Ak)⊗ (dxi ∧ dxj ∧ dxk)− (Ai ◦Aj ◦Ak)⊗ (dxk ∧ dxi ∧ dxj)
= 0,

since dxi ∧ dxj ∧ dxk = dxk ∧ dxi ∧ dxj .

In connection with the last computation, let us stress again that

[B1, B2] = B1 ◦B2 − (−1)rsB2 ◦B1,

∀B1 ∈ Ωr(EndE), B2 ∈ Ωs(EndE),

as we pointed out on p. 7.
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12. The Yang-Mills functional
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12.1. Notes. .

p. 1: Here we define the natural volume measure “dvol”; this exists on an
arbitrary Riemannian manifold M . Note that Jost introduces (in passing)
this measure dvol already in [5, (1.4.2–3)]. The geometrical motivation for

the factor “
√
g(x)” is that this equals the volume of the parallelotope in TpM

spanned by ∂
∂x1

, . . . , ∂
∂xd

, with respect to the natural volume measure on the
vector space TpM ; namely the volume measure coming from identifying TpM

with Rd by any linear isomorphism carrying the Riemannian scalar product
on TpM to the standard Euclidean scalar product on Rd. (Proof of this

fact: By Problem 64(c), said volume equals ‖ ∂
∂x1
∧ · · · ∧ ∂

∂xd
‖, which, by

Problem 64(b), is equal to
√
g(x).)

To prove that
∫
M f dvol is well-defined we need to prove that it does not

depend on the choice of the charts (Uα, xα). For this, it suffices to verify
that if (U, x) and (V, y) are any two C∞ charts, and the Riemannian metric
is given by (gij(x)) wrt (U, x) and by (hij(y)) wrt (V, y), then∫

U∩V
f(x)

√
g(x) dx1 · · · dxd =

∫
U∩V

f(y)
√
h(y) dy1 · · · dyd(7)

for any f ∈ C∞(U ∩ V ). (Here of course g(x) = det(gij(x)) and h(y) =
det(hij(y)).) To prove (7), note that both sides of (7) really stand for

integrals over open subsets of Rd (namely the sets x(U ∩ V ) and y(U ∩ V ),
respectively), and by the formula for changing variables in d-dimensional
integrals (cf., e.g., [12, Thm. 10.9]) we see that the right hand side of (7)
equals ∫

U∩V
f(x)

√
h(y) |det J(x)| dx1 · · · dxd,(8)

where J(x) is the Jacobian,

J(x) :=


∂y1

∂x1
· · · ∂y1

∂xd
...

...
∂yd

∂x1
· · · ∂yd

∂xd

 .

Next, recall from Lecture #2 that

gij(x) =
∂yk

∂xi
∂y`

∂xj
hk`(y) in U ∩ V.

In terms of matrix multiplication, this means that

(gij(x)) = J(x) · (hk`(y)) · J(x)T .

Taking the determinant, this implies:

h(y) = (detJ(x))−2 · g(x) in U ∩ V.
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Inserting this in (8), we conclude that the right hand side of (7) equals the
left hand side, as desired! �

p. 3, regarding the scalar product on
∧
r(T ∗p ): Jost defines this in the

beginning of [5, Ch. 3.3]. The same construction applies to endow
∧
r(V )

with a scalar product, whenever V is a finite dimensional vector space over
R equipped with a scalar product. As an aside remark, let us point out that
in the special case V = Rd with its standard scalar product, we have the
following geometrical fact: For any “pure tensor” β = v1 ∧ · · · ∧ vr (with
v1, . . . , vr ∈ Rd), the “length”

‖β‖ :=
√
〈v1 ∧ · · · ∧ vr, v1 ∧ · · · ∧ vr〉

equals the (r-dimensional) volume of the r-dimensional parallelotope spanned
by v1, . . . , vr! This follows from the formula which we state at the bottom
of p. 3 in the lecture.

p. 5: This is the same computation as in [5, (4.2.13–14)]. At the end
of the page: Note that we do not have time to introduce the operator D∗

in this course (so any discussion/understanding of D∗ is extracurricular);
however I just wanted to mention the final equation, D∗FD = 0...
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13. The Levi-Civita connection
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14. Curvature of Riemannian manifolds
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14.1. Notes. .

pp. 6–10: Here we follow Jost’s proof of [5, Lemma 4.3.2], giving more
details. Key points are the beautifully symmetric formulas

Rijk` =
1

2
(gi`,jk + gjk,i` − gik,j` − gj`,ik)

and
∂

∂xh
Rijk` =

1

2
(gi`,jkh + gjk,i`h − gik,j`h − gj`,ikh),

which we state as Lemmata 3 and 3’. It is of course very important to
remember that these formulas hold only at the point p ∈M , and under the
assumption that we are using normal coordinates around p! As we point out
p. 8 (bottom), the first of the above two formulas allows us to immediately
(re-)prove all of Lemma 1.

p. 7(top): This formula “∂hRk`ij + ∂iRk`jh + ∂jRk`hi = 0” is what most
directly implies our Lemma 2 (via R-multilinearity); however note that Jost’s
(4.3.14), “∂hRk`ij + ∂kR`hij + ∂`Rhkij = 0” is also true13 indeed these two
formulas are seen to be equivalent by using the fact that Rabcd ≡ Rcdab.

13in the same context, i.e. at the point p, and assuming normal coordinates around p.



186

15. Curvature of Riemannian manifolds, II
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15.1. Notes. .

p. 5, Theorem 1: This is Jost, [5, Thm. 4.3.2].

A correction in Jost’s book: The formula [5, p. 165, (4.3.20)] is incorrect;
it should be “Rijk` = K(gikgj` − gi`gjk)”; indeed cf. “(*)” on p. 7 in the
lecture. Also the formula on [5, p. 166 (line 3)] is incorrect, it is corrected
by negating one of the sides.
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16. 1st and 2nd variations of arc length
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16.1. Notes. .

p. 4, Def. 1: The notation Vc for the space of vector fields along c (and

also the notation
◦
Vc) is introduced in Jost, [5, p. 222]; however it seems

convenient to introduce it already in the present lecture. The index form
is defined in [5, pp. 210(bot)–211(top)]; note that polarization gives the
symmetric R-bilinear form explicitly given by [5, (5.1.8)].
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17. Jacobi Fields
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17.1. Notes. .

pp. 2–4: Here we follow the presentation in the beginning of [5, Sec. 5.2],
except that we introduce Jacobi fields by studying a question, leading to
Definition 1 on p. 4(top). Note that the equivalence (*)⇔(**) is [5, Lemma
5.2.1] and the equivalence proved on p. 2 between (*) and X being a critical

point of I(X,X) within X +
◦
Vc is [5, Lemma 5.2.2].

p. 7, Lemma 3: Jost mentions this fact on [5, p. 214(mid)]. It seems to me
that his “proof” of the fact is a little bit too short. (But note that our proof
of the fact is by a computation which is rather similar to the computation
in the proof of Lemma 2 = Jost’s Lemma 5.2.4.)

p. 9: The computation here is very similar to what we did in the proofs of
Lemma 1 and Theorem 1 in Lecture #16. In particular see there for detailed
justification of the manipulations.

p. 10: Here we write “take any vector field U along γ such that U(0) = ċ(0)

and U̇(0) = Ẋ(0) (in Tc(0)(M))”. To see that this is possible, one may
(following Jost [5, p. 215(mid)]) let V and W be the unique parallel vector

fields along γ subject to V (0) = ċ(0) and W (0) = Ẋ(0) (cf. Lemma 2 in
Lecture #9), and then set

U(s) = V (s) + sW (s) ∀s ∈ (−ε, ε).

Then U(0) = V (0) = ċ(0) and (using V̇ (0) = Ẇ (0) = 0): U̇(0) = W (0) =

Ẋ(0), as desired.

(p. 10: We here define

c(t, s) = expγ(s)(t · U(s)), ∀t ∈ [0, b], s ∈ (−ε, ε).(9)

We have to prove that this is actually possible, i.e. that after perhaps shrink-
ing ε, we have t · U(s) ∈ D for all t ∈ [0, b] and s ∈ (−ε, ε), where D
is the maximal domain for exp, as in Problem 21. This follows from the
fact that D is open (cf. Problem 21(c)) and a standard compactness ar-
gument. Indeed, assume that this is not possible. Then there exists a
sequence s1, s2, . . . ∈ (−ε, ε) 14 with sj → 0 and a corresponding sequence
t1, t2, . . . ∈ [0, b] such that tj ·U(sj) /∈ D for all j. Since [0, b] is compact, af-
ter passing to a subsequence we may assume that the limit t∞ := limj→∞ tj
exists, in [0, b]. But then limj→∞ tj · U(sj) = t∞ · U(0) = t∞ · ċ(0) in TM
and t∞ · ċ(0) ∈ D since c(t) for t ∈ [0, b] by assumption is a geodesic. This
gives a contradiction against the fact that tj · U(sj) /∈ D for all j and D is
open! Done!)

p. 13: In this proof we find

(d expp)v(v) = ċ(1)(10)

14for our original choice of ε > 0
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by applying Cor. 1 to the tangential Jacobi field X. However note that the
relation (10) is also immediate from the definition of exp. Indeed, we have
(d expp)v(v) = d

dh expp(v + hv)|h=0 = d
dhc(1 + h)|h=0 = ċ(1).
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18. Conjugate points
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18.1. Notes. .

p. 4, regarding the Hilbert manifold H1(I,M) of all H1-curves I → M ,
see Klingenberg [6, Ch. 2]. There also exist other natural (∞-dim) manifold
structures on spaces of curves: For example, an often considered space is
the “smooth loop space” of M , which is the space of all C∞ closed curves
on M equipped with a natural structure as a Fréchet manifold.

p. 6(mid): Here we write that if we can find Y ∈
◦
Vc with I(Y, Y ) < 0 then

by Theorem 1 in #16 there is a proper variation cs of c with L(cs) < L(c)

for all s ∈ (−ε, ε) \ {0}. To see this, note that, given such a Y ∈
◦
Vc,

by Problem 83 there is a proper variation cs of c with c′0 = Y , and then
Theorem 1 in #16 implies that E′′(s) < 0. Also E′(s) = 0 by Lemma 1
in #16; hence after possibly shrinking ε we have E(s) < E(0) for all s ∈
(−ε, ε) \ {0}. But also L(s) ≤

√
2E(s) and L(0) =

√
2E(0); hence also

L(s) < L(0) for all s ∈ (−ε, ε) \ {0}. �
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19. Comparison theorems
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19.1. Notes. .

p. 5: Note that Jost’s [5, Cor. 5.1.1] leads to another proof of our Corol-
lary 1 in the case µ ≤ 0, not using Rauch’s Comparison Theorem. Indeed,
if M has sectional curvature everywhere ≤ 0 then [5, Cor. 5.1.1] implies via
Theorem 1 in #18 that there are no conjugate points along any geodesic,
and this implies that (d expp)v is non-singular for all p ∈ M and v ∈ TpM .
(Jost proves [5, Cor. 5.1.1] by using the formula

E′′(s) =

∫ b

a

(〈
∇ ∂

∂t
∇ ∂

∂s
c′, ċ
〉
− 〈R(ċ, c′)c′, ċ〉+

∥∥∇ ∂
∂t
c′
∥∥2) dt,

which appears in the proof of Theorem 1 in #16 (= Jost’s [5, Thm. 5.1.1]).
For the special choice of variation c(t, s) which Jost considers in the proof
of [5, Cor. 5.1.1], all terms in the above integral are seen to be non-negative;
therefore E′′(s) ≥ 0 for all s.)

p. 6: Theorem 2 is = Jost’s [5, Cor. 5.8.1]; however we follow Lee [9, Thm.
11.5] in our presentation.
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