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Chapter 0O

Introduction

This book is an introduction to Fourier analysis and related topics with appli-
cations in solving linear partial differential equations (PDEs), integral equations
as well as signal problems. In this chapter we introduce some basic PDEs of
mathematical physics. We also introduce the step and impulse functions which
are crucial in describing the continuous time signals.

0.1 Partial Differential Equations

We shall use the common notation R" for the real Euclidean spaces of dimen-
sion n with the elements x = (21, zs,...,%,) € R". In the most applications
n will be 1,2,3 or 4 and the variables z;, o and z3 denote coordinates
in one, two, or three dimensions, whereas x, represents the time variable.
In this case we usually replace (z1, 9,3, 24) by a most common notation:
(z,y, 2,t). Further we shall use the common subscript notation for the partial
derivatives, viz:

ou ) ou 0%u 0%u otc
; Y U - ) (2 = ) (2 = b .
b 0wy ot Y 9zoy o2

Ug

A more general notation for a partial derivative for a sufficiently smooth
function u (see definition below) is given by

olely — gm g gor

= . e u
ozt ... 0x%» 0zt 0x3? 0xon

7
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where 38: Jl, 1 <4 < n, denotes the partial derivative of order 7 with respect
to the variable z;, @ = (aq,qq,...,q,) is a multi-index of integers «; > 0

and |a| = a1 + ... + ay.

Definition 1. A function f of one real variable is said to be of class C*) on
an interval I if its derivatives f', ..., f®) exist and are continuous on I. A
function f of n real variables is said to be of class C*) on a set S € R if
all of its partial derivatives of order < k i.e. 01 f/(0z$" ...0z%") with the
multi-indez |o| = a1 + ... + o, < k, exist and are continuous on S.

A key defining property of a partial differential equation (PDE) is that
there is more than one independent variable and a PDE is a relation between
an unknown function and its partial derivatives:

FZ1, -y Ty Uy Uy s Uy - -+ 5 Ugygrs - - - 0 u/028 . 0z, ..) = 0. (0.1.1)

The order of an equation is defined to be the order of the highest deriva-
tive in the equation. The most general PDE of the first order in two inde-
pendent variables can be written as

F(z,y,u(z,y), ug(z,y), uy(z,y)) = F(z,y,u, ug, uy) = 0. (0.1.2)

Likewise the most general PDE of the second order in two independent vari-
ables is of the form

F(x,y,u, uwauyaummauzyauyy) =0. (013)

It turns out that, when the equations (0.1.1)-(0.1.3) are considered in bounded
domains  C R", in order to obtain a unique solution (see below) one should
provide conditions at the boundary of the domain €2 called boundary condi-
tions, denoted, e.g. by B(u) = f or B(u) = 0 (as well as conditions for ¢t = 0,
initial conditions; denoted, e.g. by I(u) = g or I(u) = 0), as we often see
in the theory of ordinary differential equations. B and I are expressions on
u and its partial derivatives, stated on the whole or a part of the boundary
of Q (or, in case of I, for t = 0), and are associated to the underlying PDE.
Below we shall discuss the choice of relevant initial and boundary conditions
for a PDE.

A solution for a PDE of type (0.1.1)-(0.1.3) is a function u that identically
satisfies the corresponding PDE, and the associated initial and boundary
conditions, in some region of the variables zi, zs,...,z, (or z,y). Note
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that a solution of an equation of order k£ has to be k£ times differentiable. A
function in C(¥) that satisfies a PDE of order k is called a classical (or strong)
solution of the PDE. We sometimes also have to deal with solutions that are
not classical. Such solutions are called weak solutions. We shall discuss the
weak solutions in the distribution chapter.

Definition 2. A problem consisting of a PDE associated with boundary
and/or initial conditions is called well-posed if it fulfills the following three
criteria:

1. Existence The problem has a solution.

2. Uniqueness There is no more than one solution.

3. Stability A small change in the equation or in the side conditions gives
rise to a small change in the solution.

If one or more of the conditions above does not hold, then we say that the
problem is ill-posed. The fundamental theoretical question of PDE is whether
the problem consisting of the equation and its associated side conditions is
well-posed. In this regard, one can fairly say that the fundamental problems
of mathematical physics are all well-posed. However, in certain engineering
applications we might encounter problems that are ill-posed. In practice,
such problems are unsolvable. Therefore, when we face an ill-posed problem,
the first step should be to modify it appropriately in order to render it well-
posed.

Definition 3. An equation is called linear if in (0.1.1), F is a linear function
of the unknown function u and its derivatives.

Thus, for example, the equation e**Yu, + 27u, + cos(z® 4+ y?)u = y? is

a linear equation, while u2 + “; = 1 is nonlinear equation. The nonlinear

equations are often further classified into subclasses according to the type of

their nonlinearity. Generally, the nonlinearity is more pronounced when it

appears in higher order derivatives. For example, the following equations are
both nonlinear

Uy + Uyy = u° + u. (0.1.4)

Ugy + Uyy = |Vul*u. (0.1.5)

Here |Vu| denotes the norm of the gradient of u. While (0.1.5) is nonlinear,
it is still linear as a function of highest-order derivative. Such a nonlinearity
is called quasilinear. On the other hand in (0.1.4) the nonlinearity is only in
the unknown solution u. Such equations are called semilinear.
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0.1.1 Differential operators , superposition principle

We recall that we denote the set of continuous functions in a domain D (a
subset of R") by C°(D) or C(D). Further, by C*)(D) we mean the set of
all functions that are k£ times continuously differentiable in D. Mappings
between function classes as C*) are called differential operators. We denote
by L[u] the operation of a mapping (operator) £ on a function u.

Definition 4. An operator L that satisfies

LBrur + Boug] = f1Lur] + B2 Lug], Vi, B2 € R, (0.1.6)

where uy; and uy are arbitrary functions is called a linear operator. We may
generalize (0.1.6) as

E[ﬁlul +...+ ﬁkuk] = ﬁlﬁ[ul] + ...+ ﬁkﬁ[uk], VBi,...,0Bk € R, (017)

i.e. L takes any linear combination of u;’s to corresponding linear combina-
tion of Llu;]’s.

For instance the integral operator L[f] = fab f(z) dz defined on the space
of continuous functions on [a, b] defines a linear operator from C|a, b] into R:
satisfies both (0.1.6) and (0.1.7).

A linear partial differential operator L that transforms a function u of

the variables x = (21,9, ..., ;) into another function L is given by
n a ° n 82 .
Lje] = bi(x)— i (X)=——— + ... 0.1.8
o] = a0+ bt + 3 o5+ (0.1.8)

where e represents any function v in, say C**), and the dots at the end indicate
higher-order derivatives, but the sum contains only finitely many terms.
The term linear in the phrase linear partial differential operator refers
to the following fundamental property: if £ is given by (0.1.8) and u;, 1 <
j < k, are any set of functions possessing the requisite derivatives, and
B, 1 < j < k, are any constants then the relation (0.1.7) is fulfilled. This
is an immediate consequence of the fact that (0.1.6) and (0.1.7) are valid for
L replaced with the derivative. A linear differential equation defines a linear
differential operator: the equation can be expressed as L[u] = F, where £
is a linear operator and F' is a given function. The differential equation
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L[u] = 0 is called a homogeneous equation. For example, define the operator

L = 0%/0z* — 0?/0y?. Then
Llu] = tgy — uyy = 0,
is a homogeneous equation, while the equation
Llu] = Ugy — Uy =z,

is an example of a nonhomogeneous equation. In a similar way we may define
another type of constraint for the PDEs that appears in many applications:
the boundary conditions. In this regard the linear boundary conditions are
defined as operators B satisfying

B(fBru1 + Bous) = B1B(u1) + 2B (us), Vi, B2 € R, (0.1.9)

at the boundary of a given domain (2.

The Superposition principle. An important property of the linear op-
erators is that if the functions u;, 1 < j < k, satisfy the linear differential
equation L[u] = F; and the boundary conditions (linear) B(u;) = f; for
j=1,2,...,k, then the linear combination v := ", S;u;, satisfies the equa-
tion L[v] = Y " | iF; as well as the boundary condition B(v) = Y, Bif;.
In particular, if each of the functions u;, 1 < ¢ < n, satisfies the homogeneous
equation L[u] = 0 and the homogeneous boundary condition B(u) = 0, then
every linear combination of them satisfies that equation and boundary con-
dition too. This property is called the superposition principle. It allows to
construct complex solutions through combining simple solutions: suppose we
want to determine all solutions of a differential equation associated with a
boundary condition viz,

L[u] = F, B(u) = f. (0.1.10)
We consider the corresponding, simpler homogeneous problem:
L[u] =0, B(u) = 0. (0.1.11)

Now it suffices to find just one solution, say v of the original problem (0.1.10).
Then, for any solution u of (0.1.10), w = u — v satisfies (0.1.11). Since
Llw] = L[u] — Lv] = F—F =0 and B(w) = B(u) — B(v) = f— f = 0.
Hence we obtain a general solution of (0.1.10) by adding the general solution
w of (0.1.11) to any particular solution of (0.1.10).
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Following the same idea one may apply superposition to split a problem
involving several inhomogeneous terms into simpler ones each with a single
inhomogeneous term. For instance we may split (0.1.10) as

Luq] = F, B(u;) =0,
Llugl =0,  Bl(ug) = f,

and then take u = u; + usg.

The most important application of the superposition principle is in the
case of linear homogeneous differential equations satisfying homogeneous
boundary conditions: if the functions uj, 1 < j < k, satisfy (0.1.11): the
linear differential equation L{u] = 0 and the boundary conditions (linear)
B(u;) = 0 for j = 1,2,...,k, then the linear combination v := Y ., Biu;,
satisfies the same equation and boundary condition: (0.1.11).

Finally, superposition principle is used to prove the uniqueness of solu-
tions to linear PDEs.

Exercises
1. Consider the problem
Uz +u =0, z€(0,0); u(0) = u(¢) = 0.

Cleasly the function u(z) = 0 is a solution. Is this solution unique?
Does the answer depend on £7

2. Consider the problem
Ve + 1ty = f(@), 7€ (0,0;  u(0) = (0) = <[w'(6) + u(0)].

a) Is the solution unique? (f is a given function).

b) Under what condition on f a solution exists?

3. Suppose u;, © = 1,2,..., N are N solutions of the linear differential
equation L[u] = F, where F' # 0. Under what condition on the con-
stant coefficients ¢;, ¢ = 1,2,..., N is the linear combination Zfil Cil;
also a solution of this equation?
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4. Consider the nonlinear ordinary differential equation u, = u(1 — u).

a) Show that uiz) = 1 and us(z) = 1 — 1/(1 + €®) both are solutions,
but u; + us is not a solution.

b) For which value of ¢; is ¢u; a solution? What about cous?
5. Show that each of the following equations has a solution of the form

u(z,y) = f(axz + by) for a proper choice of constants a, b. Fine the
constants for each example.

a) Uy +3uy, =0. b)3uy, —7u, =0. c¢) 2u, +eu, = 0.

6. a) Consider the equation uzy + 2ugy + u,,, = 0. Write equation in the
coordinates s=x,t =1 — y.
b) Find the general solution of the equation.
c) Consider the equation gz — 2ugy+5u,, = 0. Write it the coordinates
s=z+y and t = 2z.

7. a) Show that for n =1,2,3,...,, (z,y) = sin(nnz) sinh(nny) satisfies

Ugg + Uy =0, u(0,y) =u(l,y) =u(z,0) =0.

b) Find a linear combination of u,’s that satisfies u(z,1) = sin 27z —
sin 3.

¢) Solve the Dirichlet problem

Ugg + Uyy =0, u(0,y) =u(l,y) =0,
u(z,0) = 2sinmz, wu(z,1) =sin27z — sin3nz.

0.1.2 Some equations of mathematical physics

In this subsection we shall introduce some of the basic partial differential
equations of mathematical physics that will be the subject of our studies
throughout the book. These equations all involve a fundamental differential
operator of order two, called Laplacian, acting on C(? (R™) and defined as
follows:

82u 82’& 82U n
v? =omt o T T u e COR). (0.1.12)
1 2

n
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Basically, there are three types of fundamental physical phenomena described
by differential equations involving the Laplacian:

Vu = F(x,t), The Laplace equation
uy — kV?u = F(x,1), The heat equation (0.1.13)
uy — V3?u = F(x,1), The wave equation.

Here F' is a given function. If F # 0, then the equations (0.1.13) are in-
homogeneous. In the special case, when F' = 0 the equations (0.1.13) are
homogeneous.

Here the first equation, being time independent, has a particular nature:
besides the fact that it describes the steady-state heat transfer and the stand-
ing wave equations (loosely speaking, the time independent versions of the
other two equations), the Laplace’e equation arises in describing several other
physical phenomena such as electrostatic potential in regions with no electric
charge, electromagnetic potential, in the domains lacking gravity as well as
problems in elasticity, etc.

The heat equation describes the diffusion of thermal energy in a homogeneous
material where u = u(x, t) is the temperature at a position x at time ¢ and &
is a constant called thermal diffusivity or heat conductivity of the material.

Remark The heat equation can be used to model the heat flow in solids
and fluids, in the later case, however, it dose not take any account to the
convection phenomenon; and provides a reasonable model only if phenomena
such as macroscopic currents in the fluid are not present (or negligible).
Further, the heat equation is not a fundamental law of physics, and it does
not give reliable answers at very low or very high temperatures.

Since temperature is related to heat, which is a form of energy, the basic
idea in deriving the heat equation is to use the law of conservation of energy:

Fourier’s law of heat conduction and the derivation of heat equation
Let Q C R, d = 1,2,3 be a fixed spatial domain with the boundary 9.
The rate of change of thermal energy with respect to time in D is equal to
the net flow of energy across the boundary of D plus the rate at which heat
is generated within D.

Let now u denote the temperature at the position x = (z,y, z) € D and
at time t. We assume that the solid is on rest and it is rigid so that the only
energy present is thermal energy and the density p(z) is independent of the
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time ¢ and temperature u. Let £ denote the specific internal energy of the
solid, that is, the energy per unit mass. Then the amount of thermal energy

in 2 is given by
/ p& dx,
Q

and the time rate (time derivative) of change of thermal energy in (2 is:

d pgdx:/pé'tdx.
Q

dt Jq
Let ¢ = (q1, g2, q3) denote the heat flux vector and n = (n,ng, ng) denote
the outward unit normal, to the boundary 02, at the point x € 9€2. Then
g - n represents the flow of heat per unit cross-sectional area per unit time
crossing a surface element. Thus

—/ q-ndS
a0

is the amount of heat per unit time flowing across the boundary 0€2. Here dS
represents the element of surface area. The minus sign reflects the fact that
if more heat flows out of the domain D than in, the energy in D decreases.
Finally, in general, the heat production is determined by external sources that
are independent of the temperature. In some cases (such as an air conditioner
controlled by a thermostat) it depends on temperature itself but not on
its derivatives. Hence in the presence of a source (or sink) we denote the
corresponding rate at which heat is reduced per unit volume by f = f(x, ¢, u)
so that the source term becomes

/ f(x,t,u)dx.
Q
Now the law of conservation of energy takes the form

/pé‘tdx—/ q-ndS:/f(x,t,u)dx. (0.1.14)
Q o0 Q

Applying the Gauss divergent theorem to the integral over 02 we get

/(,0 & +V-q—f)dx=0, (0.1.15)
0

where V- denotes the divergent operator. In the sequel we shall use the
following simple result:
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Lemma 1. Let h be a continuous fiction satisfying fQ h(xdx) = 0 for every
domain  C R?. Then h = 0.

Proof. Let us assume to the contrary that there exists a point xo € {2 where
h(xo) # 0. Assume without loss of generality that h(xe) > 0. Since h is
continuous, there exists a domain (maybe very small) y C 2, containing
xo and € > 0, such that h(x) > ¢, for all x € Q. Therefore we have
Jo, h(x) dx > eVol(Qg) > 0, which contradicts the lemma’s assumption. [

From (0.1.15), using the above lemma, we conclude that
p& =—-V-q+ f. (0.1.16)

This is the basic form of our heat conduction law. The functions £ and ¢
are unknown and additional information of an empirical nature is needed to
determine the equation for the temperature u. First, for many materials,
over fairly wide but not too large temperature range, the function & = £(u)
depends nearly linearly on u, so that

Here A, called the specific heat, is assumed to be constant. Next we relate
the temperature u to the heat flux q. Here we use Fourier’s law but, first, to
be specific, we describe the simple facts supporting Fourier’s law:

(i) the heat flows from regions of high temperature to the regions of low
temperature.

(ii) The rate of heat flow is small or large according as temperature changes
between neighboring regions are small or large. To describe these quantitative
properties of heat flow, we postulate a linear relationship between the rate of
heat flow and the rate of temperature change. Recall that if x is a point in
the heat conducting medium and n is a unit vector specifying a direction at
x, then the rate heat flow at x in the direction n is ¢-n and the rate of change
of temperature is du/0n = Vu - n, the directional derivative of temperature.
Since ¢ - n > 0 requires Vu - n < 0, and vice versa, (from the calculus the
direction of maximal growth of a function is given by its gradient), our linear
relation takes the form ¢-n = —xkVu-n, with kK = k(x) > 0. Since n specifies
any direction from x, this is equivalent to the assumption

qg = —kVu, (0.1.18)
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which is concrete statement of the Fourier’s law. The positive function « is
called the heat conduction (or Fourier) coefficient. Let now o = k/Ap and
F = f/Ap and insert (0.1.16) and (0.1.17) in (0.1.18) to get the final form of
the heat equation.

w=V-(cVu)+ F. (0.1.19)

The quantity o is referred to as the thermal diffusivity (or diffusion) coef-
ficient. If we assume that o is constant, then the final form of the heat
equation would be

uy = oVu+F, or uy=0Au+F. (0.1.20)

Here A = divV = V? = 8‘9—; + 6‘9—; + ;—; denotes the Laplace’s operator
in three dimensions (its general form is introduced in the beginning of this
subsection).
The third equation in (0.1.13) is the wave equation: uy; —cV?u = F. Here
u represents a wave traveling through an n-dimensional medium; c is the
speed of propagation of wave in the medium and u(x,t) is the amplitude of
the wave at position x and time ¢. The wave equation provides mathematical
model for a number of problems involving different physics processes such as
in the following examples:
i) Vibration of a stretched string, such as guitar string (1-dimensional).
i1) Vibration of a column of air, such as a clarinet (1-dimensional).
i17) Vibration of a stretched membrane, such as a drumhead (2-dimensional).
iv) Waves in an incompressible fluid, such as water (2-dimensional).
v) Sound waves in air or other elastic media (3-dimensional).
vi) Electromagnetic, such as light waves and radio waves (3-dimensional).
Note that in (7), (i74) and (iv), u represents the transverse displacement
of the string, membrane, or fluid surface; in (i7) and (v), u represents the
longitudinal displacement of the air; and in (vi), u is any of the components
of the electromagnetic field. For detailed discussions and a derivation of the
equations modeling (7)- (vi), see, e.g, Folland [|, Guenther and Lee, Gus-
tavsson [|, [], Ingard [| Pinchover and Rubinstein [|, Strauss [| and Taylor
[]- We should point out, however, that in most cases the derivation involves
making some simplifying assumptions. Hence, the wave equation gives only
an approximate description of the actual physical process, and the validity
of the approximation will depend on whether certain physical conditions are
satisfied. For instance, in example (i) the vibration should be small enough

(
(
(
(
(
(
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so that the string is not stretched beyond its limits of elasticity. In exam-
ple (vi), it follows from Maxwell’s equations, the fundamental equations of
electromagnetism, that the wave equation is satisfied exactly in regions con-
taining no electrical charges or current, which of course cannot be guaranteed
under normal physical circumstances and can only be approximately justified
in the real world. So an attempt to derive the wave equation corresponding
to one and each of these examples from the physical principles is far beyond
the scope of this book. Nevertheless, to give an idea, below we shall de-
rive the wave equation for a vibrating string which is, by the way, the most
considered wave equation model in this book.

The vibrating string, derivation of a wave equation in 1D

Consider a perfectly elastic and flexible string stretched along the segment
[0, L] of the z-axis, moving perpendicular to its equilibrium position. Let
po(x) denote the density of the string in the equilibrium position and p(z, t)
the density at time ¢. In an arbitrary small interval [z, x + Az] the mass will
satisfy

T+Az T+Ax
/ po(z)de =m = / p(z,t)\/1+ u2dz. (0.1.21)

|
|
1
|
|
1
T

T+ Ax

Thus, using lemma 1, (2.4.1) gives the conservation of mass viz:

po(z) = p(z,t)\/1 + ul. (0.1.22)

Now we use the tensions T'(z,t) and T'(z + Az, t), at the endpoints of an
element of the string and determine the force acting on the interval [z, x+Az].
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Since we assumed that the string moves only vertically, hence the forces in
the horizontal direction should be in balance: i.e.,

T(x + Az, t)cosa(x + Az) — T(x,t) cosa(x) = 0. (0.1.23)

Dividing (2.4.3) by Az and letting Az — 0, we thus obtain

% (T(x, t) cos a(m)) =0, (0.1.24)

hence
T(x,t)cosa(zr) = 7(t), (0.1.25)

where 7(¢) > 0 because it is the magnitude of the horizontal component of
the tension.

On the other hand the vertical motion is determined by the fact that the
time rate of change of linear momentum is given by the sum of the forces
acting in the vertical direction. Hence, using (2.4.2), the momentum of the
small element [z, z + Ax] is given by

T+Ax T+Ax
/ po(z)us de = / p(z,t)\/1 + u2 u dz, (0.1.26)

with the time rate of change:

d T+Azx

T+Ax
pr polty dT = / Polly dT. (0.1.27)

There are two kind of forces acting on the segment [z, x + Ax] of the string:
(i) the forces due to tension that keep the string taut and whose horizontal
components are in balance, and (ii) the forces acting a along whole length of
the string, such as weight. Thus, using (2.4.5), the net force acting on the
ends of the string element [z, z + Ax] is

T(x 4+ Az, t)sina(z + Az)—T(z,t) sina(z) =
(sin alz + Az)  sina(z) )
cosa(z + Az)  coso(x)

(0.1.28)

T<tan a(x + Az) — tan a(x))
)

)

= T(ux(x + Az, t) — uz(z,t
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Further, the weight of the string acting downward is

r+AT r+AT
—/pgdS:—/ pg\/l—i-ugdac:—/ pog dx. (0.1.29)

Next, for an external load, with the density f(z,t), acting on the string (e.g.,
a violin string is bowed), we have

T+Azx
/pde = / pof(z,t)dx. (0.1.30)

Finally, one should model the friction forces acting on the string segment.
We shall assume a linear law of friction of the form:

T+Ax T+Ax
—/oputdSz—/ op 1+u§utdx:—/ o pougdz. (0.1.31)

Now applying the Newton’s second law yields

r+Az
- / potsy dz = Tlus(z + Az, 1) — u(e,1)]

T+Az z+Az (0132)
—/ apoutdac—f—/ po(f — g) dx.
Dividing (2.4.12) by Az and letting Az — 0 we obtain the equation
PoUtt = TUggy — O Po Ut + po(f — g) (0133)

Letting ¢> = 7/py and F = f — g, we end up we the following concise form:
U + O Uy = gy + F. (0.1.34)

Equation (2.4.14) describes the vibration of the considered string once it
is set into motion. The smallness assumption here results to a single linear
equation for u. Due to the presence of the friction term ou;, equation (2.4.14)
is often referred as the damped one-dimensional wave equation. If friction is
negligible, then we can let 0 = 0 and get the inhomogeneous wave equation

Uy = gy + F. (0.1.35)

In the absence of the external forces and when the weight of the string is
negligible, we may take F' = 0 to get the one-dimensional wave equation:

Uy = CUgy. (0.1.36)
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Note that since u has the unit of length ¢, uy; has the unit of acceleration
and g, the unit of £, hence ¢ has the unit of velocity.

Remark In Appendix A we include a discussion on derivations of some of the
partial differential equations, which are of interest in Fluid and gas dynamics,
from the underlying physical laws.

Exercises

1. Show that u(z,y) = log(z? + y?) satisfies the Laplace’s equation g, +
Uyy = 0 for (l‘,y) ?é (070)

2. u(z,y,z) = (2% + y? + 22)~/2 satisfies the Laplace’s equation ., +
Uyy + Uy, = 0 for (z,y,2) # (0,0,0).

3. Show that u(r, #) = Br™sin(n#) satisfies the Laplace equation in polar

coordinates: . .
Upy + —Upr + SUgy = 0.
T T

4. Verify that

—2y 2 +y?—1

u = , V=
24+y?+2z+1 224+y?+2r+1

both satisfy the Laplace equation, and sketch the curves u = constant
and v = constant. Show that

i(z —1)

+17

U+ = where 2z =1z +1y.

5. Show that u(z,t) = t~/2? exp(—z?/4kt) satisfies the heat equation u, =
kg, for t > 0.

6. Show that u(z,y,t) = t~ exp|—(z%+y?)/4kt] satisfies the heat equation
Ut = k(Ugy + Uyy) for ¢ > 0.

7. The spherically symmetric form of the heat conduction equation is:

2 1
Upp + —Up = —Uyg.
T K

Show that v = ru satisfies the standard one-dimensional heat equation.
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10.

11.

12.

13.

14.

15.
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Show that the equation
0; = KBz — h(6 — )

can be reduced to the standard heat conduction equation by writing
u = (6 — ). How do you interpret the term h(f — 6y)?

Use the substitution & = x—vt, n =t to transform the one-dimensional
convection-diffusion equation

U = Ktgy — VU,
into a heat equation for @(&,n) = u(& + v, n).
If f e Cl0,1], let u(x,t) satisfy

Up = Ugy, O<z<l, t>0,
u(0,t) = u(l,t) =0, t>0,
u(z,0) = f(x), 0<z<I1.

Derive the identity 2u(u; — ugg) = (u?); — (2uug), + 2u?.

Find the possible values of a and b in the expression u = cos at sin bz,
such that it satisfies the wave equation u; = c?ugg.

Taking u = f(z + at), where f is any function, find the values of «
that will ensure u satisfies the wave equation uy = c*ugy.

The spherically symmetric version of the wave equation wu; = c*ug,
takes the form

Uy = & (Upr + 2u, /7).
Show, by putting v = ru that it has a solution of the form

v=f(ct —r)+ glct+7).

Let £ = x — ¢t and n = = 4 ct. Use the chain rule to show that

Ut — CZU$$ = —4u§n.
Show that the solution for the initial value problem

Uy = c2uzz7 U(.T, 0) = f(x)a Ut(.fE, 0) = g(x)a

satisfies the d’Alembert’s formula:

u(z,t) = % flx—ct)+ flz+ ct)] + 1 /Hdg(y) dy.

c —ct



0.2. GENERALIZED FUNCTIONS 23

0.2 Generalized functions

Here, loosely speaking, by generalized functions we shall mean a class of real-
valued functions having jump discontinuities at finite or countable number of
points, and their derivatives (the concept of derivative is “generalized” to dis-
continuity points in the context of “weak formulation”). The through study
of generalized functions is the subject of the distribution theory (for a brief in-
troduction see Appendix B). Impulse and step functions are examples of most
commonly used generalized functions with many applications, e.g. heat conduc-
tion, wave propagation, signal analysis and sampling signals, in order to describe
the data and solution of the underlying differential equations. Signals are certain
type of generalized functions defined over a continuous range of an independent
variable such as time. Examples of such signals include voltage, current, power,
pressure, flow, volume, angle, displacement, acceleration, and so forth. In this
section we derive the step and impulse functions through differentiating either
the ramp function introduced below, or the absolute value function. The Dirac
0-function is derived, e.g. as a “generalized” derivative from the step function.
We shall also use, formal, derivatives of -functions, which are, rigorously, defined
in the distribution sense.

I. The ramp function approach: The ramp function r(¢) is defined by

0, for t<0
r(t) =: { t for >0, (0.2.1)
r(t)

Figure 1: The ramp function ().

The function r(t) is everywhere differentiable except at the origin ¢t = 0. We
define the step function to be the modified derivative /() of (¢) by letting
r'(0) := 1.
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0.2.1 The Heaviside step function

In many engineering applications the underlying differential equation may
frequently have a discontinues forcing function, for example a square wave
resulting from an on/off switch. In order to accommodate such discontinuities
we use the Heaviside step function H(t), which we, customary, denote by 6().
As for the signal problems: to say that a signal is a continuous-time signal
is not the same that it is a continuous function of time, but only the time
t is a continuous variable. An important example of this distinction is the
Heaviside step function 6(t):

Definition 5. The Heaviside step function 0(t) is defined by:

B(t) =: () = { ! J;Z; i;g (0.2.2)

Figure 2: The Heaviside function 6(t).

The Heaviside step function is also frequently referred to as the unit step
function or simply the step function. As we mentioned above 7/(t) is not
defined for ¢t = 0 and 6(¢) is discontinuous at t = 0. Here we define 6(0) := 1,
unless otherwise the point ¢ = 0 is explicitly excluded from the domain of
definition. A function representing a unit step at ¢ = 7" may be obtained by
a horizontal translation of duration 7". This shift function is defined by

(1) 8(t—T)= {

The product f(t)0(t — T') takes values

F(DB(t —T) = { ?;( ) o i;; (0.2.4)

0, for t<T ¢
1, for t>T (2) T(t)=/ f(r)dr. (0.2.3)

) -0
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o(t—T)

Nob----o

Figure 3: The Heaviside function 6(t — 7).

So the function #(t — T') may be interpreted as a device for “switching on”

Fp(t—1)
F(r) /\
% t

Figure 4: The function f(¢)8(t — T).

the function f(¢) at t = T. In this way the unit step function may be used to
write a concise formulation of piecewise continuous functions. To illustrate
this, consider the piecewise-continuous function f(¢) illustrated in the Fig
below and defined by

fi1(t), for 0<t<ty
1) f®) =9 fO), for ¢ <t <t (0.2.5)
f3(t), for ¢ > ts.

To construct this function f(t) we use the following switching operations:
(i) switch on the function f(t) at ¢ = 0;

(ii) switch on the function fo(t) at ¢ = ¢; at the same time switch off the
function f;(¢);

(iii) switch on the function f5(¢) at ¢ = ¢, and at the same time switch off
the function f5(¢). In terms of the unit step function the function f(¢) may
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thus be expressed as

f() = [0)0() + [fo(t) — [L()]0(E — t1) + [f3(2) — f2(0)]0(t — t2).  (0.2.6)

Figure 5: The function f(¢)0(t — T).

Below are some other illustrative examples:

Exempel 1. The square pulse function with a given amplitude A:

| A, for te(ab)
f(t) —{ 0, for t¢(ab) (0.2.7)

can be representation by the one line expression: f(t) = A[f(t—a)—60(t—b)].

f(t) i

o ———

e ——-

Figure 6: The square pulse function f(¢).

Exempel 2. Using a combination of Heaviside functions The hat function:
1+ L for —T<t<0

pt)y=¢ 1—% for 0<t<T (0.2.8)
0 for t¢[-T,T],
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=T T

Figure 7: The hat function ¢(t).

can be expressed in a concise form as

o) = (14 )10 +7) — 66 + (1 - ) 6(6) — (¢~ 7))

t 2t t
= (1+ T)O(t +T) - Z6(t) - (1- T)Q(t ~ 7).
Exempel 3. If in the Ezample 1 we let A =sin(t), a =0 and b=, i.e.,
[ sint, for te[0,n]

then, we get the continuous sinus signal: f(t) = [0(t) — 0(t — 7)]sin(t). A
cut-off from sinus function as shown in the Fig. below

sin(t)

Figure 8: A sinus signal sin(?).

Exempel 4. Consider now the, purely, continuous signal O (t) given by

0 for  t <0,
OA(t) = ¢ % for  0<t<A, (0.2.10)
1 for A<t
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Then, Oa(t) has the following one line expression form:

1__ o
|
&
X t
Figure 9: The signal 0, (?),
%ay:iew—ﬂa—A)+ﬁa—Ay:imw+(y—iy@_Ay
A A A
0.2.2 The Impulse functions
We start with the function for the following Square pulse:
I 0<t<e
5.(t) = { 5 1d0.e] (0.2.11)
1/c ¢—o
Lot
|
|
S t
€

Figure 10: The square pulse function d.(%).

Note that §, satisfies

[5@@@:1

oo
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Definition 6. The Dirac’s § function is defined as the limit pulse function:
0(t) = im0 0:(t). This function has the following properties:

(1) 6(t)=0 for t#0, (2) 6(t) is undefined fort =0,
b2 1 ift1 <0<ty . . *©
(3) /t1 S(t)dt = { 0. otherwise, in particular /_oo d(t)dt = 1.

We may use the following geometric approach of the definition for the Dirac
delta function: using the, purely, continuous signal of Example 4 we have
obviously

0(t) = lim 0A(?), (0.2.12)
A—0
and the square pulse
5a(t) = dagt(t). (0.2.13)

Comparing (0.2.12) and (0.2.13) we get
_do(1)

Consequently 0(t) can be expressed as the running integral
t
6(t) :/ 3(7) dr, (0.2.15)

which is consistent with the original definition of §(¢), formulated in relation
(3) of the definition. The impulse function is depicted graphically as in the
Fig. below, where “1” beside the arrow indicates that the value of the area
of impulse is unity.

Figure 11: The delta function 6(¢) = ' ().
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The scaled impulse function Cé(t) is simply the derivative of the scaled
step function CH(t), C is a constant. Hence the value of the scaled impulse
is C.

Co(t) Co(t)
cl (C>0) (C <0)

C

Figure 12: Scaled unit impulse functions for C' > 0 and C < 0.

We will often encounter the product of unit-impulse function with another
function f(¢), that is

gty = f(t)o(t=1T), (0.2.16)

where we have included the possibility that §(¢) may be delayed in time by
some amout 7" (or advanced in time if T < 0) to produce §(t — T'). Another
interpretation of §(¢ — T') is simply that
do(t —T)
St-T)="—"=1 (0.2.17)
dt

To interpret the product signal g(¢) in (??) we again make use of approximate
impulse function da(t) to define the signal

ga(t) = f(t)oa(t = T), (0.2.18)

as illustrated in the Fig. below. Assuming that f(¢) is continuous over the
interval T < t < T 4+ A, we may approximate ga(t) for A sufficiently small
as simply

gA(t) = f(T)éA(t — T), (0219)

because f(t) is approximately constant over this interval. Since 6(t — T) is
the limit of 0A(t — 1) sa A — 0, it follows that

g(t) = fF()5(t —T) = F(T)5(t — T). (0.2.20)
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IO -

t
! T T+A
(1)
0N ﬂ
A
t
! T T+A

Figure 13: Illustration of approximate product ga(t) = f(t)oa(t — T).

That is the impulse §(¢t — 7T') is simply scaled by the value of f(¢t) at t =T
to produce g¢(t) as illustrated in Fig. above. This is sometimes called the
equivalence property of the unit impulse.

A simple, by particularly important extension of this result is that the
integral of ¢(t) over all ¢ equals, from the property (3) of the definition and
(0.2.20),

/ " F()6(t - T) dt = £(T), (0.2.21)

which is known as shifting property of the unit impulse. That is, no matter
how complicated the function f(¢) may by, the integral of f(¢)d(t — T) over
all ¢ equals simply the value of f(¢) at the point ¢ = T.

Exempel 5. We will encounter the integral
Fljw) = / eIl (t = T) dt. (0.2.22)

At first glance, this appears to be a complicated integral until we notice that
it contains an tmpulse fiction. The evaluation of the integral is the trivial
from (0.2.21) and is given by

F(jw) = e = coswT + jsinwT.
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f(#)
S(t—T

Figure 14: Illustration of product signal g(t) = f(t)o(t — T).

The Dirac ¢ function is the most widely known generalized function.
Within the traditional realm of functions, the Dirac function does not make
sense. Nevertheless, it is one of the most important tools in the study of many
problems in pure and applied mathematics, physics, engineering, mathemat-
ical statistics, and so forth. One may think of, e.g. ¢d(z) as representing
the charge density of a particle of charge ¢ on the z-axis that occupies only
the single point x = 0: there is no charge except at the origin and the to-
tal charge is c¢. In the sequel, we treat the ¢ functions as normal functions
bearing in mind that their applications require careful interpretation based
on properties (1)-(3) above.

Remark. An alternative approach for the definition of the delta function
is by replacing the nonsmooth d.(¢) of the definition above by an infinitely
smooth one given by the Gauss-pulse:

2 2 2
6.(t) = —e /% £>0 (0.2.23)

where as above

§(t) = lim d.(¢).

e—0
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Figure 15: The Gauss pulse 8, (t) = 1/2/m e #/(2%),

Some properties of the Dirac function
Below we gather some of the most important properties of the Dirac function:

(1) Usually § is an even function and we have

5(—t) =6(t), Thus  O(T —t) =d(t—T).

(2) Recall that / Cs(dr=6(1), 0.

(3) We also recall that using the definition of d.(¢), we have

5(t) = lim 6.(1) = lim o) = g(t —8) o 5= %H(t).

(4) For an arbitrary continuous function f one can prove the following
evaluation formula:

F(0)(t = T) = F(T)3(t —T), (0.2.24)

(4)° where for T = 0 we get F@)o(t) = f(0)6(t)-

(4)" For continuously differentiable functions f we can, formally, deduce
that

fRE—T)=fT)t—-T)— f'(T)s(t—T). (0.2.25)
(4)" is a consequence of applying the product rule in differentiating (0.2.24):

[f@)o-T)) =[f(T)é(t-T) = (0.2.26)
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F)6( —T)+ f()F(t —T) = f(T)8'(t — T). (0.2.27)
[ |

Remark. By property (3), formally, we have that

§t) = dfg) _ d;t(;)’

(0.2.28)

where r(t) is the ramp function.

Below we formulate an alternative approach for deriving the step and impulse
functions

I1. The absolute value function approach. Recall that

] = t, fort >0
] -t for t <0,
t]

Figure 16: The absolute value function |¢|.

As the ramp function, the absolute-value function [t| is also everywhere dif-
ferentiable except at the origin ¢ = 0. The generalized derivative for |t| is the
signum function:

81gn(t) = % — {

Similarly the signum function is everywhere differentiable except at the
origin t = 0. A generalized derivative of the signum(¢) is 26(¢). The factor 2
is the magnitude of the jump at ¢t = 0. That is:

-1, fort <0

1 for t > 0. (0.2.29)

b

_ ldsign(t) _ 1d%(lt)
2 dt 2 dt

5(t) (0.2.30)
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sign(t)

—1

Figure 17: The signum function sign(t).

In solving problems we frequently encounter integrations involving € and
0 functions. Below, we shall formulate some of the most common integration
rules:

0.2.3 Rule of integration for Heaviside 6 functions

Integrating a causal restriction of f(t), e.g. the cut off function f(t)8(t —T)

NV
\/

\/\/

0t —T)f(2)
/-\ ¢
- T~

Figure 18: A causal restriction of the function f(¢).
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we get the rule
/ FO0(E —T)dt = [F(t) — (D)8t — T) + C (0.2.31)

where G(t) = F(t) — F(T) is a primitive function to f(¢) with G(T") = 0 and
C is a constant.

Exempel 6. For ezample when we compute the integral [(t—T)P0(t —T)dt
we have f(t) = (t —T)? and then
(t — T)rtt

0(t—T)+ C, > —1.
P ( ) p

/ (t = TYPO(t — T)dt =

Exempel 7. Let us now evaluate the integral f32[9(t+3)—2t0(t—1)] using the
rule of integration (0.2.31). The coefficient of (t+3) is 1 and the coefficient
of O(t — 1) is 2t. Let now f(t) =1 and g(t) = 2t. Then we have

/2 [0( +3) — 2t0(t — 1)]dt := /2 f(t)e(t+3)dt—/2 g(t)0(t — 1)dt.

-2 -2

To compute the first integral on the right hand side we use the rule of inte-
gration

/ F(O)8(t — Th)dt = [F(t) — F(T)J6(t —T1) + C.
where f(t)=1= F({t)=t and Ty = =3 = F(T1) = F(-3) = —3, thus
/f(t)H(t —T)dt =[t+3]0(t +3) + C.
Similarly for the second integral we have g(t) = 2t = G(t) = t? and Ty =

1= G(Tz) = G(1) = 1. Hence

/2 FO)0(E + 3)dt — /2 9(00(t ~ 1)t = [(£+3)0(t +3) — (12— 1)0( — 1) 2_2
= 50(5) — 30(1) — 0(+1) +30(=3) =5 -3 —1+0= 1.

Exempel 8. Compute the following integral

/9(1 _t)dt.
1+ ¢2
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Here we note that (1 —t) =1 —60(t — 1), hence we can rewrite the integral

o(1—t),  [1—6(t—1) [ dt o(t —1)
/1+t2 dt_/ 1+ ¢2 dt_/l—i—t?_/l—i-t? dt.

We have now

1
142

f(t)

= F(t) = arctan(t)

and .
T=1= F(1) = arctan(l) = 1

Summing up we get

dt ot—1) , -
/ 1+ / T dt = arctan(t) — [arctan(t) — Z]9(,5 —1)+C.

0.2.4 Rules of integration for the Dirac § functions.
We shall, intuitively, use the following basic rules: An integral of the form

T+
/ d(t—T)dt  is not well-defined, (0.2.31)

T

whereas, avoiding the support point for § in integration limits we get the
rules:

T+p T+p
/ 5(t— T)dt =0, / St—Tydt=1, B>a>0. (0.2.32)

T—a TH+a

Exempel 9.  Use property (4) to evaluate the integml/ (t* +2)d(t)dt.
1

Let f(t) = (t*+2), then we have f(0) = 2. Thus using the evaluation formula
(4)° yields

/Oo(t2 +2)6(t)dt = /oo 26(t)dt.

But since the support of §(t) : 0 ¢ [1, 00| we have / d(t)dt =0, and hence
1

/1 " 28(t)ydt = 0.
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If instead we evaluate [ (¢* + 2)5(t)dt then we get the integral

/Oo(lt2 +2)6(t)dt = /oo 26(t)dt.

—1 -1

Now since 0 € [—1,00], we have [ 6(t)dt =1 and thus

/oo(t2 +2)6(t)dt = 2.

-1

o0

Remark Note that the integral / (t* + 2)6(t)dt is not well-defined. In

0

the presence of (¢ —T') in the integrand, the integrating interval must either

contain the point 7" (0 in this example) as an interior point or start from

t > T (t =a > 0), alternatively, end at a limit ¢ < 7 (¢ = b < 0 in the
o0

current case). Then d(t)dt = 0 and we have for instance
/ (t* + 2)6(t)dt = lim (2 +2)6(t)dt = 0.
0+ a—0t a

If the integration interval has zero as an interior point, then we have for
example

o0

[+ 2=t [+ 250 =2

b
Exempel 10. FEvaluate the integral / §'(t)dt

a

After integration we have
/ 5 (1)t = B = 6(b) — 5(a).
But6(t) =0 if t#0. Thus we have
/b 5 (8)dt = [5()]t = 6(b) —0(a) =0 —0=0ifa£0 and b0.

If either a or b =0, then the integral is not defined.
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Exempel 11. Use partial integration rule to evaluate the following integral:
o0
/ t26'(t + 3)dt
-5

Partial integration yields

o0

/Oo 26" (t + 3)dt = [t26(t + 3)]°, — / 2t6(t + 3)dt.

-5
Since 6(00) = §(—2) = 0. Thus we have

3

t25'(t + 3)d / 2t5(t + 3)d

-5 5

Finally, using f( Yo(t—T) = f(T)o(t—T) we get 2t5(t+3) = 2(—3)4(t + 3).
Hence using / d(t+3) =1, we get

/Oot25’(t+3)dt:/w2t5(t+3)dt:/002(—3)5(t+3):—6.

Exempel 12. Solve the differential equation:

" _ . . . _ _]. X < O _ -
y" +y = sign(x); sign(x) = { 1 z>0 } = 20(x)

Solution: The homogen solution yy, solves the equation y; + yn, = 0. This
equation has the characteristic equation r? +1 = 0 with the roots r = i and
we have

yn(z) = C1e™ + Coe™™ = yy(x) = Asin(z) + B cos(z).

A particular solution y, for the right hand side, sign(z) = 20(x) — 1, consists
of the sum of two particular solutions yy,, & yp,, satisfying y, +yp, = —1 and
y;,; + yp, = 20(x), respectively. We have that y,, = constant = —1. Further,
Yp, 15 of the form y,, = u(x)0(x), which inserting in the equation for y,,
yields

=(w@)0) +u(2)6(2)) + u()6(2) = 26(x) &
(«@0() +u(0)8(2)) +u(@)(z) = 20(z) ¢
u"(2)0(z) + u'(0)d(x) + u(0)d'(z) + u(z)8(z) = 260(x)
& (v +u)f(z) + ' (0)6(z) + u(0)d'(z) = 260(x).

yig2 + Yp2
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After identifying the coefficients we end up with the initial value problem

{ u' +u=2
u'(0) =u(0)=0

with the solution u(x) = 2 — 2 cos(x).
Summing all contributions would give the final solution as:

Y="Yp+Yn="Yp +Yp, +yn=—1+(2—2cos(z))0(x) + Asin(z) + B cos(z).



0.2. GENERALIZED FUNCTIONS
Exercises.

1. Draw the graphs for the following functions.

a) 20(t — 1) b) 20(1 — 1) «c) ot —1)
d) 10(t) — 0t —1)] ) e t8(t) )t + 1B+ 1) — 6(28)].

2. Rewrite the following functions using step functions

a) fi(t) =tt — 1], b) fo(z) = e17

aso={" 155 emo={5 5

g0 -{ 7 ST pan-{2  1sic
e elzm e 0 else.

3. Use the integration rule and solve the following differential equations:

a)y' =th(t—1) b)y"'=[t| <)y +y=|t

2zy' +y = 2z20(x — 4)
9 { J(1) -3

4. Calculate f(t)0"(t — T'),when f(t) has a continuous second derivative.

5. Compute the derivatives, of given order, in the following cases.

a) Third derivative of f)=0—-1)0(t—-1)

b) Second derivative of f(@) ={In(t* + 1)}0(¢)
— t? t<0

c) fourth derivative of ft) = { 0 >0,

6. Compute n-th derivative of for the following signals:

a) f(t):{gt elseogt<T

b) f®)=0t—-1002-1t) c) [f(t)=¢e0().
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7. Calculate the following integrals

a) /00 (e72" +sint)(t)dt, b) /00 [6(t —1) — 6(t + 1)]e”%'dt,

o

oo 2
c) / {sinT + 2¢"}0(t — 7)dr, d) / e 2§ (t)dt, a=+1,a=—1,
e) / e S'6(t — T)dt,
0

f)/ e '6(t)dt, a -+ 07, a— 0", a=0.

8. Solve the following differential equations.
a)y' =2t+6(t), y(1)=-1, b) y" =t5(t = T),
o)y +ay=0(-T),
d) y'+2y = (t+2)6(t+3), y(-1)=1,
e) y" +vy' =0(x)+0(x), f) y" —y=4d"(z).
9. Determine the general solution of the differential equation

y +2ty=6(t—T).



Chapter 1

Laplace Transformation

Laplace transformation is a powerful technique for solving differential equations
with constant coefficients. Areas of application are widespread but traditional
fields include mechanics, electronics, and automatic control engineering.

Before the advent of computers it was a tedious task to multiply numbers
such as 1.4142 and 3.1416. Therefore logarithms were used to transform the
complicated operation of multiplication into the simpler operation of addition
via the formula

log(1.4142 - 3.1416) = log(1.4141) + log(3.1416).

By consulting tables of precomputed logarithms and exponentials one obtained
the result 4.4429. Roughly speaking, Laplace transformation works analogously
and reduces problems of calculus into simple algebraic problems via tables and
general properties of the transform.

1.1 The Laplace Transform

1.1.1 Definition
Let f(t) be a function defined for all ¢ > 0. If the improper integral

F(s) = /Ooo ft)e *tdt, (1.1.1)

converges for any s, then F(s) is said to be the Laplace transform® of f(t).

!Pierre Simon de Laplace (1749-1827) French mathematician.

43
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Exempel 13. Find the Laplace transform of the Heaviside step function,

0(t) = {1’ t>9, (1.1.2)

0, t<0.

Solution. By the definition (1.1.1) we get,

00 ) 1 ) 1
F(S) = / Q(t)e_“ dt = / e stdt = |:—g e_St:| =—-, s>0. (1.1.3)
0 0

0 S

The usual way of denoting the Laplace transform of a function f(¢) is
either F(s) or L[f(t)]. For example, we have L[0(t)] = .

Since the integral (1.1.1) has the limits 0 and oo, it follows that F'(s) is
not influenced by f(¢) when ¢ < 0. As a result, if f; and f, are two functions
such that f; = fo for £ > 0, then these functions have the same Laplace
transform, even if they differ for £ < 0. Because of this ambiguity, we shall
henceforth always assume that f(t) is causal, which is to say, f(t) = 0 for all
t < 0.

If f(t) is not causal to begin with, we can always force it to become so
by multiplying it with the Heaviside step function 6(t) (1.1.2). We illustrate
such a case below.

ft)
'./\ P |
4

N —
S

L Towr
: : _—
—4 -2 J 2 4
-1

Figure 1.1: A causal restriction of the function f(¢).
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Exempel 14. Find the Laplace transform of f(t) = e, where ¢ is a constant.

Solution. Again, by (1.1.1) we get

© 1 o 1
F(s) = / e st dt = [— e(sc)t] = ; (1.1.4)

0 s§—C

Note that, for the above integral to converge, we must assume s > c.

1.1.2 Existence

Not any function f(¢) have a Laplace transform L[f(¢)]. For example, it is
easy to see that L[e"’] does not exist, since its associated integral diverges as
t — oo. As a rule, to have a Laplace transform, it suffices (not necessary)
that the function f(¢) is of ezponential order. By this we mean that there
must exist a constant, a say, such that
lim | f(t)e"*| = 0. (1.1.5)
t—00
If this indeed is the case, then by choosing s > a, we see that the integrand
f(t)e™t of (1.1.1) goes to zero as ¢ tend to infinity and, hence, the integral
for L[f(t)] converges absolutely for s > a. Let us formalize this result by
stating it as a theorem.

Theorem 1. If f(t) is a piecewise continuous® function for all t > 0, and if
F(8)] < M, (1.1.6)

for some constants a and C, then the Laplace transform F(s) of f(s) exist.
We shall also refer to a piecewise continuous function f with the property
(1.1.6) as being in the class C and simply replace the whole expression by
fec.

Proof. If |f(t)| < Me™ and s > a, then

S—a

o0 o0 M
F(s)) g/ |f(t)|estdtg/ MeGatg = M (1.1.7)
0 0

Hence, if s > a the integral (1.1.1) converges.

2A function is said to be piecewise continuous if it is discontinuous only at isolated
points, and its left and right limits are defined at each discontinuity.
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1.1.3 General Properties of the Laplace Transform

Theorem 2. Laplace transformation is a linear operation, that is, for any
functions f(t) and g(t) whose Laplace transform exist and any constants a
and b, we have

Llaf(t) +bg(t)] = aL[f ()] + bL[g(1)]- (1.1.8)

Proof. By definition, it holds that
LI () + 9(t)] = / (af(t) + bg(t))e™ di

= a/ooo ft)e*tdt + b/ooog(t)eSt dt
=aLl[f(t)] + bL[g(t)]. (1.1.9)
Exempel 15. Find the Laplace transforms of sinht = (e’ — e™).
Solution. By the linearity of the Laplace transform, we get

Llsinht] = L[3(e' —e™")] = 1L[e'] — 3L[e "] = (5 — ) (1.1.10)

— 2 5— s+1

Exempel 16. Find the Laplace transforms of sin wt and cos wt.

Solution. If we set ¢ = iw in (1.1.4) then we have

; 1 5+ 1w
L wt] —
[ s—iw (s —iw)(s+w)
_Stw 8 Y (1.1.11)

24+ w? §24w? §2 + w?’
On the other hand we also have
L[e™'] = L[coswt + isinwt] = L]cos wt] + iL[sin wi]. (1.1.12)

Equating the real and imaginary parts of these two equations, we get

S

52 4+ w?’
W

52 4+ w?’

L[coswt] = (1.1.13)

L[sin wt] = (1.1.14)
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As the last examples show, the definition (1.1.1) is rarely the starting
point for deriving Laplace transforms. Instead, one usually first consults a
table of standard transforms, and then tries to adapt any of these to the
problem at hand using a set of general properties, such as the linearity, of
the Laplace transform. Below, we derive a number of other such properties
and illustrate their use.

Theorem 3 (1 Shifting Rule). If f(t) has the transform F(s) then for
any constant c, we have

Lle?f(t)] = F(s—c). (1.1.15)

Proof. Inserting e f(t) directly into the definition (1.1.1) gives, with
s>c,

Lle f(t)] = / ef(t)etdt = / f)e Cdt=F(s—¢). (1.1.16)
0 0
Exempel 17. Find the Laplace transform of 3e 2! cos 5t.

Solution. By the previous example, we have

S

= —. 1.1.1
L][cos 5t] T ( 7)
Applying now the 1°¢ Shifting Rule, we get
2
L[3e " cos 5t] = s+ 3546 (1.1.18)

(s +2)2+25 s24+4t+29

Theorem 4 (2" Shifting Rule). Assume that T > 0 and f(t —T) is a
function that is zero until t =T, then

L[ft—T)]=eT5F(s). (1.1.19)
Proof. Let T =t —T, then

/ft— ‘Stdt_/ ft—T)e " dt

= f(T)e’s(“LT) dr =e / f(r)e*M dr

—o0 0

=e T5F(s). (1.1.20)
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Introducing a generalized form of the Heaviside step function,

1, t>T
0t —-T)=<X" ’ 1.1.21
(t-7) {0’ g (11.21)
we can state the 2"¢ Shifting Rule (1.1.19) formally as
LOE—T)ft—T)] =e"5F(s). (1.1.22)

Theorem 5. If f(t) satisfies (1.1.6) for some constants M and a, then

Ltf(t)] = —F'(s). (1.1.23)
Proof. Differentiating under the integral sign we get
, d [* g [ e~ st
F(s) = %/0 Ft)e—" dt _/0 £t
= /OO —tf(t)e *tdt = —L[tf(t)]. (1.1.24)
0

Exempel 18. Find the Laplace transform of tsinht.

Solution. Recall that .

L[sinht] = R

(1.1.25)

By the last theorem, we get

) d 1 2s
L[tsinht] = e 1 o (1.1.26)

Theorem 6. If f(t) satisfies (1.1.6) for some constants M and a, and if
limy_,¢ % f(t) exists, then

CILF(0)] = / Flw)w. (1.1.27)
Proof. Put g(t) = 1f(¢t), i-e., f(t) = tg(t). The previous theorem then

gives F(s) = —G'(s). By the fundamental theorem of calculus, and the fact
that G(s) — 0 as s — oo, we have

G(s) = / " P(w) do. (1.1.28)
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int
Exempel 19. Find the Laplace transform of Sl%

Solution. Recall that L[sint] = (s* +1)71. Since

int
lim 2 = 1, (1.1.29)
t—0 ¢

the assumptions of the last theorem are satisfied and thus we have

> d
L[}sint] = / TL = [arctan w]° = g — arctan s. (1.1.30)

A fundamental property of the Laplace transform is the fact that, roughly
speaking, taking the derivative of the original function f(¢) corresponds to
multiplying its transform F(s) by s.

Theorem 7. Suppose f(t) and f'(t) are continuous and piecewise smooth
fort > 0 and a is sufficiently large so that |f(t)| < Me* and |f'(t)| < Me®.
Then, 1t follows that

L[f'(t)] = sF(s) — f(0). (1.1.31)
Proof. Integrating by parts, we have
[, ! — > ! —st d
o= [ roea
= [f®)e "]y + s/ f®)e*tdt = —f(0) + sF(s).  (1.1.32)
0
Applying this result to f”(t) yields
LIf" @) = sLIf' ()] = f'(0) = s*F(s) = sf(0) — f'(0). (1.1.33)
Similarly,
L[f"(t)] = s’ F(s) — s°£(0) = 5£'(0) — f"(0). (1.1.34)
By induction, we obtain the transform of the n-th derivative, viz.,

LIf™ )] = s"F(s) — s"1f(0) — s"2f(0) —... — f*7D(0).  (1.1.35)
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Theorem 8. The Laplace transform of

/Otf(T) dr, (1.1.36)

is given by 1F(s).

Proof. Let h(t) = fotf(T) dr. By construction we then have h'(t) = f(t)
and h(0) = 0. Using now that L[f'(t)] = sL[f'(t)] — f(0) we immediately get
F(s) = sH(s) — h(0). Hence, H(s) = +F(s).

Problem 1. Find the Laplace transform of the following functions.

a. t b. c. t? d. t"
e. t+1 fo(t—1)? g (1+1)* h. 1
i. et 4. edttt k. tet L e
m. cosht n. cost 0. sin 2t p. sinh?t

Problem 2. Find the Laplace transform of the following functions.

a. e cos bt b. 6(t—1) c. e 't —1)
d. t>sinht e. t3et f. tetcost
g. sin(wt + a) h. tsin & i. Int

j. +(1 —cost) k. coshtcost l. cos®t
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1.1.4 Table of Laplace Transforms

/0 f(r)dr

() (s
e (1) P (s)

e % f(t) F(s+a)

F(t—T)0 —T) e T5 B (s)

£t SF(s) — 7(0)

(2 2R (s) — 5(0) — 1/0)
£ 1 SE(s) - Z sk e )

F(s)

Table 1.1: Operational properties of the Laplace transform.

o1
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1
o(t) =
s
tn 1
efat 1
S+ a
s
cosh at o
) a
sinh at R
s
COS bt m
b
sin bt
- s2 + b2
t S
— sin bt
5% sin 1)
1 1
—(sin bt — bt cos bt
263 ( ) (s2 4+ b2)?
@ —a?/at N
VA3

Table 1.2: Standard transform pairs.
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1.2 The Inverse Laplace Transform

Finding the inverse Laplace transform of a function f(¢) is the operation of
recovering f(t) from its Laplace transform F'(s). One usually denotes this
by

f(t) = L7F(s)]. (1.2.1)

Remark. The Laplace transform of a function f € C is defined for complex
s for Res > a, viz

LH(s) = /0 T F)etdt, (1.2.2)

In this way one may use the inversion Formula for Fourier transforms to
obtain the so-called inversion formula, which gives a closed form expression
for L7'[F(s)]. This however, needs the Fourier transform formalism which we
shall introduce in a later chapter. Nevertheless, we can formulate a criterion
(without proof) as follows:

Lemma 2. If f and g are in C and Lf = Ly, the f = g. (More specifically,
f(t) =g(t) at all points t where both f and g are continuous

By this Lemma, a function is f € C is uniquely determined (up to modi-
fications at its discontinuities) by its Laplace transform F', and we shall say
that f is the inverse Laplace transform of F and write f(t) = L '[F(s)]:

f=L'F< F=Lf

Having in mind the above criterion we shall be content with the simple
minded approach of finding inverse Laplace transforms by using a table of
standard Laplace transforms.

Indeed, it turns out that with the aid of a table and a little algebra, we
are able to find L7![F(s)] for a large number of functions f(¢).

Due to the fact that the Laplace transform is linear it follows that also
the inverse Laplace transform is linear. Hence, if a and b are constants, then
we have

L aF(s) + bG(s)] = alL '[F(s)] + bLG(s)], (1.2.3)
Exempel 20. Find the inverse Laplace transform f(t) = L7[F(s)] of

e s 6—215
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Solution. From a table of standard transforms, we have
Llsl=t LG =35t,

s0 by the linearity of L™, we obtain

723]

Lfl 65_23 o e;js] — E_l[e;;] - £—1[854 .

Using now the 2" Shifting Rule, we find

LTS =0 —1)(t—1), L7 =1L00-2)(- 1)

32
Hence, the inverse transform of F(s) is

ft)=LTF(s)] =0(t —1)(t — 1) — 0(t — 2)(¢t — 1)°.

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)
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1.2.1 Method of Partial Fractions

A common situation is when F'(s) has the form

F@y:gg} (1.2.9)

where (s) and P(s) are real polynomials and the degree of () is less than
the degree of P. It is then necessary to decompose F'(s) into partial fractions
to obtain L7 [F(s)].

We demonstrate this technique for three cases of denominators P(s).

1. P(s) is a Quadratic with real Roots. Consider, for instance,

2s — 8

Fls)= ——> "%
(5) s2 —55+6’

(1.2.10)

Obviously, F'(s) cannot be inverted by inspection and neither do we have it

tabulated. However, since the denominator s? — 5s + 6 has two real roots,

s =2 and s = 3, it is possible to decompose F'(s) into partial fractions, viz.,
A B

F(s) = ——5 - —5 (1.2.11)

where A and B are numbers. Our goal is to determine these, because then it
is easy to obtain the inverse transform of F'(s). By elementary manipulations,
we get

A B A(s=3)+B(s—2) (A+B)s+(-34—-2B)

= = 1.2.12
s—2 5-3 (s —2)(s—3) 2 —5s+6 : )

which implies

25 — 8 (A+ B)s+ (—3A—2B)

= . 1.2.1
s2—5s+6 s2—5s+6 ( 3)
Comparing the right and left hand side, it is obvious that
2=A+B, —8=-3A-2B, (1.2.14)
which is a system of equations for A and B, i.e.,
A+B =2
{ 3A+2B =38. (1.2.15)
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Solving, we obtain A =4 and B = —2. Hence,

4 2
F(s) = — . 1.2.16
(5) s—2 s—3 ( )
By recognizing 5 as the transform of e* and 5 as that of e*, we obtain
f@) = L7YF(s)] = 4e* — 2¢™. (1.2.17)

2. P(s) is a Quadratic with a Double Root. Let
s+1

F(s)= — 1.2.18
0= o (1218
The denominator has a double root —2 and the partial fractions are therefore
1 A B A 2A+ B
St + _As+(24+B) (1.2.19)
(s+2)2 s+2 (s+2)? (s +2)?

Comparing the left and right hand side of the above expression, we find A =1
and B = —2. Recalling that £[—5] = e, we can use L[tf(t)] = —F'(s) to
deduce that the inverse transform of (s + 2)~2 is te?. Hence, the inverse of
F(s) is

ft) = e* — 2te*, (1.2.20)

3. P(s) is a Quadratic and has Complex Conjugated Roots. If

s+1
F(s)= ——— 1.2.21
() s24+4s+5’ ( )
then the denominator has the roots —2 + 7. Completing the square, we get
+4s+5=8s"+4ds+4+1=(s+2)>+1, (1.2.22)
ie.,
s+1
F(s)= ———. 1.2.23
B)= v (1-2.23)
By rewriting
1 2 -1
iy iy (1.2.24)

(s+2)2+1 - (s+2)2+1 * (s+2)2+1’
and recalling the transforms of sint and cost it is clear that

f(t)=L'F(s)] =e *cost —e *sint. (1.2.25)
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Exempel 21. Find the inverse transform of

s+ 2

F(s) = .
(5) s3—s2+s5—1

(1.2.26)
Solution. Calculating the roots of the denominator s® — s +s—1, we find
s1 =1, s =1, and ss3, i.e.,
s+ 2 s+ 2
F(s) = - ~ = . 1.2.27
() (s—=1)(s+i)(s—1) (s—1)(s2+1) ( )
Here, the appropriate decomposition into partial fractions is given by

F(s) = A +Bs+0_82(A+B)+5(C_B)+(A_C)

s—1  s24+1 3 —s24+s5—1 (1228)
Identifying coefficients it is clear that
s> (A+B)=0, s(C—-B)=s, A-C=2, (1.2.29)
which implies, A = %, B = —g, and C' = —%. Hence,
3 3 1
F(s) = . i Z 2 (1.2.30)

1 2+1 s2+4+1
Consulting a table of transforms, we recognize F(s) as the transform of
f(t) =3¢ — 2cost — Lsint. (1.2.31)

Problem 3. Find the inverse Laplace transform of the following functions.

B
s+1 s2+4 s2+1 s?2—1
s+ 12 S s+1 . e=$

“ 9 tds J (s +2)? g (s —3)* TS

Problem 4. Find the inverse Laplace transform of the following functions.

s 5+ 2 1
o ——— S c. ————
s2—2s—3 s2+4s+5 (s—2)2+9
s+1 3s 1

© 834+ 52 —6s “ $21+25-8 f's(s+1)(s+2)
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1.3 Applications of Laplace Transforms

1.3.1 Initial Value Problems
Enough with theory, let us find the solution y(t) of the initial value problem

y'(t) + 2y(t) = 12¢%,  y(0) = 3. (1.3.1)

By taking the Laplace transform of every term in the given differential
equation, we get

Lly' )]+ L[2y(t)] = L[12e*]. (1.3.2)
Put Y (s) = L[y(t)]- Now,
Lly'(t)] = sY (s) —y(0) = sY(s) — 3, (1.3.3)
L2y(®)] = 2Y (s), (1.3.4)
L[12¢%] = 1_—23 (1.3.5)

Inserting these formulas into (1.3.2) above, we get the subsidiary equation

12

sY(s) —34+2Y(s) = 3 (1.3.6)
Rearranging, we obtain
12 3+ 3s
2)Y(s)=——+3=—— 1.3.7
(s+2)¥(s) = o 43= 212 (137
o 35+ 3
s
Y(s) = ———F——. 1.3.8
&)= G569 (1:38)
At this point, we decompose Y (s) into partial fractions, viz.,
A B A+ B)s—3A+2B
3s+3 n _(A+B)s—34+ ’ (1.3.9)
(s+2)(s—3) s+2 s-—3 (s+2)(s—3)
which gives rise to a system of equations for A and B, namely,
A+ B =3,
{ —34+2B =3. (1.3.10)
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Solving this, we find A = £ and B = 2. Hence,

ol

12
5

Y (s) +

= . 1.3.11
s+2 s—3 ( )

Consulting a table of standard Laplace transforms, we finally have

y(t) = LY(s)]
— 3+ R
3 12

= 5 6_% -+ g €3t. (1312)

Summary of Solution Process. Note the three steps of the solution
process:

1. Take the Laplace transform of both sides of the given hard problem
for y(t). As a result a simple algebraic equation for Y (s) = L[y(t)] is
obtained.

2. Solve this so-called subsidiary equation for Y (s).

3. Use partial fractions and a table of elementary Laplace transforms to
invert Y (s) and so produce the required solution y(t) = L7![V (s)].

Exempel 22. Solve the following initial value problem for t > 0

y"(t) + 4y'(t) + 3y(t) = 0, (1.3.13)
y(0) =3, ¢'(0)=1. (1.3.14)

Solution. We have
L[y (t)] = sY(s) — 3, Lly"(t)] = s*Y(s) —3s — 1, (1.3.15)

Laplace transformation of (1.3.13) yields the subsidiary equation
s°Y () + 4sY (s) + 3Y (s) = 3s + 13, (1.3.16)

(5+3)(s+1)Y(s) = 35 + 13. (1.3.17)
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Solving for Y (s) and using a decomposition into partial fractions, we get

Y (s) = 3s+13 A n B
C (s+3)(s+1) s+3 s+1
_A(s+1)+B(s+3) (A+B)s+A+3B (1.3.18)
o (s+3)(s+1) (s+3)(s+1) o
from which we obtain A = —2, and B = 5. Thus,
2 5
Y(s)=— . 1.3.1
() s+3+5—1—1 (1.3.19)
Recalling (1.1.4) it is obvious that
L=, L] =¢. (1.3.20)
Hence, the solution is given by
y(t) = —2e73 + 5e". (1.3.21)

A simple way to check whether the correct solution has been obtained
is to see if the initial condition is satisfied by the found function y(¢). Here
we have y(0) = 2+ 2 = 3 and, since y'(t) = 6e~* — 5e™!, we also have
y'(0) = 6 —5 = 1. Hence, the requirements y(0) = 3 and 3'(0) = 1 are indeed
satisfied by (1.3.21).

Problem 5. Solve the following differential equations fort > 0
a. ¥y +2y=e3 y(0)=4.

b. v —y=e*, y(0)=-1.

c. Y'+2y+y=e€?, y(0)=0, y(0)=1.

d. y" +4y +13y =2e7t, y(0)=0, ¢'(0)=-1.

e. y' +4y =8e*, y(0)=0, v'(0)=3.

[y =2y +2y=cost, y(0)=1, %' (0)=0.

g y'+4y =3e, y(0)=2, (0)=1.

h. y" +2y' +2y=2, y(0)=0 fort<O.
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1.3.2 Integral Equations

Apart from solving differential equations, the Laplace transform technique
may also be used to solve integral equations. For instance, consider the flow
of electric current around a circuit consisting of a resistor, a capacitance, and
a battery.

Figure 1.2: Electric RC-circuit.

It follows® that the current i(¢) satisfies the integral equation

Ri(t) + /0 i(r) dr = v(#), (1.3.22)

where R and C' are respectively the resistance and capacity of the circuit, and
v(t) is the electromotive force of the battery. For simplicity, let us assume
that C = R = 1, and that v(¢) has the form of a square pulse of amplitude
1, applied between t =1 and t = 2, i.e.,

0, t<1,
v(t)=0(t—1)—0(t—-2) =41, 1<t<2, (1.3.23)
0, ¢>2.

The Laplace transform V' (s) of v(t) is given by

00 2 —st72 —2s —s
V(s) = / v(t)e *tdt :/ e *tdt = [_e } & L (1.3.24)
0 1

S 1 S S

Assuming that i(0) = 0, we may transform (1.3.22) to obtain

1(s)

I 7 =
RI(s) + Cs

V(s), (1.3.25)

3From the Kirchoff voltage law.
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or, since R=C =1,
I(s) + —2 = ~(e * —e %). (1.3.26)

Solving for I(s) we obtain, after elementary manipulations,

1

I(s) = e 1.3.27
(6= e o) (1327)
Noting that £ '[7] = e ', we then use the 2"* Shifting Rule, to obtain
i(t) = e Vgt — 1) — e~ EDg(t — 2). (1.3.28)
Hence,
0, t<1,
i(t) =< ele ™, l<t<?2, (1.3.29)
(e' —e?)e™, t>2.
1.0 1
0.5+ \
0 f f f |
1 2 4
—05 +
—-1.0 +

Figure 1.3: Graph of i(¢) for 0 < ¢ < 4.

Problem 6. Solve the integral equation for t > 0

/Oty(T) dr +2y(t) = 4.
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Problem 7. Solve the following integral equations fort > 0

a. y'(t) +2y(t) + /ty(T) dr = cost, y(0)=1.

b. y'(t) + 2y(t +2/y Ydr=1+e", y(0)=1.
0

t
c. y'(t) — Ty(t +6/ y(t y(0) =7, y'(0)=—12.
0
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Chapter 2

Separation of variables

The separation of variables is a widely used technique that transforms linear
partial differential equations to ordinary differential equations in the variables of
the pde.

We illustrate the method through some examples.

2.1 The heat equation: Dirichlet problem

Consider the 1-dimensional heat equation for a rod [0, L], with homogeneous
Dirichlet boundary conditions:

Up = kg, zel0,L], t>0, (PDE)
u(0,t) = u(L,t) =0, t>0, (BC) (2.1.1)
u(z,0) = f(x), xz € [0, L]. (IC)

We recall the general form of a standard pde in two variables z and :
Augy + Bugs + Cuy + Duy + Euy + F = 0, (2.1.2)
with the discriminant defined by
d:= AC — B*. (2.1.3)

In (2.1.1), since A=1, B=0 and C = 0. we have d = 0 and hence (2.1.1)
is a parabolic equation. Further (2.1.1) is described by totally three partial

65
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derivatives of the function u, one with respect to ¢ in u; and two with respect
to T in Ugg.

To solve a differential equation, e.g., (2.1.1) corresponds to finding an analytic
expression for the function u, i.e., loosely speaking, through integrating with
respect to the differentiated variable. Since there are three differentiations
involved in the heat equation (2.1.1), to regain u one needs to perform 3
integrations each creating a degree of freedom. Therefore it is necessary to
supply totally 3 (initial and boundary) conditions to determine these degrees
of freedom.

To convert the above pde to odes, in z and ¢, we let u(z,t) = X (z)T(t) # 0.
(Note! that u = 0 does not work if f # 0. For f = 0, u(z,t) = 0 is a
solution. Here we seek non-trivial solutions).
Inserting u(x,t) = X (2)T'(t) in the pde in (2.1.1) we get
X (2)T'(t) = kX" (2)T(t).
Dividing both sides by kX (z)T'(t) # 0 we thus obtain
TI XII
W _Xw) (2.1.4)

K1)~ X(x)

where the left hand side depends on only ¢ whereas the right hand side
depends on only x. This indicates that A must be an absolute constant
independent of x and t.

The differential equation for the function T(t) is now:

T'(t)
KT (1)

=X or T'(t)— MNkT(t) = 0. (2.1.5)

e Jo Mkds ~ Xkt

Here the integrating factor is = e """, Thus multiplying both side

by e ! we have,

d
ANV —Akt _ YA
T'(t)e MET (t)e 0 or p (T(t)e ) 0,

Integrating over (0,%) we get

/O t % (T(s)e ) dt = T(1)e™ — T(0)e™" = 0.
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which gives
T(t) = T(0)e*". (2.1.6)

The differential equation for the function X(x) is:

(2.1.7)

= e, X"(z) = AX (z),
boundary condition (BC) = X (0) = X(L) =0.

The characteristic equation is now r> = X. Thus if A > 0, then 7 = +v/X and
for A < 0 we have r = £iv/—\. We therefore need to consider three cases.

I.A=0, then X"(x) =0, which gives X(z) = Az + B. But X(0) =0
gives B = 0 and thus X (z) = Az. Further X (L) = 0 gives AL = 0, where
L # 0 and we get A = 0. Consequently, (since A = B = 0), u(z,t) =0
and we do not get a non-trivial solution in this case. Therefore A = 0 is not
acceptable.

II. A > 0, then we have a solution of the form
X(z) = AeV™ 4 Be V™

where X (0) =0 gives A+ B =0, i.e., A= —B. Further X(L) = 0 together
with A = — B gives that

X(L) = A(eﬁL - e—ﬁL) = 0.

But since L # 0 and A # 0, hence we have (e‘/XL — e“/XL) # 0 and conse-
quently A = 0. Thus B = —A = 0 gives finally u(z,t) = 0. This is also a
trivial solution, i.e., A > 0 is not acceptable.

III. A <0, yields a solution of the form
X(z) = AcosV—Ax + Bsin v —)Az,

where X (0) = 0 gives A = 0 and thus X (z) = Bsinv/—Az. Now X (L) =0
gives Bsiny/—AL = 0. If B = 0 we have X(z) = 0, leading again to the
trivial, and thus not acceptable, solution u(z,t) = 0. However, in contrary
to the cases I. and II. , here we have other choices than B = 0. If B # 0
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2
then sin/—AL =0, i.e., vV—AL =nm, n>1 or A = —(”%) . Thus for

each n = 1,2, ..., we have the following eigenvalues and eigenfunctions:
== and Xo(w) = sin T (2.1.8)
n=— , an n(T) = sin —ux. 1.
L? L
2_2

Since u(z,t) = X (x)T(t) # 0 and T(t) = T(0) - ek = T(0)e *"22 ! we have
for each n a solution u,(z,t) given by
ety nm
un(z,t) = Xp(x)T,(t) = e 7 22 "sin 7% (2.1.9)
Since our pde is linear and homogeneous, thus by the superposition principle
below, the finite linear combination of all solutions u,(z,t), n =1,2,...1is
a solution as well, and then passing to infinite linear combination we have

[e.e] o0 n27r2
u(z,t) = E Un(z,t) = E Cne™ 22 *gin %x (2.1.10)
n=1

n=1

There are some obvious questions concerning the convergence of such series
as well as their termvis differentiability. We postpone investigating these
phenomena and for the moment shall not worry about them. Below we
recall the Superposition Principle which is also stated in introduction.

Lemma 3 (The Superposition Principle). If u,us, ..., U, satisfy the
linear differential equations L(u;) = F; and the boundary conditions B(u;) =
fiforg=1,...,m andc, ..., ¢y, are arbitrary constants, then v = ciu; + ... +
CmUm Satisfies the partial differential equation

L(u) = 1 F1 + ... + ¢, F,  where B(u) =ci1fi + ... + cmfm-
Our problem corresponds to F; =0, for j =1,...,m.

Now it remains to determine the coefficients C,. To this approach we use
the initial condition (IC): u(z,0) = f(z), which gives

u(z,0) = ZC’n sin n%x = f(z). (2.1.11)

n=1
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Note! C,, is the so called Fourier sinus coefficients for f in the interval [0, L.
Now we multiply (2.1.11) by sin (%x), integrate over [0, L], and change the
order of integration and summation to obtain

/ f(z sm—xd:c—ZC / smﬂx sin %xdz (2.1.12)

Let now X, = sin 7"z and X, = sin %"z and define the scalar product of
two functions f and ¢ by

g) = / f(2)g(z)dz

(f, X / f(z)sin —x dz

(Xn, X)) = /0 sin Tac sin Tx dx.

Using simple trigonometric formulas we have

Thus

(2.1.13)

L L
1
/0 sin %x sin %x dzx = 5 /0 [cos(n - m)%x —cos(n + m)%x} dx.

Thus if n # m we have

T 1L
sin(n + m)zx] =0,
0

L 1 ) m
o [ sin(n —m)—x —

X, X
< )= —-m L n+m

i.e., X,, and X, are orthogonal functions, while for n = m we have

/L mnw . Mmmw d 1 /L [1 2mm ]d
sin —zsin —xdx = — — CoS T |dx
0 L L 2 /o L

L 1 L . 2mm 1L L
=51 oy =3

(2.1.14)

)

oarm oL

0

Hence we have

ad L
ZC”/ smn—xsm—xdx—C’ / sm—xsmmmdx—Cm- —
0 L L 2
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so that (2.1.12) is written as

L
mm L
in—azdr=C,, =
/0 f(z)sin 7 rdz C 5
and finally changing m to n
9 L
C, = E/o f(z)sin %m dx. (2.1.15)

Let us now give an abstract form for f(z) using scalar products. From the
above notation we can write (f, X;,(= Cpn{(Xm, X;m( and thus

— <f’Xm> _ <faXm>

= - . 2.1.1
O = Do Xu) ~ X? (2110
Let now f,, := C,,X,,, then
(f; Xn)
=Cp, X, = —"—-—""X 2.1.1
and (2.1.11) gives that
o ) ni o o
f(z) = ;Cn sin —~a = ;Can = ; fn- (2.1.18)

o0
Note that {Xn} are orthogonal basis functions and f,, the “n-th” compo-
1

nent of f is the orthogonal projection of f = (f1, fo, ..o, fn,...) on X,,.
Thus denoting the unit vector parallel to X,, by u, := ==, it follows that

T [ Xal?
X
| X
and since |f,| = | f|cosf, we get using the definition of the scalar product
(f, Xn) = | Xn||flcos® = | Xn|| ful- (2.1.20)
Hence (f X.)
|fal = 257 (2.1.21)
| X

Thus we have shown once again that

n—mm—‘&|Lm_|%P%_@m, (2.1.22)

where we have used (2.1.16) and (2.1.18) is justified geometrically as well.
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Xn

Figure 2.1: The orthogonal projection of f(z).

2.2 The heat equation: Neumann problem

In this part we consider the heat flow with Neumann boundary conditions:

Uy = kg, zel0,L], t>0, (PDE)
ug(0,1) = ug(L,t) = 0, t>0, (BC) (2.2.1)
u(z,0) = f(x), z € [0, L], (IC)

The same procedure as in the Dirichlet case yields

)  X"x)
0 = X() = )\ = constant,

with the boundary conditions X'(0) = X'(L) = 0, and the same

differential equation for the function T(t): 77(t) = AkT'(t).

XII (.Z')

X = A is studied

The differential equation for the function X(x):
in a similar way as in the previous section:

I''A=0 ,ie, X(z)=Az+ B and thus X'(z) = A.
The boundary conditions X'(0) = X’(L) = 0 imply that A = 0. Hence
we have X (z) = B and it follows that u(z,t) = B - T(0)e** is the solution

for this case.

IP.A>0 yields
X(z) = AeV™ 4+ Be V™. (2.2.2)

Thus X'(z) = AVX-e¥™ — BV/A- e V> and hence X'(0) = VA(4A — B) =
0, which implies that A = B. Inserting B = A in the other boundary
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condition: X'(L) = 0, we get A\/X(Cﬁl’ — e*ﬁL) = 0, which together

with (e‘f)‘L — e’ﬁL) # 0 gives A = 0. Thus A = B = 0 and consequently
X (z) =0 and we get the trivial, i.e., zero solution in this case.

IIT’. A < 0 gives the well-known solution
X(z) = AcosV—Az + Bsin vV —Az. (2.2.3)

with the derivative X'(z) = —Av/—Xsinv/—Az + Byv/—\cos v/~ Az, which
associated with the boundary data X'(0) = 0 gives B = 0 and thus X (z) =
Acos(v—=Ar).

The second boundary condition: X'(L) = 0 yields Av/—\ - sin(v/=AL) = 0,
which assuming A # 0, yields sin/—AL = 0, i.e., vV=AL = nm,n > 1, so

2

that as above we once again the eigenvalues A\ = —(%) . Thus for the

Neumann problem we have the following eigenvalues and eigenfunctions:
n’n?

2 and Xn(x)zcosn—w

Ap = — .

z, n=0,1,2,... (2.2.4)

Note that in this case for n = 0, we get the eigenvalue A\ = 0 with the
corresponding, non-trivial, eigenfunction Xo(x) = 1. This means that the
case ITT’. contains I’. as well.
In summary we get

n?n? 1y nmw

un(z,t) = Xp(2)T(t) = Cre™ 22 " cos T > 0. (2.2.5)

Using superposition we get the solution

u(z,t) = ZCnefﬁkt cos %x, (2.2.6)
n=0

where by a similar argument as in the Dirichlet case we have

2 [ nmw
C L/o f(z) cos Lxdx n ( )
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2.3 The heat conducting problem

To proceed below we study the heat conducting in a circular ring. This model
has many important features, e.g., as a by product, we can derive the basic
formulas for the Fourier series expansions.

For the heat conducting in a circular ring, we do not have a natural bound-
ary condition, however, we can use the periodicity and write the equation as
follows:

Figure 2.2: The circular ring

ur = kugg,
u(0,0) = f(6), (2.3.1)
u(t,0) = u(t, 2m),

Applying the principle of the separation of variables we let now the solution
u(t,0) =T (t)O(0) # 0 and get the following eigenvalue problems:

T'(t) _©"(0) _
ORI =\ (2.3.2)

The general solution for the eigenvalue problem T"(t) = AkT'(t) is given by

T(t) = Coe™, (2.3.3)
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whereas for the general solution of the eigenvalue problem ©”(0) = \©(0)
we have

©(f) = AcosV—A0 + BsinvV—\0. (2.3.4)

For the equation (2.3.4) we have no natural boundary conditions, which
means that we cannot find values for A and B as in the previous procedure.
However, the 27 periodicity in (2.3.4) would yield for ©(6): i.e., we have
©(0) = ©(27) and hence since

0(0) = 4, (2.3.5)
O(27) = AcosvV/—A2m + Bsiny/—\2m, o
©(0) =0(27r) = A= AcosV—\27 + BsinV—\2r. (2.3.6)

Now identifying the coefficients (Note! that B need not be zero) we get
cosV—A2r =1 and sinvV-A2r=0, B#0. (2.3.7)

Thus we have /=) = n , where n is a integer, i.e., \= —n?, n=0,1,2,....
Summing up we have

T.(t) = coefn%t’
{ ©,(0) = A, cosnf + B, sinnf (2.3.8)

Let now a, = CyA,, b, = CyB,, and use superposition principle to write

u(t,0) = i ekt (an cosnf + by, sin n0> : (2.3.9)

n=0

It remains to determine a,, and b,, where, as before, we use the initial con-

dition u(0,0) = f(0) to get

f(0) = i(an cos nf + by, sin nd). (2.3.10)

n=0

This is the well-known Fourier series expansion for f, which we shall study
in details in chapter 4.
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2.4 The wave equation

In this section we want to solve the initial boundary value problem for the
wave equation using separation of variables. We illustrate the procedure
studying the following example:

Uy = CPUgy, zel0,L], t>0, (PDE)

u(0,t) = u(L,t) =0, t>0, (BC)

u(z,0) = f(2), z€0,I], acy @4
u(z,0) = g(z) z € [0, L], (IC2).

Let u(z,t) = X(2)T(t) # 0. Our (PDFE) can we now be written as 7" () X (z) =
>T(t)X"(z), which yields

T”(t) B X”(.’L‘)
T(t) X(x)
where using the same argument as for the Dirichlet problem for the heat
equation we have A < 0. Further, due to that fact that the ordinary differ-

ential equation 7"(t) = AT'(t) has the characteristic equation r? = ¢?\ with
the rots r = icy/—A. It follows using the preceding examples that

=) (2.4.2)

T(t) = AcosvV—Act + BsinvV—\ct, (2.4.3)
Similarly for X (z) we get
X(z) =CcosvV—Az+ DsinvV-\z. (2.4.4)

Now the boundary condition give X (0) = C' = 0, hence X (z) = Dsin(v/—\ ).
Further X (L) = 0 together with D # 0 yields v—AL =nm, n = 1,2,....
Thus we have eigenvalues and eigenfunctions

2,2
)\:—%, X, () :sin%, n=12... (2.4.5)
Hence,
t t
Un(z,t) = (an CoS % + b,, sin nzc ) sin n%:v (2.4.6)
where we may interpret X, (x) = D, sin %" (not! normalized), a, = A,D,

and b, = B, D, with obvious notations for A, and B,. Finally using super-
position we get

M2

u(z,t) =

t t
(an cos % + b, sin m;c ) sin n%x (2.4.7)

n=1
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Now it remain to determine a,, and b,. Since u(z,0) = f(z) we get
= Z ay, sin %x (2.4.8)

Multiplying (2.4.8) by sin "z and integrating over [0, L] yields

2
- Z/o f(x)sin n%x dr, n>1. (2.4.9)
Similarly
i |:Clnn7TC . nmct + bnnﬂ—c COS nmct sin Ex (2 4 10)
a . 7 7 4.

n=1

together with u.(z,0) = g(z) yields

2 b,nme . nw
g9(x) = uy(z,0) = 7 sin . (2.4.11)

Multiplying (2.4.11) by sin %"z and integrating over [0, L] it follows that

2 L nmw
by = —— in "adr, n>1. 2.4.12
) g(x) sin Tedr, n2> ( )

In this way we have an expression for u(z,t) as a function of f(z) and g(z):

= nmct
u(z,t) = Z (an cos

n=1

t
+ by, sin %) sin n%x (2.4.13)

Now we want to present u(z,t), as a function of f(z) and g(z), in the form
of Hadamard’s formula. To this approach we write

o0 o
t 1)
u(z,t) = TLX:; ay, Sin ? cos mlr;c + Z by, sin ? sin n;c . (2.4.14)

Using the elementary trigonometric relations: sin(z +t¢) = sinz-cost+sint-
cosx and cos(x +t) = cosx - cost Fsinz - sint we rewrite (2.4.13) as

Zan [sm —(z + ct) + sin %(x - ct)}
(2.4.15)

=1 nm nmw
+ an§ [cos T(x — ct) — cos T(x + ct)].

n=1
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Now we using (2.4.8), that
. nm
Zan [sm —(x + ct) +sin T(x - ct)]
1 1
=3 nz sm (x+ct)+ 5 ; p, SID n%(x —ct) (2.4.16)
[ flx+ct)+ f :v—ct)]

Further using the identity

T+ct
[cos n%(a: —ct) — cosnfﬁ(:c + ct)} = n% /z_ct sin n—ﬂy dy, (2.4.17)

we have that

Zb —[cos— (x — ct) — cos %(x%—ct)]

1 nm
=§n§”"f/m

1 [t nr oo
_ b gin "0y
2/HthLsmLy v,

T+ct
sin n%y dy (2.4.18)

n=1

where, in the last step, we have changed the order of the summation and
integration. Now using (2.4.11) it follows that

1 v 1 nwe nw 1 [ote
- ~ . b, sin —ydy = — dy. 2.4.19

Thus we conclude the Hadamard’s formula:

z+ct

u(e,t) = g[fo+et) + fla—et)] + 5 / o(y)dy. (2.4.20)

—ct
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Chapter 3

Fourier series for 2r-periodic
functions

Periodic phenomenon occur frequently throughout nature and their study is of
the utmost importance for our understanding of many real-world systems. For
example, the signals from radio pulsars allow astronomers to study space, the
seasonal periodicity of the weather governs the crop of corn, and the regular
beats of a heart is necessary for the survival of every mammal. Periodicity
can be found everywhere and concern any absolute variable, i.e., time, space,
velocity, etc. In this chapter we shall begin to study periodic functions, and
especially, their representation as sums of sine and cosine functions, Fourier
series. Fourier series has long provided one of the principal tools of analysis for
mathematical physics, engineering, and signal processing. It has spurred many
generalizations, and applications that continue to develop right up to the present.
While the original theory of Fourier series applies to periodic functions describing
wave motion, such as with light and sound, its generalizations often relate to
wider settings, for example, the time-frequency analysis underlying the recent
theories of wavelet analysis and local trigonometric analysis. We shall, however,
be content with presenting the basic theory and its application to the solution of
partial differential equations.

79
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3.1 Periodic Functions

A function f(z) is said to be periodic in there is a constant p, such that

[z +p)=f(z), (3.1.1)

for all z. Any positive number with this property is called a period of f(z).
For example, f(x) = sinz has periods 27, 47w, etc. However, the smallest
number p > 0 with the property (3.1.1) is called the prime, period, and it
is generally this value that is meant when a function is referred to as being
p-periodic, or, of period p.

First we state and prove a frequently used result, viz:

Lemma 4. Suppose f(z) is periodic with period p, then the integral

/a+P F(z)dx (3.1.2)

1s independent of the starting point a.

Proof. Let

sy = [ e = [ 5@ - [ s

By the fundamental theorem of calculus ¢’(a) = f(a + P) — f(a) but since
f(p+ a) = f(a) we have that ¢'(a) = 0. Hence, g(a) is constant and inde-
pendent of a. 0

3.2 Fourier series

From about 1800 onwards, the French scientist Joseph Fourier ! was lead

by problems of heat conduction to consider the possibility of representing
a more or less arbitrary 2w-periodic function as a linear combination of the
functions

1, cos z,sin z, cos 2z, sin 2z, cos 3z, sin 3z, . .. (3.2.1)

!Jean Baptiste Fourier (1768-1830) French physicist and mathematician.
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Fourier conjectured that any integrable periodic function f(z) of period 27
can be written, at almost every point x (which we specify later), as the sum
of a trigonometric series of the form

1 - :
flz) = 500 + ; (an cos nx + by, sin n:v) (3.2.2)
where a,, and b,, n =0,1,2,..., are real numbers defied by

1 T

Uy = —/ f(z) cosnz dz, (3.2.3)
™ —T
1 [ .

b, = —/ f(z)sinnz dx. (3.2.4)
™ -7

Here the term %ao is due to the constant function cos0 = 1, the factor %
being included for reasons of later convenience. Further, by does not exist,
since sin 0 = 0.

Fourier manged to solve several problems of heat flow using such series
representations, and, as a result, (3.2.2) is today called the Fourier series of
f(z). Similarly, the corresponding coefficients a, and b, are called Fourier
coefficients of f(x).

As we stated above the equality (3.2.2) is not always true, and therefore
we replace this equality by a “~” sign indicating that the right hand side is
the Fourier series of the function f.

To be more specific, suppose that f(6) is a 2m-periodic Riemann inte-
grable function, e.g., f(#) is piecewise continuous and 2w-periodic. We sum-
marize the above discussion in the following definition which also reformulates

(2.3.10) in a slightly modified form

Definition 7. The real Fourier series expansion of a 2w periodic Riemann
integrable function f(0) is given by:

1 = :
F(0) ~ 50+ ; (an cosnf) + by sin ne). (3.2.5)
Here ag, a, and b, are called the Fourier coefficients for f. We shall return
to the reason why aq is isolated.
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Inserting

1 . . 1 . .
cosnf = i(ema +e ™) and sinnf = Q—i(eme — e ™0)

in (3.2.5) we get

1 1 , , . .
f(6) ~ 5@0 + (Ean(emé’ + e—me) . bn(ema B —ma)>
. = . (3.2.6)
= 5(10 + 2 §(an — ibn)eina + ; i(a" + ibn)@*inﬂ

We rewrite (3.2.6) as the following complex Fourier series expansion of f:
—o0 n=1 n=1

We identify the coefficients on the right hand sides of (3.2.6) and (3.2.7) to
obtain

1 1 1
C'0 = §a0a Cn = i(an - an): C*n = §(a’n +ibn)a n= 1: 25 st (328)

or equivalently

ag =2Cy, a,=C,+C_,, b, =i(C,—C_p), n=12,..., (3.2.9)

Obviously we can calculate complex Fourier coefficients C,, in terms of f(6)
using (3.2.8) and (3.2.2) and (3.2.3). Now, when (3.2.7) is an equality, we
may use this equality and first calculate the complex Fourier coefficients C),
in terms of f(f) and the using (3.2.9) we recompute a, and b,. The idea
is to use the orthogonality of the set {e™’} (as that of sinnf and cosnf in
the previous chapter). To this approach we multiply both sides in (3.2.7) by

e~"*% and integrate over [, —7| to obtain

/ FO)™*do=>"C, / ek g, (3.2.10)
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where we have changed the order of integration and summation. We compute
for n # k that

T T _ n—k) _ (__ n—=k)
/ei(nk)Odaz[ 1 ei(nfk)ﬂ] _ (=)!R - (1) _o0,

i(n —k) — i(n —k)
(3.2.11)
whereas n = k yields
/ =kl qp :/ df = 2r. (3.2.12)
Thus in concise form we have the orthogonality relation viz,
" e 0 forn # k
i(n—k)6 _ ’ )
/—7: e df = { o, for n — k. (3.2.13)

Hence only for n = k£ we can get a contribution from the sum on the left
hand side in (3.2.10), i.e.

/ ' f(0)e~™*dh = 21, (3.2.14)

Relabeling the integers £ and n, we have the following formula for the com-
plex Fourier coefficients C);:

1 g —inb
= — " de. 2.1
Co=ge | SO0 (3.2.15)
We note that by (3.2.15),
Cy= = —i/”f(e)de (3.2.16)
0= 20,0 = 27‘(‘ . s L.

is average or mean value of f on any interval of length 27. The real coefficient
ap is given by

2 (7 1 [
=2C) = — 0)df = — 0)do. 2.1
w=20=5- [ f@)as=~ [ s0) (3:217)
Further for n =1,2,..., we have using (3.2.8) and (3.2.15) that

1 g ) )
an=Cat Cn= - / FO) (e + ") o = / F(6)2 cos nddo.
m —T

1 ™
™ -
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Thus .
ay, = l/ f(0) cosnbdb. (3.2.18)
™ ™

Note that the formula (3.2.18) holds for n = 0, as well. This is the reason
why we use the factor £ in the formula (3.2.5). Analogously the real Fourier
coefficients b,, are then given by

?

b = i(Cu = Cn) = o

" FO) (e — ) df = - " F(0)(=24) sin nfdd,

and hence

1 ™
b, = —/ f(6) sinnbdb. (3.2.19)
T -
We summarize the result of this section in the following formal definition:

Definition 8. Suppose f(0) is a 27 periodic Riemann integrable function.
Then f(0) has a Complex Fourier series erpansion as

FO) ~ Y Cre™. (3.2.20)
The corresponding real Fourier series representation of f(0) is given by
1 - :
f(6) ~ 500 + ; (an cosnf + b, sin nH). (3.2.21)

The complex Fourier coefficients C,, of f are given by
Cp == /7r f(0)e ™ dp (3.2.22)
"o | e . 2.
Equivalently the real Fourier coefficients a,, and b,, for f are defined as

o =+ / " FO)cosnfds, (n>0), (3.2.23)
mJ x

by = % /_ ﬂ £(O)sinnddd, (n>1). (3.2.24)
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So far a crucial question is when we can write equality in (3.2.5) or
(3.2.21)? And defining a,, and b, as in (3.2.6) and (3.2.7), what is the rela-
tion between the right hand side in, e.g., (3.2.5) and f(z)? We put the whole
answer in the Fourier convergence theorem below:

Theorem 9 (Convergence Theorem). If f is 2m-periodic and piecewise
smooth on R, and

N N
1 )
SI{,(G) = 50 + E (an cos nf + by, sin n9) = E C,em? (3.2.25)
1 —N

then
lim S{(0) =

N—o00

[£(0-) + £(6+)]

N | =

for every 0 and in particular,

lim S%,(6) = f(6)

N—oo

for every 0 at which f is continuous.

We postpone the proof of Fourier convergence theorem. However, from
now on as soon as we can justify that a function f is continuous at a point
6, we use equality between the Fourier series expansion of f and f(#).

3.3 Even and odd functions

Below we examine some useful properties of even and off functions:

e For an even function F(0) we have F'(§) = F(—8), hence
/ F(z)dx = 2/ F(z)dx. (3.3.1)
—a 0
e For an odd function F'(#) we have F(—6) = —F(#), and hence

/a F(z)dz = — /Oa F(z)dx + /OGF(:c)dx = 0. (3.3.2)

—a



86 CHAPTER 3. FOURIER SERIES FOR 2n-PERIODIC FUNCTIONS
Now since cos(nf) is an even function and sin(nf) is an odd function, we get

For even f an = ;/ f(6) cosnf df and b, = 0. (3.3.3)
0

2 ™
For odd f an, =0 and b, = —/ f(0) sinnd db. (3.3.4)
T Jo

Exempel 1. The function f(0) = |0|, —7 < 0 < m, is 2w periodic. Ezpress
f in Fourier series.

f(0) = 10|

7T__

i ¥ i i ¥ 0

—T ™

Figure 3.1: The 27 periodic function f(6) = |6].

The function f(0) is 2m-periodic and even, thus we have according to (3.3.3)
b, =0 and

anzg/ f(0) cosnb df
T Jo

Since f(8) = 10| and 0 > 0 on the interval [0, 7] we get first for n =0,

9 [m 9 [ 9 16277
aoz—/ ecosodez—/ edez—[—] —
T Jo T Jo mL2lo

and then for n > 0 we have using partial integration that

an:g/ \0\cosn0d0:g/ 6 cosnf df
T Jo

™ Jo
:2[9-lsinner—g/o‘wlsinnﬁcM:i[cosng}7r (3.3.5)

™ n 0 ™ n ™ n 0

:i[(—l)”—l}: Wi)w for odd n =2k — 1
Tn? 0, for even n := 2k.
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Thus the Fourier series expansion formula

f(6) = %ao + i": (an cos nf + b, sin n0)
1

yields

A 1

l\9|=1

Note that

M8

(2k—1 3.
2 2k—1 cos(2k — 1)0, (3.3.7)

convergence quadratically!

Exempel 2. The function g(8) =0, —7 < 0 <, is 2rw-periodic. Express g
. Fourier series.

g(0) =10

Figure 3.2: The 27 periodic function g(6) = 6.

Here g(8) = 0 is an odd function, thus by (3.3.4) we have a, = 0 for n =

0,1,... and
2 [T ) 2 [T )
:—/ f(O)smnGdH:—/ 6 - sinnf db
T Jo ™ Jo
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Now using partial integration we get

2 -1 ™ 2 [T-1
b, = —[9 . Fcosnﬁ} — —/ FcosnGdQ
T o mJ
3.3.8
P | (—1)n+ (3.38)
T n n
and hence
1 = :
g(0) ~ 00 + 21: (an cos nf + by, sin nG) (3.3.9)
yields
0)=0= 2i (D™ g (3.3.10)
g\v)="0v= 2 " . 3.
Note that
f: (=" sin(n) f: 1 (3.3.11)
1 n 1 n’ -

which means that g(8) = 0 has poor convergence properties than the previous
example: f(0) = |0|. Below we comment this phenomenon:

Remark. Note that, comparing the graphs of f and g we see that f is a
continuous, linear, oscillating functions, whereas ¢ is discontinuous (which
is also the reason behind the ~ sign in (3.3.9) rather than an equality, we
shall discuss this later on in this chapter). Now if in (3.3.6) and (3.3.11) we
take the summation only up to n and denoting the resulting finite sums by
fn(0) and g, (), then f,(#) goes faster towards f(6) than g,(6) goes towards
g(#). This is due to stronger continuity property in f than in g. Thus, if f
is regular the convergence of the Fourier series for f is faster towards f .

3.4 Bessel’s Inequalities

Theorem 10 (The Bessel’s Inequality I). If f(0) is a 27- periodic Rie-
mann integrable function on [—m, | and C,, are the Fourier coefficients of f,
then

o0 1 T
AT MHORT (3.4.1)
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Proof. We use the partial sum, of order N, of the complex Fourier series
expansion for f(6), i.e.,

N
= Cpe™, (3.4.2)
-N
and compute
N o N . N
‘f 0) = Cue?| = ( Y One"“’) ( - One—m”)
_ N —N
N
= fO)F =Y [CuT @™ + Tuf@)e ™| (343)
y —N
+ Z Cmc_nei(m—n)e'

mn=—N

Now integrating (3.4.3) over [—m, |, and changing the order of summation
N
=3 e
-N

and integration, it follows that
8 IUGIKE
7T -7
N

_ % > [Cn /_ ' f(®)e™d(9) + C, /_ 7; f(0)e™df| (3.4.4)

—N

Z /ccem">"d0

m, n=—N

27r

Recall that
1 [ .
cilm=m) g _ { 0, for  m#n

o 1, for  m=n.

-7

Further

1 [ . — 1 [ .
C, = —/ f(0)e~™d0  implies C, = —/ (9)e™dg.
2 | . 2 ) .
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Hence we can rewrite (3.4.4) as

Z c, eme

1 7T
=5 [ Ir@)ras

27r
N N (3.4.5)
— > (CuCr + CuCr) + Y CuCh.
—N —N
Thus
1 - N
0< 5 [ 1O =cuemfo =5 [ i0)an - Z\C ’,
-n —-N

and letting N — oo we obtain the first Bessel’s Inequality:

o0 1 T
Slcr< g [ iropa

Below using the relations between real and complex Fourier coefficients
we derive the real version of (3.4.1):

Theorem 11 (Bessel’s Inequality II). If f(6) is a 27- periodic Riemann
integrable function on [—m, x| and an, n =0,1,..., and b,, n=1,2,..., are
the real Fourier coefficients of f, then

1 2 1 = 2 2 1 /W 2
- — < — 4.
P+ L0l Py < 5o [ 1FOF (340)

-7

Proof. As we have seen earlier we have for n > 1 that a, = C, + C_,
and b, = i(C,, — C_,). Hence

|an|” + [bal* = (Cr + C_p)(Co + Cy) +i(Cr — C_p) (=) (Cr, — C—p)
= 20,0, +2C_,C_, = 2|C,|* + 2|C_,%.

Thus, for n > 1, we have
1
5 ([anl” + [Ba]*) = |Cul” + |C_a]?, (3.4.7)

whereas for n = 0 we get

lag|® = 20 _2C ¢ = 4|Cy|*. (3.4.8)
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Combining (3.4.7) and (3.4.8) and the Bessel’s inequality I, we obtain
1 2 1 - 2 b 2\ _ C 2 S C 2 C 2
Jlaol” + 5> _(lanf® + [baf*) = [Col” + Y (|Cuf* + |C—a]
1 1

9] 1 T
=Y k<5 [ Io)pas

which is the Bessel’s Inequality (II) and the proof is complete.

(3.4.9)

As a consequence of these two theorems we conclude that for 27 Riemann
integrable functions, the series obtained from the Fourier coefficients:

Z|an|2a Z|bn|2: Z|Cn|2 and Z|Cn|2
1 1 1 -1

are all convergent. Thus, |a,|?, |b,|* and |C,|?, being the n-th terms of
convergent series, tend to zero as n — oo (also as n — —oo in the case of
C,,) and hence so do ay, b, and C,,. We summarize these properties, viz,

Lemma 5. For a 27 periodic, Riemann integrable function f, the Fourier

coefficients an, b, and Cy, all tend to zero as as n — oo (also as n — —o0 in
the case of C,).

3.5 Proof of the convergence theorem

To prove the convergence theorem for the Fourier series we need to define
the concepts as piecewise continuous and piecewise smooth functions.

Definition 9. A function f on the closed interval [a,b] is said to be piece-
wise continuous on [a, b/ if

(1) f is continuous on [a, b] except perhaps at finitely many points x1, T, ..., Ty.
(#) at each of the points x1,xa, ..., Tk, [ has both the left-hand and the Right-
hand limits, i.e., f(x;—) and f(z;+), j=1,...,k, exist.

Definition 10. A function f, defined on the closed interval [a,b] is piece-
wise smooth on [a,b] if f and its first derivative f' are both piecewise
continuous on [a, b].
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Definition 11. Let f be a 2w-periodic piecewise smooth function then, for
a fized 0, the Nth partial sum for f is defined by

N N

1 ‘

S}:,(G) = 500 + E (an cos nf + b, sin né’) = E C,em? (3.5.1)
1 —N

with a,, b, and C, being the usual Fourier coefficients, viz;

= %/_7; f(¥) cos(ny)dep, by, = %/_7; f(@)sin(ny)dy, and

1

—iny
Cu=gr | Fw)e ™au.

To prepare for the proof of the convergence theorem we note that

ZC@ 27TZ/f )0V dup,

is symmetric on n, since n ranges from —N to N. Hence replacing n by —n,
does not affect the above sum and thus we can write

1L .
ShO) =5- > [ rwe Nay (352
_N YT
Let now ¢ = 1) — 6, then ¢ = 0 + ¢ and dvy = d¢, so that
sL(9) = = [ 0 g 3.5.3
=55 [ | 10+00 (353)

Further since both f and e are 27-periodic, using Lemma 2, it follows that

1 & [" .
=5 > / F(O0+ ¢)e™do. (3.5.4)
_N YT

Now we define the Nth Dirichlet kernel by

Dy(¢) = % D e (3.5.5)
-N
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and rewrite S (6), in (3.5.4) as

L) = [ £(0+6)Dx(e)do. (3.5.6)

-7

Some properties of the Dirichlet kernel:
The function Dy (¢) is the sum of a finite geometric progression, which for
¢ # 0 can be written as

Dn(¢) = QL (e‘“v"’ +e N4 p e e e"N¢)
™

2N
= e (1 +el+ . te ) =5¢ ;e" (3.5.7)

1 eiN+1)¢ _ ,—iNo

o e —1

Multiply both the numerator and denominator by e~i% we get

1 lN+3)¢ _ o—i(N+3)é 1 sin(N + 1)¢
Dn(¢) = — =

.1 . - .
2 eizd _ iz® 21 sini¢

(3.5.8)

From this formula we can sketch the graph of Dy (¢). It is rapidly oscillating
to zero viz.
We conclude this part by the following lemma:

Lemma 6. For any N, we have that

[ Dutorto= [ utoris =

Proof: We give the proof for ¢ € (0,7). The case ¢ € (—n,0) is proved in
the same way. We rewrite the Nth D1r1chlet kernel as

N N

N
1 . 1 1 - - 1 1
D - neg _ - ( ng —zn¢) - - .
~N(®) QWZJ\;G 27T+27TZ e’ +e 27T+7Tzl:cos neo

Integrating over ¢ € (0, ) yields

/DN Vdp = / =~y Zcosn¢>d¢ [%+%2N251nn¢} 1,
1

and the proof is complete.
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D150(9)

\/\/\/\/\/\/\/\/“H.‘{\I\/\/\/\/\/\A/ 5

vvvv\/VVV vvv\/\/vvv

Figure 3.3: The Dirichlet kernel Dy (¢) for N = 150.

Now we return to the proof of our main result:
Proof of the Convergence Thereon: Since f is piecewise smooth we have
that f(8) = f(6—) for & < 0 and f(0) = f(6+) for & > 0. Further using
lemma 4 we can write

%f(e—) = f(0-) /_7r Dy (p)dg, %f(0+) = f(0+) /Oﬁ Dy(¢)do. (3.5.9)
By (3.5.6)

S4@ = [ 16+0Dy@s+ [ 10+ 0)Dx(@)s. (3510

Subtracting (3.5.9) from (3.5.10) we get

s40) - 3[r6-) + 160 = [ |£(0+6) — 1(6-)| Dx(6)ds 35.11)

. / C[£6+ ) - 164)] Dr(0)do
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We now wish to show that for each fixed 6 this approaches zero as N — oo.
Recalling (3.5.7) we have

1 elN+1)é _ —iNo

Dn(¢) = o e —1

We now define g(¢) by

J0+0)-10-)  for _ 1< p<0
o6 — { ] ¢ (3.5.12)

et®—1
% for 0<o¢<m,

and rewrite (3.5.11) as

1 1 [7 . .
f _ - _ - i(N+1)¢ _ _—iN¢
$40) - 3[16-)+ 160)] = - [ 9(0)(e e N)ds. (3.5.13)
We can easily see that g(¢) is a well-behaved function on [—7,7]. In fact
g(®) is as smooth as f(f), except near ¢ = 0, where ¥ — 1 vanishes. Using
I’Hopital’s rule it follows that

[O+0) 1) _ . [+d) _ [(69)

lim = lim - = -
¢—>0+g(d)) 0+ e —1 p—0+  1e'® )

Similarly g(¢) approaches the finite limit 1 f’(#—) as ¢ — 0—. Hence g(¢)
is actually piecewise continuous on [—7, 7], and as a consequence of Bessel’s
inequality (Lemma 3) its Fourier coefficients

Culg) = %/ g(@)e ™%dp — 0 as n — Foo. (3.5.14)
Now since
L[ ; I .
2 9(9)e"V?dp = C_(y11y(g9) and ﬂ/ 9(¢)e""Ndp = Cn(g),

using (3.5.13) it follows that

lim S7(0) _1 f(0-) + f(0+)} = 0.
N—oo 2
and the proof is complete.

Below we give an alternative approach to the proof of the Convergence
Theorem. This approach is based on the following properties of the Fourier
coefficients:
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Lemma 7. Let f and g be 2r periodic Riemann integrable (piecewise smooth)
function. Then the Fourier coefficient

_ _ 1 " —ind
Co(f) =Cn = o /_Wf(9)€ do,
as an operator, is linear, i.e.,

Culaf + Bg) = aCu(f) + 6Cn(g), Vo, BER (3.5.15)

Further we have that

1 [ _.
Cn(1) = %/ e~ dh = 6pp. (3.5.16)

-7

This 1s justified by the fact that for n = 0 we have

1 1
Co(1) = %/ dh = 5 [9} =1 (3.5.17)

while n # 0 yields

) = 5[~ e ™| =~

=5 - [cos nf — isin ner =0. (3.5.18)

2min

Finally

Cr(e® f) = % /7r e®0 F(0)e~™dh = cp_i(f) (3.5.19)

Proof of the Convergence Theorem, Method II: Suppose that f is
continuous at 0. Let

16 - f00)  (FO) = 160))/ 0~ 80)

0) 900) == (ew - ei”")/ (6 — 6y) e
We know that . f(0) = f(6o)
i L= 1) _ (60) (3.5.21)
and il _ gifo 2\ y
i = ()], = o
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Thus it follows from (3.5.20)- (3.5.22) that

lim ¢(f) = lim /') _ f’(00:|:).

0500+ 0500+ <€Z~9)' T et

(3.5.23)

Since f'(f) is piecewise continuous, g(f) is piecewise continuous. Further
using the (3.5.20) we get

£(0) = f(6o) +€”9(6) — ™g(0)

Thus by linearity of C,,(f), and the relations (3.5.16) and (3.5.19) (see Lemma
5) we have

Cu(f(8)) = Cu| f(B0) +€”9(6) — ™ g(0)

= [(B)Ca(1)+ = Cua(9(9)) = € Cu(g0)  (3:524)
= f(00)6n0 + Cn-1(9(0)) — €™ Cr(g(0)).
Hence
N .
SE(00) =~ Cul£(0))e™?
N (3.5.25)
=3 [700)500 + Cu 1 (9(0)) = €™ Calg(0))] €.
Y
Evidently we have
N
Z f(00)0no = f(6h) (3.5.26)
Y
Now to calculate the reaming part of the sum in (3.5.25) , we define
= Cr_1(g(6))e™, (3.5.27)
and write
[Cuca(9(6)) — e Culg(6)] €% = Cur(g(6))e™ — 100, (9(9))
=Tn —Tnt+1

(3.5.28)
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Thus we have

SK(0) = F(80) + Y _Irn — i)
o (3.5.29)
=f(0o)+(r n—7_nNy1)+ o+ ("N —TN11)

= f(0o) + r—n — N1
Finally since g is piecewise continuous, then using Lemma 3,
70| = [Ca1(9(8))e™™| = [Coa (9(0)| = 0, as |n[ = c0.  (3.5.30)
SI(0) = f(6y), as N — oo.

and the proof is complete.

3.6 Derivatives, primitive functions

The fundamental theorem of calculus:

| @ =) - ra) (3.6.1)

applies to functions f that are continuous and piecewise smooth, even though
f! is undefined at the “corners”. For example, if f is differentiable except at
the point ¢ € (a,b), we have

/abf’(ﬁ)d9=/:f’(0)d9+/cb f'(0)do
= [f(c) - f(a)} + [f(b) - f(c)] = f(b) — f(a).

Now we shall show how to relate the Fourier coefficients of a function to those
of its derivatives.

Theorem 12. Suppose f is 2w—periodic, continuous, and piecewise smooth.
Let ap, b, and C,, be the Fourier coefficients of the function f, and let al,, b,
and CJ, be the corresponding Fourier coefficients of the derivative f'. Then

a,, = nby, b, = —na,, and C, =1inC, (3.6.2)

Note! a;,b], and C,, are not derivatives of ay,, b, and C,.
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Proof: Using integration by parts it follows that:
1 [, 1 o1 [T ,
:—/fwnwwwz—p@mmﬂ —i/f@GmmW)
) . T P .
1 ™
= n—/ f(0)sinnf df = nb,
™ —T
where we use the fact that, because of 2m-periodicity f(n) = f(—n). Similarly
= l/7r f'(6) sinnd df = l[]‘(0) sinn@}7r — l/7r f(@)ncosnb db
), T TS,
1 ™
= —n—/ f(0) cosnf df = —na,,.
™ —T

As for C! we use once again f(—7) = f(w) and also ™™ = e = (—1)"
to obtain

Co=gz | 1@ o= (10|~ 5 [ f0)(ine)ap
=WH%;/f@€WM:m%

and the proof is complete.

In the next theorem we derive the Fourier series expansion of f'(6) in
terms of the Fourier coefficients of f and also give the convergence of the f's
Fourier series expansion (convergence theorem for f).

Theorem 13. Suppose that f(0) is a 2n—periodic, continuous, and piecewise
smooth function, and that f'(0) is piecewise smooth. Then the Fourier series
expansion of f' is obtained by the termwise derivation of the Fourier series
expansion for f, i.e., if

ZC’e —ao—f—z an cosnf + by, sinnd),

then

o0

= Z inC,e™ = Z (nbn cos nf — na,, sin n0) (3.6.3)

1
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for all 6 at which f'(6) exists. At the exceptional points where f'(0) has
jumps, the series (3.6.3) converges to

%[ F10-)+ (64, (3.6.4)
Proof: We know that f(0),f'(0) and f"(0) are continuous and piecewise
smooth. Using theorem 11 we have that f'(0) is the sum of its Fourier series
at every point (with appropriate modifications at the jumps). By theorem 12
the coefficients of €™, cosnf and sinnf in this series are inC, ,nb, and a,,
and we get the desired result.

Now we link the Fourier coefficients of f and that of its primitive functions
F'. Note that a periodic function f(#) has a periodic integral F(f) if and only
if the constant ag in the Fourier series expansion for f(#) is identically 0, i.e.,
if and only if f’s average vanishes:

1 1 (7

Exempel 3. We know that f(0) =1 is periodic but F(0) = [ f(8)d is not
periodic. However, except the constant term ag, the integral of every term
i a Fourier series erpansion is periodic. From this we see that a periodic
function has a periodic integral precisely when the constant term in its Fourier
series vanishes. We therefore arrive at the following result.

Theorem 14. Suppose f(0) is 2m—periodic and piecewise continuous, with
Fourier coefficients an,b, and C,, and let F(0) = foe f(p)do. If Cy = %ao =
0, then by termwise integration of the Fourier expansion for f we have that
for all 0

— Cn g 1  (Gn n
F(0) = Cy(F) + Z ?—neme = §A0 + Z (% sinnf — % cos n0> (3.6.5)
—o0,n#0 1

where the constant term
1 s

1

is the mean value of F on [—m, 7).
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Proof: Since f(0) is piecewise continuous, it follows that F = [ f is
continuous. Coy = %ao = 0 gives that F' is 2m—periodic since by lemma 2

F(6+2r) - F(6) = /0 ™ b (6)do - / " J(6)dé = 2nCy = 0.

Hence by the convergence theorem 11 F(0) is the sum of its Fourier series at
every 0. But theorem 12 applied to F, yields

et B i =S r0) @60

and the proof is complete.

Note! If Cy # 0, the above argument can be applied to the function
F(0) — Cy0, since then for the function

60):= [ (10) - Cu)o = Fi0) o,

the derivative G'(0) = g(f) — Cy has, in its Fourier series expansion, the
constant term Cy(g) = 0. Then

> Cn 1 X /a b
0) — “neind _ = 4 T oinng — =2 2]
G(0) CO(G)_{__;#O p— 5 0+;(nsmn ncosn)
where . s
Co(G) = 540 = 5 | GO)db.

Exempel 4. f(0) is 2m—periodic and piecewise continuous. Give the Fourier
series expansion for F(6)!

1 0<fO<m
f(e)_{ -1 —7<6<0,

Clearly F(0) = |0| for |0] < w. Since f is odd we have a, = 0. Conse-
quently Cy = %ao = 0. We also have

[-1+1] =0,

N | —

f0) = %[f(O—) +f(0+)] -
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f(0)
I I i 0
- m
Figure 3.4: The signum function f(6).
F(6) = 16|
7T —_—
| o — m o f

Figure 3.5: The (periodic) primitive function F'(f).

We compute b,, n > 1 viz,

1 [7 2 [7
b, = —/ f(8) sinnfdf = —/ f(0) sinnfdf.
T ) . T Jo
But since f(0) =1 for 0 < 0 < 7 and we get
2 [" 271 m 2
by = —/ sin nfdf = — = [—cosna] - ——((—1)" . 1)
T Jo wln 0 nm
and A
b =1 @EDr n=2k-—1
" 0 n =2k

Thus we have

S A~ 1
f(8) ~ ;bn sinnf = - nX_:l 51 sin(2n — 1)6.
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Since F(0) is continuous we now have that the Fourier series for F(0) = |6],
0] <, is

/f )dp = — /Z(% sin(2n — 1)¢dg

B 4 cos(2n —1)6
=Co w; (2n —1)?

(3.6.7)

where

1 [" 1 [ 1 (7 170*17  «
Co 2m /_7r (6)df 2n /_W|0|d0 7r/0 b 7r[2 }0 2

Note that this Cy is the lower bound of the integral in (3.6.7), i.e

4 & 1 T
CO_;;@n—l)z_?

which, as a by-product, gives the sum of the series:

2

ZQn—l 8"

3.7 Fourier series on the interval |7, 7]

Fourier series give expansions of periodic functions on the whole real line in
terms of trigonometric functions. They can also be used to give expansions
of functions defined on a finite interval in terms of trigonometric functions
on that interval. We start with the simplest case:

Suppose that f(6) is defined on [0, 7], as in the Figure below.
We want to extend f(f) to the whole real line by requiring it to be 27—
periodic. We have the even extension: feyen(f), of f to [—m, 7] is defined by

feven(_e) = f(e)a S [O’ﬂ—]

and the odd extension: f,qq4(6), of f to [—m, 7] : defined by
foaa(—0) = —£(0), 0 € (0, ], foad(0) = 0
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f(0)

™

\/

Figure 3.6: A function f(60), 0 € [0, 7].

From lemma 2.2 it follows that for even extensions we have
1 [7 A
ay, = —/ feven(0) cosnf df = —/ f(6) cosnf df
T —r Vs 0

and

1 7T
b / Foven(6) sin nf df = 0.

n — —
T

These give the following Fourier cosine series of f, if f is an even integrable
function on [0, 7.

1 - 2 [T
feven(0) ~ 500 + ;an cosnf, where a, = ;/0 f(0) cosnfdb. (3.7.1)

In the same way we have for the odd extension functions
1 ™
ay = — / foaa(f) cosnfdf =0
T™J-n
and | g o 7
b, = —/ foaa(f) sinnf df = —/ f(0)sinnd db
T ) . 7 Jo

These give the following Fourier sine series of f, if f is an odd integrable
function on [0, 7.

o 2 T
foaa(0) ~ E b,sinnf, where b, = — / f(6)sinnd do. (3.7.2)
n=1 T Jo
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feven (0)

-7 ™

VARV

Figure 3.7: The even extension of f(0) : fepen(0), 0 € [—m,7].

3.8 Fourier series on 2L-intervals

Suppose that f(x) is 2L-periodic. Making the change of variables:

Lo
r=—,
T

we get 0
@) =1(=) =90
Obviously ¢() is 2r—periodic, since
0 0 0
v =1 (H05) (2 o)< ()

If g(#) is piecewise smooth we can expand it in 27-periodic Fourier series:

9] ' 1 P .
6) ~ E et h Cn=— 0)e "0qg.
g(0) cne™,  where 27r/ g(f)e

n=-—00 -n

Now the substitution
T

T
O—T, dﬁ—zdx, and 0 =4m < x==%L.

yields

o .
f(-T) ~ Z CnemTWw:

n=—oo
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foda(0)

N\ :
L Vv,

Figure 3.8: The odd extension of f(6): f,i(f), 0 € [—7, 7).

where 5 .
]_ inm ]_ inm
Cn= or /_L f(x)efTw%d»T =57 » f(z)e L %dx.
Thus we obtain with § = =
1 ad nmw . nm
f(z) ~ 5% + ; (an cos + by sin Tx) (3.8.1)

where
1 [t nm 1 [f nmw
— - = — in — . 8.2
n, L/Lf(:c)cos Lxdx and by, L/Lf(x)sm Lxdx (3.8.2)

Thus it follows that the Fourier cosine expansion of an even piecewise smooth
function f on the interval [0, L] is

1 - nm
f(z) ~ 500+ nz:; @y COS 2 (3.8.3)

where

9 L
a, = —/ f(z) cos " ¢ dr and b, = 0. (3.8.4)
L/, L
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Analogously, the Fourier sine expansion of an odd piecewise smooth function
f on the interval [0, L] is

1 = . nmw
fl@)=xz~ 540 + E_l @y 8in —1, (3.8.5)
where
2 [* . nmw
a, =0 and b,=— [ f(z)sin—zdz. (3.8.6)
A L

Exempel 5. Find the Fourier cosine expansion of f(z) =z on [0, L].

J3 2L

Figure 3.9: The function f(z) =z, = € [0, L].

We ezpand the function f(x) = z to an even 2L-periodic function , feyen =
\z|, for x € [-L, L]:

I [l [l x

I T T T T

—2L —L L 2L

Figure 3.10: The 2L periodic even function feyen(z) = |2|, € [-L, L].

Since the expanded function is even, we have that b, = 0. As for a, we
have

9 L
anzf/o f(:r)cos?dm,
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and with f(x) =z on [0, L], we get

ap = f/ zcosOdr = Z/ rdr = I [%] =1L, (3.8.7)
0 0

and

2 nm 1L
/f cosfxdx—z[x—smfx}o
9 L

L nmwL 2/ L nm 1L
_“ Tl MO Bl o 3.8.8
L J, nm S L do = L(mr) [COS Lx]o ( )
2L n
e ((_1) B 1)
Thus we have AL L
__—2b — 2 — 1
_J) @Iz "

an { 0 "= 9k (3.8.9)

Note that since feyen = || is continuous and piecewise differentiable on R,
it follows that

f(@) = feven(z —ao + Zan cos —33 (3.8.10)
and thus
flz)=|z| = g - i—s ::01 (2n1— g cos (2n z 1)7T3:, reR  (3.8.11)
In particular
flz)=2z= L_4ab 3 ! cos (2n — 1)7r:r, z €[0,L]. (3.8.12)

2 —1)2
2 mi(2n-1) L
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Exempel 6. Expand the function f(z) = x to a 2L-periodic odd function on
[—L, L].

I3 2L

Figure 3.11: The function f(z) ==z, z € [0, L].

We expand the function f(x) = x to an odd 2L-periodic function , foqs = z,
for x € [-L, L]:

8

Figure 3.12: The 2L periodic odd function f,q4(z) =z, = € [-L, L].

Since the expand function is odd, we have a, =0, and

9 L
bn:Z/(; f(x)sin?dm,
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Inserting f(z) = x on [0, L] and using partial integration it follows that

b — Q/L o 2[ —L niw / J
n =7 i xsmLxx Lmecos x cos x:r
2 —L 27 L\2 nm 1L 2L
_2,-L _(_) [_} _ 2X (1)t
L nm cos(n) + L\nnr s Lx 0 mr( )

Since f is continuous on (0, L) we get

- . nw 2L (=)™ onr
— b, = — . 8.1
flz)==z E sin —-a = — E ——sin—-g (3.8.13)

n=1 n=1

Thus for x € (0, L) we have using (3.8.13) and (3.8.11) that

_ 2L i": 1)+t L 4L & 1 (2n — D)m
—_— SlIl — == "= COS .
L v 2 7L (2n - 1)2 L "

™
n=1 n=

This equality is valid for x = 0 as well. Thus we have

2L K (=)™t L 4L & 1
= 0=0+=—-=— Y ———cos0.
T Z n o 2w~ (2n-1) oos

n=1

which gives

S
“~(2n-1)* 8

which we recognize also from previous computations.



Chapter 4

The Fourier Transform

Fourier transformation is the most powerful technique for solving differential
equations of different type arising in science and engineering. There are a variety
of both analytical and numerical approaches rely on Fourier transforms. FFT
(Fast Fourier Transform) is , e.g., the backbone of numerical approaches for
problems in signal analysis. Besides all the traditional applications the modern
technique of wavelet transform is based on (actually is an special version of) the
Fourier transform.

4.1 Introduction

We now turn to the study of Fourier transform which is an integral trans-
form, as Laplace transform, defined on the whole real line R, and focused
on analyzing functions and deriving relevant techniques to solve differential
equations. We start with an analogy with Fourier series viz:

Suppose that f is a function on R. For any L > 0 we can expand f on
the interval [—L, L] in a Fourier series,

I L
f(z) = oL Z Cnre' L% where C,p = / f(y)e "L ¥dy. (4.1.1)
= —L

Let n
% — A¢ and define &, := % — nAE.

111
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Then the formulas in (4.1.1) become
1 o . L ,
f(z) = o ch,Lezf"“Af, where C,, 1 = /L fy)e ®¥dy.  (4.1.2)

Suppose that f(z) vanishes rapidly as x — +o0, then for sufficiently large L
we get

Coz = /_ I; fly)e vdy ~ /_ Z f(y)e *vdy. (4.1.3)
Introducing the notation
Fe = [ rweay (4.1.4)
we have -
flz) =~ % _X:f(ﬁn)ei&””Aﬁ, where |z| < L. (4.1.5)

Let L — oo, so that Aé — 0 and the sum in (4.1.5) should turn into an
integral, thus:

f(z) = %/_ f(f)e’f‘”dg, where f(§):/_ f(zx)e “*dax, (4.1.6)

A

f is called the Fourier transform of f and the formula (4.1.6) is the Fourier
inversion theorem.

Definition 12. If f is an integrable function on R, i.e., f € L'(R), its
Fourier transform is the function f on R, defined by

0= [ s@e = Fli@]© = F[f0)]. @1

Lemma 8. The Fourier transform f(€) is (i) bounded, and (i) continuous.

Proof. (i) Since f(€) is defined for f € L'(R), and |e~%”| = 1, the integral
converges absolutely for all &,

7| = /00 f(x)e ™" dx < /00 f(z)dz < 0o where f e L'(R).
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(i) Let & — &. We want to show that f(€) — f(&). Since
F@e = 1@ Ve and JeL®, ie, [ f@d<,

the dominating convergence theorem give us

i )= [ i e s = [ j@pe s = f(e)

§—&o 0o €0

and the proof is complete. O

4.2 Basic properties of the Fourier transform

Some of the basic properties of the Fourier transform are given in the follow-
ing theorem.

Theorem 15. Suppose f € L', then
(a) For any a € R, we have

(al) F|@w—a)| =cf(§) and (a2) F|e“f(@)| = f(E~a).
(b) If 6 > 0, then we have the scaling formula:

Flren)© = £(3).

(c) If f is continuous and piecewise smooth and f' € L', then

(c1)  FIf'(2))(€) = i&f ().

On the other hand, if xf(x) is integrable, then
(2)  Flaf@)] =if©).

Proof. (al) From the definition we have

f[(x - a)} = /C: f(z — a)e™%%dx.
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Substituting £ — @ = y and thus dzr = dy we get

(-] = [ 1oy = [ e on=cieo
(a2) Using the definition it follows that

f[emzf(a:)] = /00 e f(x)e %%dy = /00 f(z)e ™ 69%dy = f(€ — a).

o0 o0

(b) The Fourier transform formula gives

= /OO f(6x)e ™ du.

Substituting 6z = y and thus dz = §~'dy we obtain

- [ o ho= 49,

(c1) Using partial integration it follows that

= /_ Z f(@)e eds = [f()e %] / f(z)(—i€)e € da.

But since f € L', the limit

i 1@ =10+ [ 1

exists and since f' € L! this limit must be zero. Likewise lim,_,_o, f(z) = 0.
Thus we have

[f@e]” =0 and FF@IE) = (©(©).

Le % = (—iz)e “*, we may write ze “* = zddg e 2.

6 Then we

(c2) Since
have

f[acf(x)] = /Z of (z)e " dx = 2—/ f@)e " dz = if' ().
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4.3 Convolutions

In this part we derive one of the most powerfully Fourier transform formulas:f
he Fourier transform of the convolution product of two functions.

Definition 13. If f and g are functions on R, their convolution is the func-
tion f x g defined by

frg(r)= /oo fla=ygly)dy, VzeR (4.3.1)

With a change of variables we have evidently

/_Oo flz—y)g(y) dy = /_OO f)g(z —y) dy. (4.3.2)

We can think of the convolution integral as a limit of the Riemann sum:

/oo fl@=yay)dy~ Y fl@—y)a(y;)Ay;.

j=—o0

The function f;(x) := f(xz — y;,) is a translation of f along the z-axis by the
amount y;, so the sum on the Right is a linear combination of translates of
f with coefficients g(y;)Ay;. We can therefore think of f * ¢g as a continuous
superposition of translates of f.

The weighted average of f on [a, b] with respect to a nonnegative weight
function g is

IN f(y)g(y)dy'

12 g(y)dy

Suppose now that fab 9(y)dy = 1. If we now use the identity (4.3.2) and write
frg(a)as [72 f(y)g(z —y)dy, we see that f x g(x) is the weighted average
of f with respect to the weight function g(z — y).

In the next two theorems we state (without proof) some basic algebraic
and analytic properties of convolutions.

Theorem 16. Convolution obeys the same algebraic laws as ordinary mul-
tiplication:

(i) The associative law: fx*(ag+bh) = a(f*g)+b(f*h), fora,b constants.
(ii) The commutative law:  fxg=gx* f.

(#5i) The distributive law:  fx (gxh) = (f x g) * h.
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Theorem 17. Suppose that f and g are differentiable and the convolutions
f*g, f'*g and f x g are well-defined. Then f * g is differentiable and

(f *9)'(z) = (f'*9)(z) = (f x ¢')(2).
Now we can give the proof for the convolution theorem:

Theorem 18 (The convolution theorem). Suppose that f, g € L', then

Flf+gl=(fxay= [
Proof. By the definition

Feaf© = [ rrawe o= [ [ fa-pate s

Since f, g € L' we can use Fubini’s theorem to change the order of integra-
tion. Substituting also z — y = z, it follow that

(f * g / / flx —v)g(y)e “®dady
= / 9(y) / f(z)e7 W+ dZ}dy

— ( / evay) ( / J(2)e % dz) = f(©)3(€)

and thus we have R
(f = g)(&) = f(£)9(&)
and the proof is complete. O

4.4 Some key examples

Exempel 7. Determine the Fourier transform for the function f(z) = e 7.
Solution: Using the definition of the Fourier transform it follows that

[eo) 0 o)
.7’[6"‘”'] &) = / e ltle 82 gy = / 17182y +/ e (Hi8)e gy
—00 0

—00

_ [e(l—iﬁ)m]o |:e_(1+i§)z ]w_ 1 4 1 _ 2
Sl —ge o —(1+i&)do  1—dE  1+i&  14€2
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f(@) = e
N x
F(6) = 12

3

Figure 4.1: The function f(t) = e * and its Fourier transform f(£) = 1f7

Note that, although the graphs for f and f have similar profiles, unlike
f, f is differentiable at zero.

Now using the scaling formula (theorem 15b):

Flren)© =357 (5),

with 0 = a we get

for a> 0.

e 21,2 2a
Fle }‘a1+@my‘e+ﬂ’

Next Fourier transform is used deriving several key formulas and deserves
a special attention:
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Lemma 9. Let f(z) = sign(z) - e, then f(£) = 7oss.

Proof. A straightforward calculation yields

F|sign(z) - e‘“‘zq :/ sign(z) - e~ ey

o

0 o)
= / B CaLl R / e~ (a0 gy
-0 0

44.1
. [e(a_if)z]ﬂ n [ e—(a—l—iE)SU :|oo ( )
S la—itlw l=(a+i&)lo
—1 1 —92i¢
== :
a—i& a+i€  a?+ &2
U

Exempel 8. Find the Fourier transform for the function f(z) = e *".

Solution: By the definition we have that the Fourier transform for f(x) =
e is o
() :/ e e %y,

It will be easier if we first compute (f)’(f) Then f({-“) will follow easily using
theorem 15(c):

(YO = [ (cine e s

— E —z2 —iéx > o OOE —z2 o —i€x

[26 e ]700 /_Oo 5¢ (—i&)e "“*dx (4.4.2)
_ 5 * —z? _—ifx _ 6 £

-t [T e =L,

. ) o0
where we used partial integration and the fact that [%e‘ﬁe_’fw} =0. Con-
—0oQ

sequently we have the differential equation f'(€) + %f({f) = 0, where solution
is f(€) = Ce~, with C = £(0).
Note that for £ =0,

f(O)Z/OOe_mzde\/Tr thus C =/,

—0oQ
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and hence

7€) = Fle](e) = vae . (4.4.3)

[(§) = Vet

Figure 4.2: f(z) = e~ and its Fourier transform f(£) = \/me ¢"/4.

This means that for a Gaussian distribution f its Fourier transform f
1s equivalent to a scaling of f preserving both its shape and reqularity. In
particular, as we shall see below, the Fourier transform of e**/2 is the same
function multiplied by v/2m.

As a consequence of this example we have the following important formula
for the Fourier transform of a general Gaussian function:

.7:[6*%] €) = \/%e%. (4.4.4)

Lemma 10.
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Proof. The proof is straightforward using the scaling formula with 6 = /42

29
2
\/5 _(q/%) 2 _¢?
= —\/7?6 4 = —e€ 2a,
a a

Later on we shall use the above formula with the substituting: z = £ and

£=(z—y): o e
[e 2](x—y)—\/;e 2. (4.4.5)

4.5 The Fourier Inversion Theorem

Viz,

O

By the Fourier inversion theorem we mean a procedure that justifies recov-
ering f from f.

Theorem 19 (The Fourier Inversion Theorem). Suppose f € L'(R),
f, piecewise continuous, and defined at its points of discontinuity so as to

satisfy f(x) = %[f(:v—) + f(x—i—)] for all z € R. Then

e—0 27

= hm—/ f(€)ee g (4.5.1)
Moreover, since f € L'(R), the f is continuous and
— o [ Foeeae (45.2)
=0 ) . 5.

Proof. Note that the cutoff function e~<*¢/? in (4.5.1) is just to make the
integrals converge, then passing to the limit the cutoff is removed. A straight-
forward calculation yields

iw /Z f(e)e e F de = % /Z /Z F)e Vet dydg
- % /Z f(y){ /Z e—%ge—iﬁ(y—”dg}dy (4.5.3)
e
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Now we apply (4.4.5) above with a = €2 to get

e2¢? V2 (@=y)?
]:[e_i‘f] (y—z) = 67T€—2£—"é.

Replacing in (4.5.3) it follows that

y—z

1 * - e2¢2 1 > 1 -

€5 ge — - <ﬂ> dy. 45.4
%/_oof(é?)e e” 2 d§ \/ﬁ/_wf(y)se y (4.5.4)
Substituting 3\’;—2’; = 7 gives y = « + v/2¢z and dy = v/2edz. Thus

%/Z fe)eiereF de - % /Z fl@+v2ez)e * da. (4.5.5)

Now since f is bounded we have

2

< Me™® and ‘f({f)ei&e_%_

‘ Fla+V2ez)e™ < f(g)‘ e L.

Taking limit in both sides of (4.5.5), by Lebesgue dominated convergence
theorem, we can pass the limits inside integrals to get

52§2 1

% /_Z f(g)eiﬁw{ li_{%e*T} d¢ = NG /_Z eli_{%f(a; + ﬁsz)e’z2dz.

Hence by the continuity of f it follows that

3 | _J@eie= 7 [ saetie= s 2 [ o= g,

and the proof is complete. O

The Fourier inversion formula can simply be interpreted as a improper
integral if f is integrable and piecewise smooth on R. Below, we state this
as a theorem (without proof!):

Theorem 20. If f is integrable and piecewise smooth on R, then

lim r e f(€)de = 1 flz—)+ f(x—f—)], (4.5.6)

r—oo [_. 2

for every x € R.
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4.6 Plancherel Theorem

Below we show that the Fourier transform preserves the inner products up
to a factor of 2.

Theorem 21. Suppose that f,f,g and G are in L*. Then
27 (f,9) = (f,3)- (4.6.1)

Proof. Using the Fourier inversion theorem for g:

g(z) = — / §(6)ecede,

2T

and the definition of the inner product yields

fg—27r/ i d:c—/oof(x)/wg()i&d«s
/ / Fla)e " da yde = / 150 = (f,3),

where we used the fact that since f,§ € L', and the proof is complete. [

Remark. The definition of the Fourier transform can be developed to arbi-
trary L2?-functions. If f, g, f and ¢ are in L', then f, g, f and § are also in
L2,

Because of our interest in L, spaces we formulate the following result:

Theorem 22 (The Plancherel Theorem). The Fourier transform, defined
originally on L' N L2, extends uniquely to a map on L? satisfying

2n(f,q) = (f,§) forall f g€ L%

As a consequence of the Plancherel theorem we have
The Parsevals formula: For f = g € L? we have that

on [ lpas= [ 7P

-0 o

or

21| £ ()17 = IIF ()7 (4.6.2)
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4.7 The symmetry rule

In this part we derive the symmetry rule which links, in a most simple way,
a function f with its Fourier transform f so that knowing one of f or f the
other one will follow using this rule:

Theorem 23. The Fourier inversion theorem can be formylated as a sym-
metry in the following way: If (&) = f(€) , where ¢(z) = f(z), we have

o(—x) =2nf(z) or ¢(x)=_2rf(—x). (4.7.1)

Proof. In the Fourier inversion formula

1 *; iz
-5 | e

we substitute x = —t. Then we get
L[ s et L[ —itt 5
=g | J@eHdE= o [ (e dE = o(t).
T J 21 J_o

Thus, witht = x, we have

f(=2) = —¢(x) ie, ¢(z)=2rf(-2)
The formulas in (4.7.1) are often given in transform variable &, viz

¢(&§) = 2m f(=£).
U
Remark. All the formulas and rules, including the symmetry rule are also
valid for the L? case.
Applications of the symmetry rule

Exempel 9. In this example we derive the following formula for the Fourier
transform of the cut-off function:

2sin(af)
—

A~

Xa() = 0(z +a) = 0(z — a) <= Xa(§) = (4.7.2)
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Solution: We have that

Xa(£) = /°° Xa(z))e 7 dE.

Since xo(x) =0 for |x| > a and xq.(x) =1 for |z| < a we get
. “ 1 e 1/, L 2sin(af)
Lal€) = / e zﬁwdg — [—_6 z§w:| — ._(ezﬁx —e Zﬁx) = 2>\
©) —a —ig —a i€ 3
Using the symmetry rule we get the following formulas:

F[2E) (6) = oy (-6

T
and since xq(—¢) = xq(§) thus

sin(azx)

FIZ2 0 = malo): (4.73)

T

Exempel 10. Recalling som of our key examples:

f[e_‘mq = %52 and ]:[e_“m] = 52%5&2.

The symmetry rule give us

2
1+ 22

]—‘[ } = ore 1€ = oe 1l — }'[ } — me I, (4.7.4)

1+ 22

Similarly, by the symmetry rule

[2a

o a2] = 27" — .7:[ ! } = (z)e_“m. (4.7.5)

22+ a?

Exempel 11. Since

by the symmetry rule

F[\/%egj] &) = 27Te*§ (4.7.6)
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The symmetry rule in general
If f(€) is a Fourier transform of f(z), f(z) D% f(€) := g(€), then
9() 57 2mf(=x) = §(z) ie. glx) > 2mf(=€) = §(©).
Exempel 12. Recalling the formula

xa(z) >F 2sin(af)
a é— I’

by the Fourier inversion theorem we have

Xa(JJ) = 1 /OO Mei&cdg — l/OO Meigmdé-_

) £ ) €
in(af)
'3
& (z)
2\ N\
—¢ @ : e

Figure 4.3: f(z) = x,(z) and its Fourier transform f(f) — sinag)

Let a =1 and x = 0. Then we get the following important result:

* sin(€) oo _
/Oo eode=m (4.7.7)

The Fourier inversion formula can be interpreted as a (principal value)
improper integral, that is:

flz)=1lim [ e f(&)de,

r—oo [_.

which give us the following theorem.
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Theorem 24. Suppose f € L'(R), is continuous at xq, and has both right
and left derivatives, f'(x§) and f'(xy). Then

fleo) = tim [ fle)eode.
Proof. Let
_ (@)~ flag)e e

r — X

(4.7.8)
By the L’Hopital’s rule

lim g(z) = f'(z§) + lim+ f(zo)(z — 3150)67%(“’"’”0)2 = f'(z8).

+
.'I*)$0

Similarly lim,_, — g(z) = f'(zg). Thus g(z) is bounded in a neighborhood of

zo and both g(z) and zg(z) = xeg(z) + f(z) — f(z0)(x — zo)e™ 1 (@—x0)? ) €
L'(R). Further, by (4.7.8)

f(@) = f(zo)e 2@ + 2g(z) — zog(a). (4.7.9)

1

Let h(z) = e 2720 then by the Fourier transform rules: h(€ — a)

h(€)e ¢, Further F[xg(x)} = ig'(€). Now recalling e oF ome= ",
the Fourier transform of f(x), see (4.7.9), is
. 2 " .
F(&) = f(zo)V2me™ > e +4g/ (€) — 0g(§). (4.7.10)
Multiplying (4.7.10) by €%% and integrating over [—r,r] we get
1 1 r £2
f(ﬁ) “r0dg = f(wo) e 2d¢
o Vi
" . 2 o (4.7.11)
— 5 (£)etéroge 20 - i€wo
o [ d@emae= 32 [ e
Partial integration in the second term on the right hand side yields
3 | Feed = flan) = e2@+—pm%ﬂq
- (4.7.12)

-5 [ s mesde= 3 [ aepeeas
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where the last two terms are identical, and hence
1 T &2 ) )
3 [ Heeeds = pao) o= [ e Fder 5 [a)er - gone ],
Riemann-Lebesgue’s lemma give that for g € L', §(£) — 0, as £ — 400 and
2
since [ e~ d¢ = /27, we finally get
i 5 [ Feds = flao)

r—o0 27T

and the proof is complete. O

4.8 Applications of Fourier transform
Partial differential equations

We now use the Fourier transform to solve problems on unbounded re-
gions. The Fourier transform converts differentiation into a simple algebraic
operation and we can reduce partial differential equations to easily solvable
ordinary differential equations.

Exempel 13. Consider the heat flow in an infinitely long road, given the
initial temperature u(z,0) = f(z):

Up = kg, t>0, —oo<zx<o00. (4.8.1)

Solution: To find the temperature u(zx,t), let u(&,t) = Fy [u(m,t)] &).
Then

au—zw —iéx aﬁ’
Fule) = [ Greede =5 [ w2

Further Flug](§) = i€a(§) gives that Flug)(&) = (i€)*w(€) = —&*u(€).
Hence the Fourier transform of (4.8.1) yields

ol N
o7 = —ketu(e), (4.8.2)

with the general solution

(€, t) = Ce ke, (4.8.3)
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A

Fourier transform of the the initial data u(§,0) = f(§): 4(£,0) = f(§),
inserted in (4.8.3) give u(£,0) = C = f(§). Thus we have

i(&,1) = f(§e * (4.8.4)
To recover the solution u we recall that ]’[e’%} &) = ,/27”6’%. Letting
i = kt thus a = Qth, we then have
2 2 2 1 22
Fle ki =VArkt-e " hence e Ft = F e ki
et ] = v Tl ©
Inserting in (4.8.4) we get
1 . 22 1 2
u(&,t) = Fle ke = g , 4.8.5
€0 = FOF | #]©) = ——0(O)(© (4.8.5)
where §(&) := T[e‘f*:t} (€). Using the convolution theorem: fi = (f * g) it

follows that

1 1 C_@w)?
uat) = = ()@ == [ Ty @50

Exempel 14. Solve the Poisson’s equation,
Ugg + Uy =0, —o0<z<o00, y>0, (4.8.7)
where the boundary condition, u(x,0) = f(x), is bounded.

Solution: As in the previous example the Fourier transform of the equa-
tion and the boundary, with respect to x, yields to the following ordinary
differential equation in y;

02 A
~aen)+ g5 =0 wd ag0) =9, (489)
with the general solution given by
(€, y) = CL(E)ell + Cy(e)e™. (4.8.9)

By the boundedness requirement we have that C1(§) = 0. Moreover using the
Fourier transform of the boundary data from (4.8.8) we get 4(&,0) = Cy(§) =
f(€). Thus

a(&,y) = f(&)eTW. (4.8.10)
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To take the inverse transform, in this case, the appropriate Fourier transform
formula is:

1 u
— L galf
}—[ac? n az} e where a > 0. (4.8.11)

Choosing a =y in (4.8.11) we get

=T el (4.8.12)
Thus the inverse transform of (4.8.10) is

_ y 1y [* flz—s)
u(x,y)—f(aﬁ)*w 1L'2+y2_7'(' = 82+y2

ds, (4.8.13)

which is the Poisson integral formula for the solution the given problem.

Remark. This solution make sense since the Poisson kernel m e L!
and f(z) is bounded, |f(z)| < M. Thus we have
1 ° M 0o
lu(z,y)| < M - - /_Oo 32—(111—y2d$ = —arctan (g)_w = M.
Exempel 15. Solve the Dirichlet problem
Upgp + Uyy =0, x>0 y >0, where (4.8.14)

x
241

u(0,y) =0, wu(z,0)= and u(z,y) is bounded. (4.8.15)

Solution: First we solve the following full range (in x) problem:

Ugg + Uy =0, z €R, y >0, where (4.8.16)

u(z,0) = and u(z,y) is bounded. (4.8.17)

x
22+ 1
In this case since "= is odd then u(z,y) is odd in x and we have automat-
ically the condition u(0,y) = 0. Now we recall the formula

—2i¢

: —alz| ~F
sS1gnx - e D) .
9 a2 52
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By the symmetry rule we get

p —T—x2 >F —7i - sign(€) - ¢ (4.8.18)
Thus for a =1 we have
1 _fo 7 —mi - sign(€) - e7I¢l.

hence
u(z,0) :== f(z) O —mi - sign(€) - e I,

Now the Fourier transform of the solution 4(&,y) = f(f)e"f‘y, (see previous
example), can be written as

W(€,y) = —mi - sign(€) - e~ e Ve = i - sign(€) - e”FVEL

Thus with a = 1+ y in (4.8.18) we finally get

T

pny Cpr 2 (4.8.19)

u(z,y) =

4.9 Sturm-Liouville problems on [0, c0).

Solving PDEs by the separation of variables technique we encountered the
Sturm-Liouville problems. Here we study a singular Sturm-Liouville problem
in R:

X"(z) + X (z) =0, —00 <z <00, where& €R, (4.9.1)

where the general solution X (z) = c1e%® + coe %* ¢ Ly(R) and therefore
we do not have an orthogonal basis of eigenfunctions. Instead a function
f € Ly(R) can be expanded, in terms of these eigenfunctions, by the Fourier
inversion formula

fa) =5 [ F@e de = [ + -] de. (492)

Similarly for the half-line problems:

X"(z)+&X(z)=0, 0<z<oo, X'(0)=0; (4.9.3)
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and
X"(z) + X (z) =0, 0<z<oo, X(0)=0, (4.9.4)

the corresponding multipliers cos{x and sin £z, respectively, are not form-
ing orthogonal basis in Ly(0,00). So again, for an arbitrary function f €
L,(0,00), we seek Fourier type expansion formulas viz,

f() = /0 ") coscade,  fa) = /0 " b() sin £ de.

Here the idea is to employ even and odd extensions of f to R.
Indeed, if f € L'(R and f is even, then

f(e) = /00 f(z)(coséx —isinéx) dz = 2/00 f(z) coséx dx.
oo 0
Clearly f is even and the inversion formula give us
1 RN 1 [,
flz) = Py /oo f(&))(coséx +isin&x) dE = ;/0 f(&) cos&x dE.

Similarly if f is odd so is f, and hence

~

== [ f@singods,  f@) =% [ f(e)singads

Definition 14. Let f € L'(0,00). Then the Fourier cosine transform and
Fourier sine transform of f are the functions F[f](&) and F[f](§) on [0, 00)
defined by

Flf](€) = /000 f(x)coséxdx and F[f](&) = /000 f(z)sinéx dz. (4.9.5)

Thus, if feyen and f,qq are the even and odd extensions of j to R, then
Ff1(€) and F[f](€) are restrictions to [0,00) of £ feyen and £ foqq, since

feven(f) = 2/(; feven(x) COs é-m dz = ch[f](g):

Fua® = =2 [ fuaa)sinéa do =LY = SEIFE)
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The inversion formulas therefore become

fla)=2 [ Fif© coseads = 2 [ Ffl(@)singade

Plancherel Theorem for F.[f] and F;[f].

Using the above relations it follows that the norm of F.[f](§) on [0, c0)
is given by

oo R 2 1 1 S
||‘7:C[f]||%2([0,oo)) = /0 ‘Efeven(g) df - Z ) 5 /_oo ‘feven(§)|2d§a
ie., .
||F0[f]||%2[0,oo) = g“fev@ﬂ(g)”%?(—oo,oo)' (4.9.6)

Recalling the Parsevals formula: ||f(§)||i2(_oo’oo) = 27| f(2) |7 2(_oo,00) theE
relation (4.9.6) is written as

™

o 7T
||f6[f]||%2[0,oo) = Z/ |fe’uen($)|2 do = §||feven||2- (497)

Similarly,

0 =5 [ oao) o = S ol (199

We summarize the relation (4.9.7) and (4.9.8) in the:

Theorem 25 ( Plancherel Theorem for cos and sin transforms). F.[f]
and F,[f] extend to maps from L*(0,00) onto itself that satisfy

IFLANE = IELAE = S

Exempel 16. Use the Fourier sine transform to find a bounded solution
u(z,y) for the problem:

Ugg + Uyy = 0, x>0, y >0, (4.9.9)
with the boundary conditions

u(0,y) =0, and u(zx,0)=

241
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Solution: The Fourier sine expansion of u(z,y), in x is:

u(z,y) = %/Ooov(g,y) sinéxdf, where (4.9.10)

v(€y) = Folule,y)|(€) = / " u(e,y) sinéx da.

Differentiating (4.9.10) with respect to x yields

™

w= (2 [ e nsingode) = 2 [T oenecoseads

and hence
2

Ugy = ;/0 v(&,y)(—£?) sin £ dE. (4.9.11)

Thus the equation (4.9.9) can be written as

2 [ )
Ugg + Uyy = ;/ [vyy(f,y) — &%(&,y)| sinéx dé = 0.
0
So that we get the differential equation vy, —&*v = 0 with the general solution

(€, y) = C1(€)ellY + Cy(€)eEv.

Since we seek a bounded solution u(x,y) thus v(€,y) must be bounded and
hence Cy = 0. Further,

v(&,0) = Ffu(z, 0)() = £ 7] €) = Ca(&).
Now since fs = %zf, it follows that
T 1 T
Fs [x2 + 1] Ok §F[x2 + 1] (©)- (4.9.12)

Moreover, using our previously known transforms:

1 T 1 T

Ay o B — (—im)si —alg] _ Z o —alg] 491

SF | |0 = S (=imsign(©)e ™ = Tsign(©)e ™, (4.9.13)
for a = 1 we get, using (4.9.12) and (4.9.13), that Cy(§) = gsz’gn(f)e_m,
and consequently

v(€y) = Tsign(©)e e = Zsign(e)e C = F lu(z,y)| (¢).
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Finally, by (4.9.13) with a = y + 1, we have the solution

T

D T

This is the restriction on [0,00) of the odd expansion of the solution u(x,y)
on R x {y > 0}.

4.10 Generalized functions

Consider the generalized function

. 1, for x>0,
f(z) = sign(z) = { -1 for x < 0.

sign(x)

-1

Figure 4.4: The signum function sign(x).

/ |5ign(a:)|dx=/ ldzr = oo,

thus sign(z) ¢ L' and hence, a priori, the Fourier transform is not defined
for f(z) := sign(z). However, to define a generalized Fourier transform,
we multiply sign(x) by the convergence factor e~*I*l where ¢ > 0. Now
g(z) := e~*lsign(x) € L,, and we have

Formally since

00 e 0
§(z) D}-/ e “Flsign(z)e € dr :/ e e %7y —/ eTe Tdy
—00 0

1 0,1
:[ _ef(sm)w} _

- —e = .
€+ 1€ 0 g —1i& —0  £24&?
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Thus as € — 0 we get

sign(z) D7 = 2 i (4.10.1)
1 Smm———
x
) — |
Figure 4.5: The signum function e~ sign(z).
Remark By the symmetry rule it follows that
2 7 21~ sign(—¢) = —2me ¢l sign(€) (4.10.2)
e? + 22 ’
or, € = a, '
Y o7 e “Elsign (€). (4.10.3)
Alternatively, to show F[sign(z)] = %, using Heaviside’s function 6(z) we
may write

sign(z) = 6(x) + (—-1)(1 — 6(x)) = 20(x) — 1.

Now we state, without proof, the Fourier transforms of two important gen-
eralized functions:

F[1] = 276(€) (4.10.4)
and
Fl0()] = 76() + % (4.10.5)
By (4.10.5) and (??) we have that
: _ o 2 ooy = 2
Flsign(z)] = 276(§) + i€ 216 () e
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20(z) — 1

-1

20(z) — 1

Figure 4.6: The signum function sign(x).

Fourier Transforms of impulse functions

The Dirac’s delta function is an even function defined by
d(x) =0, for z #0, (4.10.6)

and .
/ d(z)dx =1 for all a> 0. (4.10.7)

dn(x)

1/n

Figure 4.7: The Dirac function 6, (z).

For x =t — T this definition give

5(t—T) = /oo §(t —T)dz = 1. (4.10.8)

o

To derive the Fourier transform of §(¢t — T"), we recall that by the evaluation
formula:

f@)s(t—T)=f(T)6(t—T) wehave e '§(t—T)=e 15t —T)
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Figure 4.8: The Dirac function d;_7).

and thus we have

5(t—T) 5% / 5(t — T)e—otdt = =T / 5(t — T)dt = e=". (4.10.9)

Then for T = 0 : 6(t) D7= €® = 1. Using symmetry rule and the fact
that § is an even function we have the following “formal relations”: 1 >7
219(—w) = 276 (w), i.e., we have

§(t) >7=1, and 127 276(w). (4.10.10)

Remark Note that 1 ¢ L'. Therefore the formulas in (4.10.10) are only
formal (they are valid in distribution sense).

Signal analysis

Let f(t) represent the amplitude of a signal at time ¢. The Fourier represen-
tation

£lt) = o / T f@)dtds, )= / " F(t))e dt,

exhibits f as a continuous superposition of the simple periodic waves e** as
w ranges over all possible frequencies. This representation is the basic one in

the analysis of signals in electrical engineering:
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Let f(t) = 6(t—T) be the time impulse function. Then its Fourier transform:
f(w) = e 7T is the the frequency function.

The power of a signal f(t) is proportional to the square of the amplitude,
| f(t)]?, so the total energy of the signal is proportional to [ _|f(t)|*dt. Thus
the condition for the finiteness of the total energy corresponds to f(t) € L?.

The impulse energy in the frequency band , [w,w + dw], is given by

dw

dw

2

— — =dv.
27 v

= —jwT =
R

HOls
Thus the energy is uniformly distributed over the whole frequency band,
—00 < w < 00, which means that:
a. The total energy is oo.
b. The exact impulse §(¢ — T') is unphysical.
c.

1 [ . 1 o
6(t) = o /oo S(w) e dw = 5 /Oo e’'dw s divergent.

Let us look at the frequencies |w| < €2, where Q is large. Then we may
approximate the delta function as:

AL 111 .9 1
~ Juwt = — | — Jwt = — sl
o(t) = /_ e’ dw [ e ]79 tsm(Qt).

™

Hence we have

(4.10.11)
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b(t)

H

e

in(Qt)

gOn ega (t)

3\
Olx
©<I$
/
I
2
2

4.11 Dynamic systems

We begin by giving the definition of a linear space of functions for a dynamic
system and the definition for the impulse response.

Definition 15. A linear system L is a linear map from a linear space of
input signals, x;(t), to a linear space of output signals, L|x;|, where

Liciz1(t) + coxo(t)] = e1 L{z1(t)] + coL[z2(t)] (4.11.1)

L[i cnxn] - f: enL[zn] (4.11.2)

L[/abx(a,t)da] = /:L[:v(a,t)}da. (4.11.3)

Let y(t) = L[x(t)]. Then the linear system L is time invariant if
Lix(t—=T)=y({t—T) foral TEe€R. (4.11.4)
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Definition 16. The impulse response, H(t), is the output signal for the

Dirac (§-function) input signal.

Theorem 26. If L is a linear time invariant system with the impulse re-

sponse H, then
Llz(t)] = (xx H)()  or (Llz(t)]) = hf,
where h is called the system function.
L™ = H(w)e™*  for every weR
If H(t) is real, then we have for w > 0 that
L[cos(wt)] = Re[H (w)e™!].

Proof. We know that

By (4.11.3) we have

Lz(t)] = L /

—0o0 —0oQ0

o

where using (4.11.1) yields

Lia()] = [ ar)Lio(e ~ ),

—0oQ

and finally (4.11.1) gives the first assertion of the theorem:

Liz(t)] = /00 Z(r)H(t — 7)]dT = (x x H)(t).

o0

To prove (4.11.6) we let z(t) = e** in (4.11.5), then

#(r)a(t - )dr] = / L8t D]dr,

(4.11.5)

(4.11.6)

(4.11.7)

Liz(t)] = / H(r)e“tdr = ei‘“t/ H(r)e ™ dr = ¢“' H(w).
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Finally we let z(t) = cos(wt), in (4.11.5), then

o o

Liz(t)] = Lcos(wt)] = /_ H(r) coslw(t — 7)]dr = Re /_ H(r)e Dy,
Thus A '
Licos(wt)] = Re [H(w)e“"t] :

0

Definition 17. The linear system L is called causal if the output signal value
at the time t only depends on the input signal value at the times < t.

Theorem 27. Suppose L is a linear and time invariant system. Then L is
causal if and only if H(t) =0 fort <0.

Definition 18. A linear time invariant system with the impulse response
H(t) is called stable if

(e o]
/ H(8)|dt < oo,
—0oQ

Exempel 17. For a linear time invariant system we have that the input
signal, 0(t)e™?, give us the output signal, t20(t)e>". What will the output
signal, y(t), be if the input signal, x(t), is 2mw-periodic an