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Preface

This book intends to deepen the study of the fractional calculus, giving special
emphasis to variable-order operators.

Fractional calculus is a recent field of mathematical analysis and it is a gen-
eralization of integer differential calculus, involving derivatives and integrals of
real or complex order (Kilbas, Srivastava and Trujillo, 2006; Podlubny, 1999).
The first note about this ideia of differentiation, for non-integer numbers, dates
back to 1695, with a famous correspondence between Leibniz and L’Hôpital.
In a letter, L’Hôpital asked Leibniz about the possibility of the order n in the
notation dny/dxn, for the nth derivative of the function y, to be a non-integer,
n = 1/2. Since then, several mathematicians investigated this approach, like
Lacroix, Fourier, Liouville, Riemann, Letnikov, Grünwald, Caputo, and con-
tributed to the grown development of this field. Currently, this is one of the
most intensively developing areas of mathematical analysis as a result of its
numerous applications. The first book devoted to the fractional calculus was
published by Oldham and Spanier in 1974, where the authors systematized
the main ideas, methods and applications about this field (Mainardi, 2010).

In the recent years, fractional calculus has attracted the attention of
many mathematicians, but also some researchers in other areas like physics,
chemistry and engineering. As it is well known, several physical phenom-
ena are often better described by fractional derivatives (Herrmann, 2013;
Odzijewicz, Malinowska and Torres, 2012a; Sheng, 2012). This is mainly due
to the fact that fractional operators take into consideration the evolution of
the system, by taking the global correlation, and not only local characteris-
tics. Moreover, integer-order calculus sometimes contradict the experimental
results and therefore derivatives of fractional order may be more suitable
(Hilfer, 2000).

In 1993, Samko and Ross devoted themselves to investigate operators
when the order α is not a constant during the process, but variable on time:
α(t) (Samko and Ross, 1993). An interesting recent generalization of the the-
ory of fractional calculus is developed to allow the fractional order of the
derivative to be non-constant, depending on time (Chen, Liu and Burrage,
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2014; Odzijewicz, Malinowska and Torres, 2012b, 2013a). With this approach
of variable-order fractional calculus, the non-local properties are more evident
and numerous applications have been found in physics, mechanics, control and
signal processing (Coimbra, Soon and Kobayashi, 2005; Ingman and Suzdalnitsky,
2004; Odzijewicz, Malinowska and Torres, 2013b; Ostalczyk et al., 2015; Ramirez and Coimbra,
2011; Rapaić and Pisano, 2014; Valério and Costa, 2013).

Although there are many definitions of fractional derivative, the most
commonly used are the Riemann–Liouville, the Caputo, and the Grünwald-
Letnikov derivatives. For more about the development of fractional calculus,
we suggest (Samko, Kilbas and Marichev, 1993), (Samko and Ross, 1993),
(Podlubny, 1999), (Kilbas, Srivastava and Trujillo, 2006) or (Mainardi, 2010).

One difficult issue that usually arises when dealing with such fractional
operators, is the extreme difficulty in solving analytically such problems
(Atangana and Cloot, 2013; Zhuang et al., 2009). Thus, in most cases, we do
not know the exact solution for the problem and one needs to seek a numeri-
cal approximation. Several numerical methods can be found in the literature,
typically applying some discretization over time or replacing the fractional op-
erators by a proper decomposition (Atangana and Cloot, 2013; Zhuang et al.,
2009).

Recently, new approximation formulas were given for fractional constant
order operators, with the advantage that higher-order derivatives are not re-
quired to obtain a good accuracy of the method (Atanacković et al., 2013;
Pooseh, Almeida and Torres, 2012, 2013). These decompositions only depend
on integer-order derivatives, and by replacing the fractional operators that
appear in the problem by them, one leaves the fractional context ending up
in the presence of a standard problem, where numerous tools are available to
solve them (Almeida, Pooseh and Torres, 2015).

The first goal of this book is to extend such decompositions to Caputo frac-
tional problems of variable-order. For three types of Caputo derivatives with
variable-order, we obtain approximation formulas for the fractional operators
and respective upper bounds for the errors.

Then, we focus our attention on a special operator introduced by Mali-
nowska and Torres: the combined Caputo fractional derivative, which is an ex-
tension of the left and the right fractional Caputo derivatives (Malinowska and Torres,
2010). Considering α, β ∈ (0, 1) and γ ∈ [0, 1], the combined Caputo fractional
derivative operator CDα,β

γ is a convex combination of the left and the right
Caputo fractional derivatives, defined by

CDα,β
γ = γ C

aD
α
t + (1− γ)Ct D

β
b .

We consider this fractional operator with variable fractional order, i.e., the
combined Caputo fractional derivative of variable-order:

CDα(·,·),β(·,·)
γ x(t) = γ1

C
aD

α(·,·)
t x(t) + γ2

C
t D

β(·,·)
b x(t),
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where γ = (γ1, γ2) ∈ [0, 1]2, with γ1 and γ2 not both zero. With this fractional
operator, we study different types of fractional calculus of variations problems,
where the Lagrangian depends on the referred derivative.

The calculus of variations is a mathematical subject that appeared for-
mally in the XVII century, with the solution to the bachistochrone problem,
that deals with the extremization (minimization or maximization) of func-
tionals (van Brunt, 2004). Usually, functionals are given by an integral that
involves one or more functions or/and its derivatives. This branch of mathe-
matics has proved to be relevant because of the numerous applications existing
in real situations.

The fractional variational calculus is a recent mathematical field that con-
sists in minimizing or maximizing functionals that depend on fractional oper-
ators (integrals or/and derivatives). This subject was introduced by Riewe in
1996, where the author generalizes the classical calculus of variations, by using
fractional derivatives, and allows to obtain conservations laws with noncon-
servative forces such as friction (Riewe, 1996, 1997). Later appeared several
works on various aspects of the fractional calculus of variations and involv-
ing different fractional operators, like the Riemann–Liouville, the Caputo,
the Grun̈wald–Letnikov, the Weyl, the Marchaud or the Hadamard frac-
tional derivatives (Agrawal, 2002; Almeida, 2016; Askari and Ansari, 2016;
Atanacković, Konjik and Pilipović, 2008; Baleanu, 2008; Fraser, 1992; Georgieva and Guenther,
2002; Jarad, Abdeljawad and Baleanu, 2010). For the state of the art of the
fractional calculus of variations, we refer the readers to the books (Almeida, Pooseh and Torres,
2015; Malinowska, Odzijewicz and Torres, 2015; Malinowska and Torres, 2012).

Specifically, here we study some problems of the calculus of variations with
integrands depending on the independent variable t, an arbitrary function x

and a fractional derivative CD
α(·,·),β(·,·)
γ x. The endpoint of the cost integral,

as well the terminal state, are considered to be free. The fractional problem
of the calculus of variations consists in finding the maximizers or minimizers
to the functional

J (x, T ) =

∫ T

a

L
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

dt+ φ(T, x(T )),

where CD
α(·,·),β(·,·)
γ x(t) stands for the combined Caputo fractional derivative

of variable fractional order, subject to the boundary condition x(a) = xa.
For all variational problems presented here, we establish necessary optimality
conditions and transversality optimality conditions.

The book is organized in two parts, as follows. In the first part, we review
the basic concepts of fractional calculus (Chapter 1) and of the fractional
calculus of variations (Chapter 2). In Chapter 1, we start with a brief overview
about fractional calculus and an introduction to the theory of some special
functions in fractional calculus. Then, we recall several fractional operators
(integrals and derivatives) definitions and some properties of the considered
fractional derivatives and integrals are introduced. In the end of this chapter,
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we review integration by parts formulas for different operators. Chapter 2
presents a short introduction to the classical calculus of variations and review
different variational problems, like the isoperimetric problems or problems
with variable endpoints. In the end of this chapter, we introduce the theory of
the fractional calculus of variations and some fractional variational problems
with variable-order.

In the second part, we systematize some new recent results on variable-
order fractional calculus of (Tavares, Almeida and Torres, 2015, 2016, 2017,
2018a,b). In Chapter 3, considering three types of fractional Caputo deriva-
tives of variable-order, we present new approximation formulas for those frac-
tional derivatives and prove upper bound formulas for the errors. In Chapter 4,
we introduce the combined Caputo fractional derivative of variable-order and
corresponding higher-order operators. Some properties are also given. Then,
we prove fractional Euler–Lagrange equations for several types of fractional
problems of the calculus of variations, with or without constraints.
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1

Fractional calculus

In this chapter, a brief introduction to the theory of fractional calculus is
presented. We start with a historical perspective of the theory, with a strong
connection with the development of classical calculus (Section 1.1). Then,
in Section 1.2, we review some definitions and properties about a few special
functions that will be needed. We end with a review on fractional integrals
and fractional derivatives of noninteger order and with some formulas of in-
tegration by parts, involving fractional operators (Section 1.3).

The content of this chapter can be found in some classical books on frac-
tional calculus, for example (Almeida, Pooseh and Torres, 2015; Kilbas, Srivastava and Trujillo,
2006; Malinowska and Torres, 2012a; Podlubny, 1999; Samko, Kilbas and Marichev,
1993).

1.1 Historical perspective

Fractional Calculus (FC) is considered as a branch of mathematical analysis
which deals with the investigation and applications of integrals and deriva-
tives of arbitrary order. Therefore, FC is an extension of the integer-order
calculus that considers integrals and derivatives of any real or complex order
(Kilbas, Srivastava and Trujillo, 2006; Samko, Kilbas and Marichev, 1993),
i.e., unify and generalize the notions of integer-order differentiation and n-
fold integration.

FC was born in 1695 with a letter that L’Hôpital wrote to Leibniz, where
the derivative of order 1/2 is suggested (Oldham and Spanier, 1974). After
Leibniz had introduced in his publications the notation for the nth derivative
of a function y,

dny

dxn
,

L’Hôpital wrote a letter to Leibniz to ask him about the possibility of a
derivative of integer order to be extended in order to have a meaning when
the order is a fraction: ”What if n be 1/2?” (Ross, 1977). In his answer, dated



2 1 Fractional calculus

on 30 September 1695, Leibniz replied that ”This is an apparent paradox from
which, one day, useful consequences will be drawn” and, today, we know it is
truth. Then, Leibniz still wrote about derivatives of general order and in 1730,
Euler investigated the result of the derivative when the order n is a fraction.
But, only in 1819, with Lacroix, appeared the first definition of fractional
derivative based on the expression for the nth derivative of the power function.
Considering y = xm, with m a positive integer, Lacroix developed the nth
derivative

dny

dxn
=

m!

(m− n)!
xm−n, m ≥ n,

and using the definition of Gamma function, for the generalized factorial, he
got

dny

dxn
=

Γ (m+ 1)

Γ (m− n+ 1)
xm−n.

Lacroix also studied the following example, for n = 1
2 and m = 1:

d1/2x

dx1/2
=

Γ (2)

Γ (3/2)
x

1
2 =

2
√
x√
π
. (1.1)

Since then, many mathematicians, like Fourier, Abel, Riemann, Liouville,
among others, contributed to the development of this subject. One of the
first applications of fractional calculus appear in 1823 by Niels Abel, through
the solution of an integral equation of the form

∫ t

0

(t− τ)−αx(τ)dτ = k,

used in the formulation of the Tautochrone problem (Abel, 1923; Ross, 1977).

Different forms of fractional operators have been introduced along time,
like the Riemann–Liouville, the Grünwald-Letnikov, the Weyl, the Caputo, the
Marchaud or the Hadamard fractional derivatives (Kilbas, Srivastava and Trujillo,
2006; Oldham and Spanier, 1974; Oliveira and Machado, 2014; Podlubny,
1999). The first approach is the Riemann-Liouville, which is based on iterat-
ing the classical integral operator n times and then considering the Cauchy’s
formula where n! is replaced by the Gamma function and hence the fractional
integral of noninteger order is defined. Then, using this operator, some of the
fractional derivatives mentioned above are defined.

During three centuries, FC was developed but as a pure theoretical sub-
ject of mathematics. In recent times, FC had an increasing of importance
due to its applications in various fields, not only in mathematics, but also in
physics, mechanics, engineering, chemistry, biology, finance, and others ar-
eas of science (Herrmann, 2013; Hilfer, 2000; Li and Liu, 2016; Mainardi,
2010; Odzijewicz, Malinowska and Torres, 2013c; Pinto and Carvalho, 2014;
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Sierociuk et al., 2015; Sun, Chen and Chen, 2009). In some of these appli-
cations, many real world phenomena are better described by noninteger or-
der derivatives, if we compare with the usual integer-order calculus. In fact,
fractional order derivatives have unique characteristics that may model cer-
tain dynamics more efficiently. Firstly, we can consider any real order for the
derivatives, and thus we are not restricted to integer order derivatives only;
secondly, they are nonlocal operators, in opposite to the usual derivatives,
thus containing memory. With the memory property, one can take into ac-
count the past of the processes. Signal processing, modeling and control are
some areas that have been the object of more intensive publishing in the last
decades.

In most applications of the FC, the order of the derivative is assumed to be
fixed along the process, that is, when determining what is the order α > 0 such
that the solution of the fractional differential equationDαy(t) = f(t, y(t)) bet-
ter approaches the experimental data, we consider the order α to be a fixed
constant. Of course, this may not be the best option, since trajectories are a
dynamic process, and the order may vary. More interesting possibilities arise
when one considers the order α of the fractional integrals and derivatives not
constant during the process but to be a function α(t), depending on time.
Then, we may seek what is the best function α(·) such that the variable-order
fractional differential equation Dα(t)y(t) = f(t, y(t)) better describes the pro-
cess under study. This approach is very recent. One such fractional calcu-
lus of variable-order was introduced in (Samko and Ross, 1993). Afterwards,
several mathematicians obtained important results about variable-order frac-
tional calculus, and some applications appeared, like in mechanics, in the
modeling of linear and nonlinear viscoelasticity oscillators and in other phe-
nomena where the order of the derivative varies with time. See, for instance,
(Almeida and Torres, 2013; Atanacković and Pilipović, 2011; Coimbra, 2003;
Odzijewicz, Malinowska and Torres, 2013a; Ramirez and Coimbra, 2011; Samko,
1995; Sheng et al., 2011).

The most common fractional operators considered in the literature take
into account the past of the process. They are usually called left fractional
operators. But in some cases we may be also interested in the future of the
process, and the computation of α(t) to be influenced by it. In that case, right
fractional derivatives are then considered. Recently, in some works, the main
goal is to develop a theory where both fractional operators are taken into ac-
count. For that, some combined fractional operators are introduced, like the
symmetric fractional derivative, the Riesz fractional integral and derivative,
the Riesz–Caputo fractional derivative and the combined Caputo fractional
derivative that consists in a linear combination of the left and right frac-
tional operators. For studies with fixed fractional order, see (Klimek, 2001;
Malinowska and Torres, 2011, 2012a,b).

Due to the growing number of applications of fractional calculus in science
and engineering, numerical approaches are being developed to provide tools for
solving such problems. At present, there are already vast studies on numerical
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approximate formulas (Kumar, Pandey and Sharma, 2017; Li, Chen and Ye,
2011). For example, for numerical modeling of time fractional diffusion equa-
tions, we refer the reader to (Fu, Chen and Yang, 2013).

1.2 Special functions

Before introducing the basic facts on fractional operators, we recall four types
of functions that are important in Fractional Calculus: the Gamma, Psi, Beta
and Mittag-Leffler functions. Some properties of these functions are also re-
called.

Definition 1 The Euler Gamma function is an extension of the factorial
function to real numbers, and it is defined by

Γ (t) =

∫ ∞

0

τ t−1 exp(−τ) dτ, t > 0.

For example, Γ (1) = 1, Γ (2) = 1 and Γ (3/2) =
√
π
2 . For positive integers

n, we get Γ (n) = (n− 1)!. We mention that other definitions for the Gamma
function exist, and it is possible to define it for complex numbers, except for
the non-positive integers.

The Gamma function is considered the most important Eulerian function
used in fractional calculus, because it appears in almost every fractional inte-
gral and derivative definitions. A basic but fundamental property of Γ , that
we will use later, is obtained using integration by parts:

Γ (t+ 1) = t Γ (t).

Definition 2 The Psi function is the derivative of the logarithm of the
Gamma function:

Ψ(t) =
d

dt
ln (Γ (t)) =

Γ ′(t)

Γ (t)
.

The follow function is used sometimes for convenience to replace a com-
bination of Gamma functions. It is important in FC because it shares a form
that is similar to the fractional derivative or integral of many functions, par-
ticularly power functions.

Definition 3 The Beta function B is defined by

B(t, u) =

∫ 1

0

st−1(1− s)u−1ds, t, u > 0.

This function satisfies an important property:

B(t, u) =
Γ (t)Γ (u)

Γ (t+ u)
.
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With this property, it is obvious that the Beta function is symmetric, i.e.,

B(t, u) = B(u, t).

The next function is a direct generalization of the exponential series and it
was defined by the mathematician Mittag-Leffler in 1903 (Podlubny, 1999).

Definition 4 Let α > 0. The function Eα defined by

Eα(t) =

∞
∑

k=0

tk

Γ (αk + 1)
, t ∈ R,

is called the one parameter Mittag-Leffler function.

For α = 1, this function coincides with the series expansion of et, i.e.,

E1(t) =

∞
∑

k=0

tk

Γ (k + 1)
=

∞
∑

k=0

tk

k!
= et.

While linear ordinary differential equations present in general the exponential
function as a solution, the Mitttag-Leffler function occurs naturally in the solu-
tion of fractional order differential equations (Kilbas, Srivastava and Trujillo,
2006). For this reason, in recent times, the Mittag-Leffler function has be-
come an important function in the theory of the fractional calculus and its
applications.

It is also common to represent the Mittag-Leffler function in two argu-
ments. This generalization of Mittag-Leffler function was studied by Wiman
in 1905 (Mainardi, 2010).

Definition 5 The two-parameter function of the Mittag-Leffler type with pa-
rameters α, β > 0 is defined by

Eα,β(t) =

∞
∑

k=0

tk

Γ (αk + β)
, t ∈ R.

If β = 1, this function coincides with the classical Mittag-Leffler function,
i.e., Eα,1(t) = Eα(t).

1.3 Fractional integrals and derivatives

In this section, we recall some definitions of fractional integral and fractional
differential operators, that includes all we use throughout this book. In the
end, we present some integration by parts formulas because they have a crucial
role in deriving Euler–Lagrange equations.
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1.3.1 Classical operators

As it was seen in Section 1.1, there are more than one way to generalize integer-
order operations to the non-integer case. Here, we present several definitions
and properties about fractional operators, omitting some details about the
conditions that ensure the existence of such fractional operators.

In general, the fractional derivatives are defined using fractional integrals.
We present only two fractional integrals operators, but there are several known
forms of the fractional integrals.

Let x : [a, b] → R be an integrable function and α > 0 a real number.
Starting with Cauchy’s formula for a n-fold iterated integral, given by

aI
n
t x(t) =

∫ t

a

dτ1

∫ τ1

a

dτ2 · · ·
∫ τn−1

a

x(τn)dτn

=
1

(n− 1)!

∫ t

a

(t− τ)n−1x(τ)dτ,

(1.2)

where n ∈ N, Liouville and Riemann defined fractional integration, generaliz-
ing equation (1.2) to noninteger values of n and using the definition of Gamma
function Γ . With this, we introduce two important concepts: the left and the
right Riemann–Liouville fractional integrals.

Definition 6 We define the left and right Riemann–Liouville fractional in-
tegrals of order α, respectively, by

aIt
αx(t) =

1

Γ (α)

∫ t

a

(t− τ)α−1x(τ)dτ, t > a

and

tIb
αx(t) =

1

Γ (α)

∫ b

t

(τ − t)α−1x(τ)dτ, t < b.

The constants a and b determine, respectively, the lower and upper bound-
ary of the integral domain. Additionally, if x is a continuous function, as
α → 0, aIt

α = tIb
α = I, with I the identity operator, i.e., aIt

αx(t) =

tIb
αx(t) = x(t).
We present the second fractional integral operator, introduced by J.

Hadamard in 1892 (Kilbas, Srivastava and Trujillo, 2006).

Definition 7 We define the left and right Hadamard fractional integrals of
order α, respectively, by

aJ
α
t x(t) =

1

Γ (α)

∫ t

a

(

ln
t

τ

)α−1
x(τ)

τ
dτ, t > a

and

tJ
α
b x(t) =

1

Γ (α)

∫ b

t

(

ln
τ

t

)α−1 x(τ)

τ
dτ, t < b.
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The three most frequently used definitions for fractional derivatives are:
the Grünwald-Letnikov, the Riemann–Liouville and the Caputo fractional
derivatives (Oldham and Spanier, 1974; Podlubny, 1999). Other definitions
were introduced by others mathematicians, as for instance Weyl, Fourier,
Cauchy, Abel.

Let x ∈ AC([a, b];R) be an absolutely continuous functions on the interval
[a, b], and α a positive real number. Using Definition 6 of Riemann–Liouville
fractional integrals, we define the left and the right Riemann–Liouville and
Caputo derivatives as follows.

Definition 8 We define the left and right Riemann–Liouville fractional deriva-
tives of order α > 0, respectively, by

aD
α
t x(t) =

(

d

dt

)n

aI
n−α
t x(t)

=
1

Γ (n− α)

(

d

dt

)n ∫ t

a

(t− τ)n−α−1x(τ)dτ, t > a

and

tD
α
b x(t) =

(

− d

dt

)n

tI
n−α
b x(t)

=
(−1)n

Γ (n− α)

(

d

dt

)n ∫ b

t

(τ − t)n−α−1x(τ)dτ, t < b,

where n = [α] + 1.

The following definition was introduced in (Caputo, 1967). The Caputo
fractional derivatives, in general, are more applicable and interesting in fields
like physics and engineering, for its properties like the initial conditions.

Definition 9 We define the left and right Caputo fractional derivatives of
order α, respectively, by

C
aD

α
t x(t) = aI

n−α
t

(

d

dt

)n

x(t)

=
1

Γ (n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ)dτ, t > a

and

C
t D

α
b x(t) = tI

n−α
b

(

− d

dt

)n

x(t)

=
(−1)n

Γ (n− α)

∫ b

t

(τ − t)n−α−1x(n)(τ)dτ, t < b,

where n = [α] + 1 if α /∈ N and n = α if α ∈ N.
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Obviously, the above defined operators are linear. From these definitions,
it is clear that the Caputo fractional derivative of a constant C is zero, which is
false when we consider the Riemann–Liouville fractional derivative. If x(t) =
C, with C a constant, then we get

C
aD

α
t x(t) =

C
t D

α
b x(t) = 0

and

aD
α
t x(t) =

C (t− a)−α

Γ (1− α)
, tD

α
b x(t) =

C (b − t)−α

Γ (1− α)
.

For this reason, in some applications, Caputo fractional derivatives seem to
be more natural than the Riemann–Liouville fractional derivatives.

Remark 1 If α goes to n−, with n ∈ N, then the fractional operators intro-
duced above coincide with the standard derivatives:

aD
α
t = C

aD
α
t =

(

d

dt

)n

and

tD
α
b = C

t D
α
b =

(

− d

dt

)n

.

The Riemann–Liouville fractional integral and differential operators of or-
der α > 0 of power functions return power functions, as we can see below.

Lemma 2 Let x be the power function x(t) = (t− a)γ . Then, we have

aI
α
t x(t) =

Γ (γ + 1)

Γ (γ + α+ 1)
(t− a)γ+α, γ > −1

and

aD
α
t x(t) =

Γ (γ + 1)

Γ (γ − α+ 1)
(t− a)γ−α, γ > −1.

In particular, if we consider γ = 1, a = 0 and α = 1/2, then the left

Riemann–Liouville fractional derivative of x(t) = t is 2
√
t√
π
, the same result

(1.1) as Lacroix obtained in 1819.
Grünwald and Letnikov, respectively in 1867 and 1868, returned to the

original sources and started the formulation by the fundamental definition of
a derivative, as a limit,

x(1)(t) = lim
h→0

x(t+ h)− x(t)

h

and considering the iteration at the nth order derivative formula:

x(n)(t) = lim
h→0

1

hn

n
∑

k=0

(−1)k
(

n

k

)

x(t− kh), n ∈ N, (1.3)
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where
(

n
k

)

= n(n−1)(n−2)...(n−k+1)
k! , with n, k ∈ N, the usual notation for the

binomial coefficients. The Grünwald-Letnikov definition of fractional deriva-
tive consists in a generalization of (1.3) to derivatives of arbitrary order α
(Podlubny, 1999).

Definition 10 The αth order Grünwald-Letnikov fractional derivative of
function x is given by

GL
a Dα

t x(t) = lim
h−→0

h−α
n
∑

k=0

(−1)k
(

α

k

)

x(t− kh),

where
(

α
k

)

= Γ (α+1)
k!Γ (α−k+1) and nh = t− a.

Lemma 3 Let x be the power function x(t) = (t − a)γ , where γ is a real
number. Then, for 0 < α < 1 and γ > 0, we have

GL
a Dα

t x(t) =
Γ (γ + 1)

Γ (γ − α+ 1)
(t− a)γ−α.

Definition 11 We define the left and right Hadamard fractional derivatives
of order α, respectively, by

aD
α
t x(t) =

(

t
d

dt

)n
1

Γ (n− α)

∫ t

a

(

ln
t

τ

)n−α−1
x(τ)

τ
dτ

and

tD
α
b x(t) =

(

−t d
dt

)n
1

Γ (n− α)

∫ b

t

(

ln
τ

t

)n−α−1 x(τ)

τ
dτ,

for all t ∈ (a, b), where n = [α] + 1.

Observe that, for all types of derivative operators, if variable t is the time-
variable, the left fractional derivative of x is interpreted as a past state of the
process, while the right fractional derivative of x is interpreted as a future
state of the process.

1.3.2 Some properties of the Caputo derivative

For α > 0 and x ∈ AC([a, b];R), the Riemann–Liouville and Caputo deriva-
tives are related by the following formulas (Kilbas, Srivastava and Trujillo,
2006):

C
aD

α
t x(t) = aD

α
t

[

x(t) −
n−1
∑

k=0

x(k)(a)(t− a)k

k!

]

(1.4)

and

C
t D

α
b x(t) = tD

α
b

[

x(t) −
n−1
∑

k=0

x(k)(b)(b− t)k

k!

]

, (1.5)
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where n = [α] + 1 if α /∈ N and n = α if α ∈ N.
In particular, when α ∈ (0, 1), the relations (1.4) and (1.5) take the form:

C
aD

α
t x(t) = aD

α
t (x(t)− x(a))

= aD
α
t x(t)− x(a)

Γ (1−α) (t− a)−α (1.6)

and
C
t D

α
b x(t) = tD

α
b (x(t)− x(b))

= tD
α
b x(t)−

x(b)
Γ (1−α) (b − t)−α.

(1.7)

It follows from (1.6) and (1.7) that the left Riemann–Liouville derivative
equals the left Caputo fractional derivative in the case x(a) = 0 and the
analogue holds for the right derivatives under the assumption x(b) = 0.

In Theorem 4, we see that the Caputo fractional derivatives provides
a left inverse operator to the Riemann–Liouville fractional integration (cf.
Lemma 2.21 in (Kilbas, Srivastava and Trujillo, 2006)).

Theorem 4 Let α > 0 and let x ∈ C ([a, b];Rn). For Caputo fractional oper-
ators, the next rules hold:

C
aD

α
t aI

α
t x(t) = x(t)

and
C
t D

α
b tI

α
b x(t) = x(t).

The next statement characterizes the composition of the Riemann–Liouville
fractional integration operators with the Caputo fractional differentiation op-
erators (cf. Lemma 2.22 in (Kilbas, Srivastava and Trujillo, 2006)).

Theorem 5 Let α > 0. If x ∈ ACn ([a, b];R), then

aI
α
t

C
aD

α
t x(t) = x(t) −

n−1
∑

k=0

x(k)(a)

k!
(t− a)k

and

tI
α
b

C
t D

α
b x(t) = x(t)−

n−1
∑

k=0

(−1)kx(k)(b)

k!
(b− t)k,

with n = [α] + 1 if α /∈ N and n = α if α ∈ N.
In particular, when α ∈ (0, 1), then

aI
α
t

C
aD

α
t x(t) = x(t)− x(a) and tI

α
b

C
t D

α
b x(t) = x(t)− x(b).

Similarly to the Riemann–Liouville fractional derivative, the Caputo frac-
tional derivative of a power function yields a power function of the same form.
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Lemma 6 Let α > 0. Then, the following relations hold:

C
aD

α
t (t− a)γ =

Γ (γ + 1)

Γ (γ − α+ 1)
(t− a)γ−α, γ > n− 1

and
C
t D

α
b (b− t)γ =

Γ (γ + 1)

Γ (γ − α+ 1)
(b− t)γ−α, γ > n− 1,

with n = [α] + 1 if α /∈ N and n = α if α ∈ N.

1.3.3 Combined Caputo derivative

In this section, we introduce a special operator for our work, the combined
Caputo fractional derivative. We extend the notion of the Caputo fractional
derivative to the fractional derivative CDα,β

γ , that involves the left and the
right Caputo fractional derivative, i.e., it combines the past and the future of
the process into one single operator.

This operator was introduced in (Malinowska and Torres, 2010), mo-
tivated by the ideia of the symmetric fractional derivative introduced in
(Klimek, 2001):

Definition 12 Considering the left and right Riemann–Liouville derivatives,
the symmetric fractional derivative is given by

aD
α
b x(t) =

1

2
[aD

α
t x(t) + tD

α
b x(t)] . (1.8)

Other combined operators were studied. For example, we have the Riesz
and the Riesz–Caputo operators (Malinowska and Torres, 2012a).

Definition 13 Let x : [a, b] → R be a function of class C1 and α ∈ (0, 1).
For t ∈ [a, b], the Riesz fractional integral of order α, is defined by

R
a I

α
b x(t) =

1

2Γ (α)

∫ b

a

|t− τ |α−1x(τ)dτ

=
1

2
[aI

α
t x(t) + tI

α
b x(t)] ,

and the Riesz fractional derivative of order α, is defined by

R
aD

α
b x(t) =

1

Γ (1− α)

d

dt

∫ b

a

|t− τ |−αx(τ)dτ

=
1

2
[aD

α
t x(t)− tD

α
b x(t)] .

Definition 14 Considering the left and right Caputo derivatives, Riesz–
Caputo fractional derivative is given by
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RC
a Dα

b x(t) =
1

Γ (1− α)

∫ b

a

|t− τ |−α d

dτ
x(τ)dτ

=
1

2

[

C
aD

α
t x(t)− C

t D
α
b x(t)

]

.

(1.9)

Remark 7 (Malinowska and Torres (2012a)) If α goes to 1, then the
fractional derivatives introduced above coincide with the standard derivative:

R
aD

α
b = RC

a Dα
b =

d

dt
.

Similarly to the last operator (1.9), the combined Caputo derivative is a
convex combination of the left and the right Caputo fractional derivatives.
But, in this operator, we also consider other coefficients for the convex combi-
nation besides 1/2. Moreover, the orders α and β of the left- and right-sided
fractional derivatives can be different. Therefore, the combined Caputo deriva-
tive is a convex combination of the left Caputo fractional derivative of order
α and the right Caputo fractional derivative of order β.

Definition 15 Let α, β ∈ (0, 1) and γ ∈ [0, 1]. The combined Caputo frac-
tional derivative operator CDα,β

γ is defined by

CDα,β
γ = γ C

aD
α
t + (1− γ)Ct D

β
b , (1.10)

which acts on x ∈ AC ([a, b];R) in the following way:

CDα,β
γ x(t) = γ C

aD
α
t x(t) + (1− γ)Ct D

β
b x(t).

The operator (1.10) is obviously linear. Observe that

CDα,β
0 = C

t D
β
b and CDα,β

1 = C
aD

α
t .

The symmetric fractional derivative and the Riesz fractional derivative are
useful tools to describe some nonconservative models. But those types of dif-
ferentiation do not seem suitable for all kinds of variational problems because
they are based on the Riemann–Liouville fractional derivatives and therefore
the possibility that admissible trajectories x have continuous fractional deriva-
tives imply that x(a) = x(b) = 0 (Samko and Ross, 1993). For more details
about the combined Caputo fractional derivative, see (Malinowska and Torres,
2011, 2012b,c; Odzijewicz, Malinowska and Torres, 2012b).

1.3.4 Variable-order operators

Very useful physical applications have given birth to the variable-order frac-
tional calculus, for example in modeling mechanical behaviors (Fu, Chen and Yang,
2013; Sun et al., 2013). Nowadays, variable-order fractional calculus is partic-
ularly recognized as a useful and promising approach in the modelling of
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diffusion processes, in order to characterize time-dependent or concentration-
dependent anomalous diffusion, or diffusion processes in inhomogeneous porous
media (Sun et al., 2012).

Now, we present the fundamental notions of the fractional calculus of
variable-order (Malinowska, Odzijewicz and Torres, 2015). We consider the
fractional order of the derivative and of the integral to be a continuous function
of two variables, α(·, ·) with domain [a, b]2, taking values on the open interval
(0, 1). Let x : [a, b] → R be a function.

First, we recall the generalization of fractional integrals for a variable-order
α(·, ·).
Definition 16 The left and right Riemann–Liouville fractional integrals of
order α(·, ·) are defined by

aI
α(·,·)
t x(t) =

∫ t

a

1

Γ (α(t, τ))
(t− τ)α(t,τ)−1x(τ)dτ, t > a

and

tI
α(·,·)
b x(t) =

∫ b

t

1

Γ (α(τ, t))
(τ − t)α(τ,t)−1x(τ)dτ, t < b,

respectively.

We remark that, in contrast to the fixed fractional order case, variable-
order fractional integrals are not the inverse operation of the variable-order
fractional derivatives.

For fractional derivatives, we consider two types: the Riemann–Liouville
and the Caputo fractional derivatives.

Definition 17 The left and right Riemann–Liouville fractional derivatives of
order α(·, ·) are defined by

aD
α(·,·)
t x(t) =

d

dt
aI

α(·,·)
t x(t)

=
d

dt

∫ t

a

1

Γ (1− α(t, τ))
(t− τ)−α(t,τ)x(τ)dτ, t > a

(1.11)

and

tD
α(·,·)
b x(t) =− d

dt
tI

α(·,·)
b x(t)

=
d

dt

∫ b

t

−1

Γ (1− α(τ, t))
(τ − t)−α(τ,t)x(τ)dτ, t < b

(1.12)

respectively.

Lemma 8 gives a Riemann–Liouville variable-order fractional integral and
fractional derivative for the power function x(t) = (t− a)γ , where we assume
that the fractional order depends only on the first variable: α(t, τ) := α(t),
where α : [a, b] → (0, 1) is a given function.
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Lemma 8 Let x be the power function x(t) = (t−a)γ . Then, for γ > −1, we
have

aI
α(t)
t x(t) =

Γ (γ + 1)

Γ (γ + α(t) + 1)
(t− a)γ+α(t)

and

aD
α(t)
t x(t) = Γ (γ+1)

Γ (γ−α(t)+1)(t− a)γ−α(t)

−α(1)(t) Γ (γ+1)
Γ (γ−α(t)+2) (t− a)γ−α(t)+1

× [ln(t− a)− Ψ(γ − α(t) + 2) + Ψ(1 − α(t))] .

Definition 18 The left and right Caputo fractional derivatives of order α(·, ·)
are defined by

C
aD

α(·,·)
t x(t) =

∫ t

a

1

Γ (1− α(t, τ))
(t− τ)−α(t,τ)x(1)(τ)dτ, t > a (1.13)

and

C
t D

α(·,·)
b x(t) =

∫ b

t

−1

Γ (1− α(τ, t))
(τ − t)−α(τ,t)x(1)(τ)dτ, t < b, (1.14)

respectively.

Of course, the fractional derivatives just defined are linear operators.

1.3.5 Generalized fractional operators

In this section, we present three definitions of one-dimensional generalized
fractional operators that depend on a general kernel, studied by Odzijewicz,
Malinowska and Torres (see e.g. (Malinowska, Odzijewicz and Torres, 2015;
Odzijewicz, Malinowska and Torres, 2012a, 2013c), although (Agrawal, 2010)
had introduced this generalized fractional operators).

Let ∆ := {(t, τ) ∈ R
2 : a ≤ τ < t ≤ b}.

Definition 19 Let kα be a function defined almost everywhere on ∆ with
values in R. For all x : [a, b] → R, the generalized fractional integral operator
KP is defined by

KP [x](t) = λ

∫ t

a

kα(t, τ)x(τ)dτ + µ

∫ b

t

kα(τ, t)x(τ)dτ, (1.15)

with P = 〈a, t, b, λ, µ〉, where λ and µ are real numbers.

In particular, if we choose special cases for the kernel, we can obtain stan-
dard fractional operators or variable-order.

Remark 9 For special chosen kernels kα and parameters P , the operator KP

can be reduced to the classical or variable-order Riemann–Liouville fractional
integrals:
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• Let kα(t, τ) = 1
Γ (α) (t− τ)α−1 and 0 < α < 1. If P = 〈a, t, b, 1, 0〉, then

KP [x](t) =
1

Γ (α)

∫ t

a

(t− τ)α−1x(τ)dτ =: aI
α
t [x](t)

is the left Riemann–Liouville fractional integral of order α;
if P = 〈a, t, b, 0, 1〉, then

KP [x](t) =
1

Γ (α)

∫ b

t

(τ − t)α−1x(τ)dτ =: tI
α
b [x](t)

is the right Riemann–Liouville fractional integral of order α.
• If kα(t, τ) = 1

Γ (α(t,τ))(t− τ)α(t,τ)−1 and P = 〈a, t, b, 1, 0〉, then

KP [x](t) =

∫ t

a

1

Γ (α(t, τ))
(t− τ)α(t,τ)−1x(τ)dτ =: aI

α(·,·)
t [x](t)

is the left Riemann–Liouville fractional integral of variable-order α(·, ·);
if P = 〈a, t, b, 0, 1〉, then

KP [x](t) =

∫ b

t

1

Γ (α(t, τ))
(τ − t)α(t,τ)−1x(τ)dτ =: tI

α(·,·)
b [x](t)

is the right Riemann–Liouville fractional integral of variable-order α(·, ·).

Some other fractional operators can be obtained with the generalized frac-
tional integrals, for example, Hadamard, Riesz, Katugampola fractional oper-
ators (Agrawal, 2010; Malinowska, Odzijewicz and Torres, 2015).

The following two news operators, the generalized fractional Riemann–
Liouville and Caputo derivatives, are defined as a composition of classical
derivatives and generalized fractional integrals.

Definition 20 The generalized fractional derivative of Riemann–Liouville
type, denoted by AP , is defined by

AP =
d

dt
◦KP .

Definition 21 The generalized fractional derivative of Caputo type, denoted
by BP , is defined by

BP = KP ◦ d

dt
.

Considering kα(t, τ) = 1
Γ (1−α) (t − τ)−α with 0 < α < 1 and appropriate

sets P , this two general kernel operators AP and BP can be reduced to the
standard Riemann–Liouville and Caputo fractional derivatives, respectively
(Malinowska, Odzijewicz and Torres, 2015).
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1.3.6 Integration by parts

In this section, we summarize formulas of integration by parts because they
are important results to find necessary optimality conditions when dealing
with variational problems.

First, we present the rule of fractional integration by parts for the
Riemann–Liouville fractional integral.

Theorem 10 Let 0 < α < 1, p ≥ 1, q ≥ 1 and 1/p + 1/q ≤ 1 + α. If y ∈
Lp([a, b];R) and x ∈ Lq([a, b];R), then the following formula for integration
by parts hold:

∫ b

a

y(t) aI
α
t x(t)dt =

∫ b

a

x(t) tI
α
b y(t)dt.

For Caputo fractional derivatives, the integration by parts formulas are
presented below (Almeida and Malinowska, 2013).

Theorem 11 Let 0 < α < 1. The following relations hold:

∫ b

a

y(t)CaD
α
t x(t)dt =

∫ b

a

x(t) tD
α
b y(t)dt+

[

x(t) tI
1−α
b y(t)

]t=b

t=a
(1.16)

and

∫ b

a

y(t)Ct D
α
b x(t)dt =

∫ b

a

x(t) aD
α
t y(t)dt−

[

x(t) aI
1−α
t y(t)

]t=b

t=a
. (1.17)

When α → 1, we get C
aD

α
t = aD

α
t = d

dt ,
C
t D

α
b = tD

α
b = − d

dt , aI
α
t = tI

α
b =

I, and formulas (1.16) and (1.17) give the classical formulas of integration by
parts.

Then, we introduce the integration by parts formulas for variable-order
fractional integrals (Odzijewicz, Malinowska and Torres, 2013b).

Theorem 12 Let 1
n < α(t, τ) < 1 for all t, τ ∈ [a, b] and a certain n ∈ N

greater or equal than two, and x, y ∈ C([a, b];R). Then the following formula
for integration by parts hold:

∫ b

a

y(t) aI
α(·,·)
t x(t)dt =

∫ b

a

x(t) tI
α(·,·)
b y(t)dt.

In the following theorem, we present the formulas involving the Ca-
puto fractional derivative of variable-order. The theorem was proved in
(Odzijewicz, Malinowska and Torres, 2013b) and gives a generalization of the
standard fractional formulas of integration by parts for a constant α.

Theorem 13 Let 0 < α(t, τ) < 1− 1
n for all t, τ ∈ [a, b] and a certain n ∈ N

greater or equal than two. If x, y ∈ C1 ([a, b];R), then the fractional integration
by parts formulas
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∫ b

a

y(t)CaD
α(·,·)
t x(t)dt =

∫ b

a

x(t) tD
α(·,·)
b y(t)dt+

[

x(t) tI
1−α(·,·)
b y(t)

]t=b

t=a

and
∫ b

a

y(t)Ct D
α(·,·)
b x(t)dt =

∫ b

a

x(t) aD
α(·,·)
t y(t)dt−

[

x(t) aI
1−α(·,·)
t y(t)

]t=b

t=a

hold.

This last theorem have an important role in this work to the proof of the
generalized Euler–Lagrange equations.

In the end of this chapter, we present integration by parts formulas for
generalized fractional operators (Malinowska, Odzijewicz and Torres, 2015).
For that, we need the following definition:

Definition 22 Let P = 〈a, t, b, λ, µ〉. We denote by P ∗ the parameter set
P ∗ = 〈a, t, b, µ, λ〉. The parameter P ∗ is called the dual of P .

Let 1 < p <∞ and q be the adjoint of p, that is 1
p +

1
q = 1. A proof of the

next result can be found in (Malinowska, Odzijewicz and Torres, 2015).

Theorem 14 Let k ∈ Lq(∆;R). Then the operator KP∗ is a linear bounded
operator from Lp([a, b];R) to Lq([a, b];R). Moreover, the following integration
by parts formula holds:

∫ b

a

x(t) ·KP [y](t)dt =

∫ b

a

y(t) ·KP∗ [x](t)dt

for all x, y ∈ Lp([a, b];R).
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2

The calculus of variations

As part of this book is devoted to the fractional calculus of variations, in
this chapter we introduce the basic concepts about the classical calculus of
variations and the fractional calculus of variations. The study of fractional
problems of the calculus of variations and respective Euler–Lagrange type
equations is a subject of current strong research.

In Section 2.1, we introduce some concepts and important results from
the classical theory. Afterwards, in Section 2.2, we start with a brief historical
introduction to the non–integer calculus of variations and then we present
recent results on the fractional calculus of variations.

For more information about this subject, we refer the reader to the books
(Almeida, Pooseh and Torres, 2015; Malinowska, Odzijewicz and Torres, 2015;
Malinowska and Torres, 2012; van Brunt, 2004).

2.1 The classical calculus of variations

The calculus of variations is a field of mathematical analysis that concerns
with finding extrema (maxima or minima) for functionals, i.e., concerns with
the problem of finding a function for which the value of a certain integral is
either the largest or the smallest possible.

In this context, a functional is a mapping from a set of functions to the
real numbers, i.e., it receives a function and produces a real number. Let
D ⊆ C2([a, b];R) be a linear space endowed with a norm ‖ · ‖. The cost
functional J : D → R is generally of the form

J (x) =

∫ b

a

L (t, x(t), x′(t)) dt, (2.1)

where t ∈ [a, b] is the independent variable, usually called time, and x(t) ∈ R

is a function. The integrand L : [a, b]×R
2 → R, that depends on the function
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x, its derivative x′ and the independent variable t, is a real-valued function,
called the Lagrangian.

The roots of the calculus of variations appear in works of Greek thinkers,
such as Queen Dido or Aristotle in the late of the 1st century BC. During the
17th century, some physicists and mathematicians (Galileo, Fermat, Newton,
among others) investigated some variational problems, but in general they did
not use variational methods to solve them. The development of the calculus of
variations began with a problem posed by Johann Bernoulli in 1696, called the
brachistochrone problem: given two points A and B in a vertical plane, what is
the curve traced out by a point acted on only by gravity, which starts at A and
reaches B in minimal time? The curve that solves the problem is called the
brachistochrone. This problem caught the attention of some mathematicians
including Jakob Bernoulli, Leibniz, L’Hôpital and Newton, which presented
also a solution for the brachistochrone problem. Integer variational calculus is
still, nowadays, a revelant area of research. It plays a significant role in many
areas of science, physics, engineering, economics, and applied mathematics.

The classical variational problem, considered by Leonhard Euler, is stated
as follows.
Let a, b ∈ R. Among all functions x ∈ D, find the ones that minimize (or
maximize) the functional J : D → R, where

J (x) =

∫ b

a

L (t, x(t), x′(t)) dt, (2.2)

subject to the boundary conditions

x(a) = xa, x(b) = xb, (2.3)

with xa, xb fixed reals and the Lagrangian L satisfying some smoothness prop-
erties. Usually, we say that a function is ”sufficiently smooth” for a particular
development if all required actions (integration, differentiation, . . .) are pos-
sible.

Definition 23 A trajectory x ∈ C2([a, b];R) is said to be an admissible tra-
jectory if it satisfies all the constraints of the problem along the interval [a, b].
The set of admissible trajectories is denoted by D.

To discuss maxima and minima of functionals, we need to introduce the
following definition.

Definition 24 We say that x⋆ ∈ D is a local extremizer to the functional
J : D → R if there exists some real ǫ > 0, such that

∀x ∈ D : ‖x⋆ − x‖ < ǫ ⇒ J (x⋆)− J (x) ≤ 0 ∨ J (x⋆)− J (x) ≥ 0.

In this context, as we are dealing with functionals defined on functions,
we need to clarify the term of directional derivatives, here called variations.
The concept of variation of a functional is central to obtain the solution of
variational problems.
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Definition 25 Let J be defined on D. The first variation of a functional J
at x ∈ D in the direction h ∈ D is defined by

δJ (x, h) = lim
ǫ→0

J (x+ ǫh)− J (x)

ǫ
=

d

dǫ
J (x + ǫh)

]

ǫ=0

,

where x and h are functions and ǫ is a scalar, whenever the limit exists.

Definition 26 A direction h ∈ D, h 6= 0, is said to be an admissible variation
for J at y ∈ D if

1. δJ (x, h) exists;
2. x+ ǫh ∈ D for all sufficiently small ǫ.

With the condition that J (x) be a local extremum and the definition
of variation, we have the following result that offers a necessary optimality
condition for problems of calculus of variations (van Brunt, 2004).

Theorem 15 Let J be a functional defined on D. If x⋆ minimizes (or max-
imizes) the functional J over all functions x : [a, b] → R satisfying boundary
conditions (2.3), then

δJ (x⋆, h) = 0

for all admissible variations h at x⋆.

2.1.1 Euler–Lagrange equations

Although the calculus of variations was born with Johann’s problem, it was
with the work of Euler in 1742 and the one of Lagrange in 1755 that a system-
atic theory was developed. The common procedure to address such variational
problems consists in solving a differential equation, called the Euler–Lagrange
equation, which every minimizer/maximizer of the functional must satisfy.

In Lemma 16, we review an important result to transform the necessary
condition of extremum in a differential equation, free of integration with an
arbitrary function. In literature, it is known as the fundamental lemma of the
calculus of variations.

Lemma 16 Let x be continuous in [a, b] an let h be an arbitrary function on
[a, b] such that it is continuous and h(a) = h(b) = 0. If

∫ b

a

x(t)h(t)dt = 0

for all such h, then x(t) = 0 for all t ∈ [a, b].

For the sequel, we denote by ∂iz, i ∈ {1, 2, . . . ,M}, with M ∈ N, the
partial derivative of a function z : RM → R with respect to its ith argument.
Now we can formulate the necessary optimality condition for the classical
variational problem (van Brunt, 2004).
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Theorem 17 If x is an extremizing of the functional (2.2) on D, subject to
(2.3), then x satisfies

∂2L (t, x(t), x′(t))− d

dt
∂3L (t, x(t), x′(t)) = 0 (2.4)

for all t ∈ [a, b].

To solve this second order differential equation, the two given boundary
conditions (2.3) provide sufficient information to determine the two arbitrary
constants.

Definition 27 A curve x that is a solution of the Euler–Lagrange differential
equation will be called an extremal of J .

2.1.2 Problems with variable endpoints

In the basic variational problem considered previously, the functional J to
minimize (or maximize) is subject to given boundary conditions of the form

x(a) = xa, x(b) = xb,

where xa, xb ∈ R are fixed. It means that the solution of the problem, x, needs
to pass through the prescribed points. This variational problem is called a fixed
endpoints variational problem. The Euler–Lagrange equation (2.4) is normally
a second-order differential equation containing two arbitrary constants, so
with two given boundary conditions provided, they are sufficient to determine
the two constants.

However, in some areas, like physics and geometry, the variational prob-
lems do not impose the appropriate number of boundary conditions. In these
cases, when one or both boundary conditions are missing, that is, when the
set of admissible functions may take any value at one or both of the bound-
aries, then one or two auxiliary conditions, known as the natural boundary
conditions or transversality conditions, need to be obtained in order to solve
the equation (van Brunt, 2004):

[

∂L(t, x(t), x′(t))

∂x′

]

t=a

= 0 and/or

[

∂L(t, x(t), x′(t))

∂x′

]

t=b

= 0. (2.5)

There are different types of variational problems with variable endpoints:

• Free terminal point – one boundary condition at the initial time (x(a) =
xa). The terminal point is free (x(b) ∈ R);

• Free initial point – one boundary condition at the final time (x(b) = xb).
The initial point is free (x(a) ∈ R);

• Free endpoints – both endpoints are free (x(a) ∈ R, x(b) ∈ R);
• Variable endpoints – the initial point x(a) or/and the endpoint x(b) is

variable on a certain set, for example, on a prescribed curve.
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Another generalization of the variational problem consists to find an opti-
mal curve x and the optimal final time T of the variational integral, T ∈ [a, b].
This problem is known in the literature as a free-time problem (Chiang, 1992).
An example is the following free-time problem with free terminal point. Let
D denote the subset C2([a, b];R) × [a, b] endowed with a norm ‖(·, ·)‖. Find
the local minimizers of the functional J : D → R, with

J (x, T ) =

∫ T

a

L(t, x(t), x′(t))dt, (2.6)

over all (x, T ) ∈ D satisfying the boundary condition x(a) = xa, with xa ∈ R

fixed. The terminal time T and the terminal state x(T ) are here both free.

Definition 28 We say that (x⋆, T ⋆) ∈ D is a local extremizer (minimizer or
maximizer) to the functional J : D → R as in (2.6) if there exists some ǫ > 0
such that, for all (x, T ) ∈ D,

‖(x⋆, T ⋆)− (x, T )‖ < ǫ⇒ J(x⋆, T ⋆) ≤ J(x, T ) ∨ J(x⋆, T ⋆) ≥ J(x, T ).

To develop a necessary optimality condition to problem (2.6) for an ex-
tremizer (x⋆, T ⋆), we need to consider an admissible variation of the form:

(x⋆ + ǫh, T ⋆ + ǫ∆T ),

where h ∈ C1([a, b];R) is a perturbing curve that satisfies the condition
h(a) = 0, ǫ represents a small real number, and ∆T represents an arbitrarily
chosen small change in T . Considering the functional J (x, T ) in this admissi-
ble variation, we get a function of ǫ, where the upper limit of integration will
also vary with ǫ:

J (x⋆ + ǫh, T ⋆ + ǫ∆T ) =

∫ T⋆+ǫ∆T

a

L(t, (x⋆ + ǫh)(t), (x⋆ + ǫh)′(t))dt. (2.7)

To find the first-order necessary optimality condition, we need to determine
the derivative of (2.7) with respect to ǫ and set it equal to zero. By doing it,
we obtain three terms on the equation, where the Euler–Lagrange equation
emerges from the first term, and the other two terms, which depend only on
the terminal time T , give the transversality conditions.

2.1.3 Constrained variational problems

Variational problems are often subject to one or more constraints (holonomic
constraints, integral constraints, dynamic constraints, . . .). Isoperimetric prob-
lems are a special class of constrained variational problems for which the ad-
missible functions are needed to satisfy an integral constraint.

Here we review the classical isoperimetric variational problem. The classi-
cal variational problem, already defined, may be modified by demanding that
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the class of potential extremizing functions also satisfy a new condition, called
an isoperimetric constraint, of the form

∫ b

a

g(t, x(t), x′(t))dt = C, (2.8)

where g is a given function of t, x and x′, and C is a given real number.
The new problem is called an isoperimetric problem and encompasses an

important family of variational problems. In this case, the variational problems
are often subject to one or more constraints involving an integral of a given
function (Fraser, 1992). Some classical examples of isoperimetric problems
appear in geometry. The most famous example consists in finding the curve of
a given perimeter that bounds the greatest area and the answer is the circle.
Isoperimetric problems are an important type of variational problems, with
applications in different areas, like geometry, astronomy, physics, algebra or
analysis.

In the next theorem, we present a necessary condition for a function to be
an extremizer to a classical isoperimetric problem, obtained via the concept
of Lagrange multiplier (van Brunt, 2004).

Theorem 18 Consider the problem of minimizing (or maximizing) the func-
tional J , defined by (2.2), on D given by those x ∈ C2 ([a, b];R) satisfying the
boundary conditions (2.3) and an integral constraint of the form

G =

∫ b

a

g(t, x(t), x′(t))dt = C,

where g : [a, b] × R
2 → R is a twice continuously differentiable function.

Suppose that x gives a local minimum (or maximum) to this problem. Assume
that δG(x, h) does not vanish for all h ∈ D. Then, there exists a constant λ
such that x satisfies the Euler–Lagrange equation

∂2F (t, x(t), x′(t), λ)− d

dt
∂3F (t, x(t), x′(t), λ) = 0, (2.9)

where F (t, x, x′, λ) = L(t, x, x′)− λg(t, x, x′).

Remark 19 The constant λ is called a Lagrange multiplier.

Observe that δG(x, h) does not vanish for all h ∈ D if x does not satisfies
the Euler–Lagrange equation with respect to the isoperimetric constraint, that
is, x is not an extremal for G.

2.2 Fractional calculus of variations

The first connection between fractional calculus and the calculus of variations
appeared in the XIX century, with Niels Abel (Abel, 1923). In 1823, Abel
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applied fractional calculus in the solution of an integral equation involved in a
generalization of the tautochrone problem. Only in the XX century, however,
both areas were joined in an unique research field: the fractional calculus of
variations.

The fractional calculus of variations deals with problems in which the func-
tional, the constraint conditions, or both, depend on some fractional opera-
tor (Almeida, Pooseh and Torres, 2015; Malinowska, Odzijewicz and Torres,
2015; Malinowska and Torres, 2012) and the main goal is to find functions
that extremize such a fractional functional. By inserting fractional operators
that are non-local in variational problems, they are suitable for developing
some models possessing memory effects.

This is a fast growing subject, and different approaches have been de-
veloped by considering different types of Lagrangians, e.g., depending on
Riemann–Liouville or Caputo fractional derivatives, fractional integrals, and
mixed integer-fractional order operators (see, for example, (Almeida and Torres,
2009; Askari and Ansari, 2016; Atanacković, Konjik and Pilipović, 2008; Baleanu,
2008; Baleanu et al., 2010; Cresson, 2007; Rabei et al., 2007; Tarasov, 2006)).
In recent years, there has been a growing interest in the area of fractional
variational calculus and its applications, which include classical and quantum
mechanics, field theory and optimal control.

Although the origin of fractional calculus goes back more than three cen-
turies, the calculus of variations with fractional derivatives has born only in
1996-1997 with the works of F. Riewe. In his works, Riewe obtained a version
of the Euler–Lagrange equations for problems of the calculus of variations
with fractional derivatives, when investigating non-conservative Lagrangian
and Hamiltonian mechanics (Riewe, 1996, 1997). Agrawal continued the study
of the fractional Euler–Lagrange equations (Agrawal, 2002, 2006, 2007), for
some kinds of fractional variational problems, for example, problems with
only one dependent variable, for functionals with different orders of fractional
derivatives, for several functions, involving both Riemann–Liouville and Ca-
puto derivatives, etc. The most common fractional operators considered in
the literature take into account the past of the process, that is, one usually
uses left fractional operators. But, in some cases, we may be also interested
in the future of the process, and the computation of α(·) to be influenced by
it. In that case, right fractional derivatives are then considered.

2.2.1 Fractional Euler–Lagrange equations

Similarly to the classical variational calculus, the common procedure to ad-
dress such fractional variational problems consists in solving a fractional dif-
ferential equation, called the fractional Euler–Lagrange equation, which every
minimizer/maximizer of the functional must satisfy. With the help of the
boundary conditions imposed on the problem at the initial time t = a and
at the terminal time t = b, one solves, often with the help of some numer-
ical procedure, the fractional differential equation and obtain a possible so-
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lution to the problem (Blaszczyk and Ciesielski, 2014; Lotfi and Yousefi, 2013;
Pooseh, Almeida and Torres, 2013; Sumelka and Blaszczyk, 2014; Xu and Agrawal,
2014).

Referring again to Riewe’s works (Riewe, 1996, 1997), friction forces are
described with Lagrangians that contain fractional derivatives. Precisely, for
r,N and N ′ natural numbers and assuming x : [a, b] → R

r, αi, βj ∈ [0, 1] with
i = 1, . . . , N, j = 1, . . . , N ′, the functional defined by Riewe is

J (x) =

∫ b

a

L
(

aD
α1

t [x](t), . . . , aD
αN

t [x](t), tD
β1

b [x](t), . . . , tD
β
N′

b [x](t), x(t), t
)

dt.

(2.10)
He proved that any solution x of the variational problem of extremizing the
functional (2.10), satisfies the following necessary condition:

Theorem 20 Considering the variational problem of minimizing (or maxi-
mizing) the functional (2.10), the fractional Euler–Lagrange equation is

N
∑

i=1

tD
αi

b [∂iL] +

N ′

∑

i=1

aD
βi

t [∂i+NL] + ∂N ′+N+1L = 0.

Riewe also illustrated his results considering the classical problem of linear
friction (Riewe, 1996).

In what follows, we are concerned with problems of the fractional calculus
of variations where the functional depends on a combined fractional Caputo
derivative with constant orders α and β (Malinowska and Torres, 2011, Defi-
nition 15).

Let D denote the set of all functions x : [a, b] → R
N , endowed with a norm

‖ · ‖ in R
N . Consider the following problem: find a function x ∈ D for which

the functional

J (x) =

∫ b

a

L(t, x(t),CDα,β
γ x(t))dt (2.11)

subject to given boundary conditions

x(a) = xa, x(b) = xb

archives a minimum, where t ∈ [a, b], xa, xb ∈ R
N , γ ∈ [0, 1] and the La-

grangian L satisfies some smoothness properties.

Theorem 21 Let x = (x1, . . . , xN ) be a local minimizer to the problem with
the functional (2.11) subject to two boundary conditions, as defined before.
Then, x satisfies the system of N fractional Euler–Lagrange equations

∂iL(t, x(t),
CDα,β

γ x(t)) +Dβ,α
1−γ∂N+iL(t, x(t),

CDα,β
γ x(t)) = 0, (2.12)

i = 2, . . . , N + 1, for all t ∈ [a, b].
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For a proof of the last result, see (Malinowska and Torres, 2010). Observe
that, if the orders α and β go to 1, and if γ = 0 or γ = 1, we obtain a
corresponding result in the classical context of the calculus of variations. In
fact, considering α and β going to 1, the fractional derivatives C

aD
α
t and aD

α
t

coincide with the classical derivative d
dt ; and similarly, C

t D
β
b and tD

β
b coincide

with the classical derivative − d
dt .

Variational problems with free endpoints and transversality conditions are
also relevant subjects in the fractional calculus of variations. The subject of
free boundary points in fractional variational problems was first considered
by Agrawal in (Agrawal, 2006). In that work, he studied the Euler–Lagrange
equation and transversality conditions for the case when both initial and final
times are given and the admissible functions are specified at the initial time
but are unspecified at the final time. After that, some free-time variational
problems involving fractional derivatives or/and fractional integrals were
studied (Almeida and Malinowska, 2013; Odzijewicz, Malinowska and Torres,
2012a).

Sometimes, the analytic solution of the fractional Euler–Lagrange equation
is very difficult to obtain and, in this case, some numerical methods have
been developed to solve the variational problem (Almeida, Pooseh and Torres,
2015).

2.2.2 Fractional variational problems of variable-order

In recent years, motivated by the works of Samko and Ross, where they in-
vestigated integrals and derivatives not of a constant but of variable-order
(Samko, 1995; Samko and Ross, 1993), some problems of the calculus of
variations involving derivatives of variable fractional order have appeared
(Atanacković and Pilipović, 2011; Odzijewicz, Malinowska and Torres, 2012b).

Considering Definition 19 of the generalized fractional integral of operator
KP , (Malinowska, Odzijewicz and Torres, 2015) presented a new variational
problem, where the functional was defined by a given kernel. For appropriate
choices of the kernel k and the set P , we can obtain a variable-order fractional
variational problem (see Remark 9).

Let P = 〈a, t, b, λ, µ〉. Consider the functional J in A(xa, xb) defined by:

J [x] =

∫ b

a

L (x(t),KP [x](t), x
′(t), BP [x](t), t) dt, (2.13)

where A(xa, xb) is the set

{x ∈ C1([a, b];R) : x(a) = xa, x(b) = xb, KP [x], BP [x] ∈ C([a, b];R)},
and KP is the generalized fractional integral operator with kernel belonging
to Lq(∆;R) and BP the generalized fractional derivative of Caputo type.

The optimality condition for the problem that consists to determine a
function that minimize (or maximize) the functional (2.13) is given in the
following theorem (Malinowska, Odzijewicz and Torres, 2015).
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Theorem 22 Let x ∈ A(xa, xb) be a minimizer of functional (2.13). Then,
x satisfies the following Euler–Lagrange equation:

d

dt
[∂3L(⋆x)(t)] +AP∗ [τ 7−→ ∂4L(⋆x)(τ)] (t)

= ∂1L(⋆x)(t) +KP∗ [τ 7−→ ∂2L(⋆x)(τ)] (t),
(2.14)

where (⋆x)(t) = (x(t),KP [x](t), x
′(t), BP [x](t), t), for t ∈ (a, b).

Observe that, if functional (2.13) does not depends on the generalized frac-
tional operators KP and BP , this problem coincide with the classical varia-
tional problem and Theorem 22 reduces to Theorem 17.

Let △:= {(t, τ) ∈ R
2 : a ≤ τ < t ≤ b} and let 1 < p < ∞ and q be

the adjoint of p. A special case of this problem is obtained when we consider
α : ∆→ [0, 1− δ] with δ > 1/p and the kernel is defined by

kα(t, τ) =
1

Γ (1− α(t, τ))
(t− τ)−α(t,τ)

in Lq(∆;R). The next results provides necessary conditions of optimality
(Malinowska, Odzijewicz and Torres, 2015).

Theorem 23 Consider the problem of minimizing a functional

J [x] =

∫ b

a

L
(

x(t), aI
1−α(·,·)
t [x](t), x′(t),CaD

α(·,·)
t [x](t), t

)

dt (2.15)

subject to boundary conditions

x(a) = xa, x(b) = xb, (2.16)

where x′, aI
1−α(·,·)
t [x],CaD

α(·,·)
t [x] ∈ C([a, b];R). Then, if x ∈ C1([a, b];R) min-

imizes (or maximizes) the functional (2.15) subject to (2.16), then it satisfies
the following Euler–Lagrange equation:

∂1L
(

x(t), aI
1−α(·,·)
t [x](t), x′(t),CaD

α(·,·)
t [x](t), t

)

− d

dt
∂3L

(

x(t), aI
1−α(·,·)
t [x](t), x′(t),CaD

α(·,·)
t [x](t), t

)

+ tI
1−α(·,·)
b

[

∂2L
(

x(τ), aI
1−α(·,·)
τ [x](τ), x′(τ),CaD

α(·,·)
τ [x](τ), τ

)]

(t)

+ tD
α(·,·)
b

[

∂4L
(

x(τ), aI
1−α(·,·)
τ [x](τ), x′(τ),CaD

α(·,·)
τ [x](τ), τ

)]

(t) = 0.

In fact, the use of fractional derivatives of constant order in variational
problems may not be the best option, since trajectories are a dynamic process,
and the order may vary. Therefore, it is important to consider the order to be a
function, α(·), depending on time. Then we may seek what is the best function
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α(·) such that the variable-order fractional differential equation Dα(·)x(t) =
f(t, x(t)) better describes the process under study.

This approach is very recent, and many work has to be done for a
complete study of the subject (see, e.g., (Atangana and Kilicman, 2014;
Coimbra, Soon and Kobayashi, 2005; Samko and Ross, 1993; Sheng et al., 2011;
Valério et al., 2009)).
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3

Expansion formulas for fractional derivatives

In this chapter, we present a new numerical tool to solve differential equations
involving three types of Caputo derivatives of fractional variable-order. For
each one of them, an approximation formula is obtained, which is written in
terms of standard (integer order) derivatives only. Estimations for the error
of the approximations are also provided. Then, we compare the numerical
approximation of some test function with its exact fractional derivative. We
present an exemplification of how the presented methods can be used to solve
partial fractional differential equations of variable-order.

Let us briefly describe the main contents of the chapter. We begin this
chapter by formulating the needed definitions (Section 3.1). Namely, we
present three types of Caputo derivatives of variable fractional order. First,
we consider one independent variable only; then we generalize for several in-
dependent variables. The following Section 3.2 is the main core of the chapter,
where we prove approximation formulas for the given fractional operators of
variable-order and respectively upper bound formulas for the errors. To test
the efficiency of the proposed method, in Section 3.3 we compare the exact
fractional derivative of some test function with the numerical approximations
obtained from the decomposition formulas given in Section 3.2. To end, in Sec-
tion 3.4 we apply our method to approximate two physical problems involving
Caputo fractional operators of variable-order (a time-fractional diffusion equa-
tion and a fractional Burgers’ partial differential equation in fluid mechanics)
by classical problems that may be solved by well-known standard techniques.

The results of this chapter first appeared in (Tavares, Almeida and Torres,
2016).

3.1 Caputo-type fractional operators of variable-order

In the literature of fractional calculus, several different definitions of deriva-
tives are found (Samko, Kilbas and Marichev, 1993). One of those, intro-
duced by (Caputo, 1967) and studied independently by other authors, like
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(Džrbašjan and Nersesjan, 1968) and (Rabotnov, 1969), has found many ap-
plications and seems to be more suitable to model physical phenomena
(Dalir and Bashour, 2010; Diethelm, 2004; Machado et al., 2010; Murio and Mej́ıa,
2008; Singh, Saxena and Kumar, 2013; Sweilam and AL-Mrawm, 2011; Yajima and Yamasaki,
2012).

3.1.1 Caputo derivatives for functions of one variable

Our goal is to consider fractional derivatives of variable-order, with α de-
pending on time. In fact, some phenomena in physics are better described
when the order of the fractional operator is not constant, for example, in
the diffusion process in an inhomogeneous or heterogeneous medium, or
processes where the changes in the environment modify the dynamic of
the particle (Chechkin, Gorenflo and Sokolov, 2005; Santamaria et al., 2006;
Sun, Chen and Chen, 2009). Motivated by the above considerations, we intro-
duce three types of Caputo fractional derivatives. The order of the derivative
is considered as a function α(t) taking values on the open interval (0, 1). To
start, we define two different kinds of Riemann–Liouville fractional deriva-
tives.

Definition 29 Given a function x : [a, b] → R,

1. the type I left Riemann–Liouville fractional derivative of order α(t) is
defined by

aD
α(t)
t x(t) =

1

Γ (1− α(t))

d

dt

∫ t

a

(t− τ)−α(t)x(τ)dτ ;

2. the type I right Riemann–Liouville fractional derivative of order α(t) is
defined by

tD
α(t)
b x(t) =

−1

Γ (1− α(t))

d

dt

∫ b

t

(τ − t)−α(t)x(τ)dτ ;

3. the type II left Riemann–Liouville fractional derivative of order α(t) is
defined by

aDα(t)
t x(t) =

d

dt

(

1

Γ (1− α(t))

∫ t

a

(t− τ)−α(t)x(τ)dτ

)

;

4. the type II right Riemann–Liouville fractional derivative of order α(t) is
defined by

tDα(t)
b x(t) =

d

dt

(

−1

Γ (1− α(t))

∫ b

t

(τ − t)−α(t)x(τ)dτ

)

.

The Caputo derivatives are given using the previous Riemann–Liouville
fractional derivatives.
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Definition 30 Given a function x : [a, b] → R,

1. the type I left Caputo derivative of order α(t) is defined by

C
aD

α(t)
t x(t) = aD

α(t)
t (x(t)− x(a))

=
1

Γ (1− α(t))

d

dt

∫ t

a

(t− τ)−α(t)[x(τ) − x(a)]dτ ;

2. the type I right Caputo derivative of order α(t) is defined by

C
t D

α(t)
b x(t) = tD

α(t)
b (x(t) − x(b))

=
−1

Γ (1− α(t))

d

dt

∫ b

t

(τ − t)−α(t)[x(τ) − x(b)]dτ ;

3. the type II left Caputo derivative of order α(t) is defined by

C
a D

α(t)
t x(t) = aDα(t)

t (x(t)− x(a))

=
d

dt

(

1

Γ (1− α(t))

∫ t

a

(t− τ)−α(t)[x(τ) − x(a)]dτ

)

;

4. the type II right Caputo derivative of order α(t) is defined by

C
t D

α(t)
b x(t) = tDα(t)

b (x(t) − x(b))

=
d

dt

(

−1

Γ (1− α(t))

∫ b

t

(τ − t)−α(t)[x(τ) − x(b)]dτ

)

;

5. the type III left Caputo derivative of order α(t) is defined by

C
a D

α(t)
t x(t) =

1

Γ (1− α(t))

∫ t

a

(t− τ)−α(t)x′(τ)dτ ;

6. the type III right Caputo derivative of order α(t) is defined by

C
t D

α(t)
b x(t) =

−1

Γ (1− α(t))

∫ b

t

(τ − t)−α(t)x′(τ)dτ.

In contrast with the case when α is a constant, definitions of different types
do not coincide.

Theorem 24 The following relations between the left fractional operators
hold:

C
aD

α(t)
t x(t) = C

a D
α(t)
t x(t) +

α′(t)

Γ (2− α(t))

×
∫ t

a

(t− τ)1−α(t)x′(τ)

[

1

1− α(t)
− ln(t− τ)

]

dτ (3.1)
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and

C
aD

α(t)
t x(t) = C

a D
α(t)
t x(t) − α′(t)Ψ(1− α(t))

Γ (1− α(t))

×
∫ t

a

(t− τ)−α(t)[x(τ) − x(a)]dτ. (3.2)

Proof. Integrating by parts, one gets

C
aD

α(t)
t x(t) =

1

Γ (1− α(t))

d

dt

∫ t

a

(t− τ)−α(t)[x(τ) − x(a)]dτ

=
1

Γ (1− α(t))

d

dt

[

1

1− α(t)

∫ t

a

(t− τ)1−α(t)x′(τ)dτ

]

.

Differentiating the integral, it follows that

C
aD

α(t)
t x(t) =

1

Γ (1− α(t))

[

α′(t)

(1− α(t))2

∫ t

a

(t− τ)1−α(t)x′(τ)dτ

+
1

1− α(t)

∫ t

a

(t− τ)1−α(t)x′(τ)

[

−α′(t) ln(t− τ) +
1− α(t)

t− τ

]

dτ

]

= C
a D

α(t)
t x(t) +

α′(t)

Γ (2− α(t))

∫ t

a

(t− τ)1−α(t)x′(τ)

[

1

1− α(t)
− ln(t− τ)

]

dτ.

The second formula follows from direct calculations.

Therefore, when the order α(t) ≡ c is a constant, or for constant functions
x(t) ≡ k, we have

C
aD

α(t)
t x(t) = C

a D
α(t)
t x(t) = C

a D
α(t)
t x(t).

Similarly, we obtain the next result.

Theorem 25 The following relations between the right fractional operators
hold:

C
t D

α(t)
b x(t) = C

t D
α(t)
b x(t) +

α′(t)

Γ (2− α(t))

×
∫ b

t

(τ − t)1−α(t)x′(τ)

[

1

1− α(t)
− ln(τ − t)

]

dτ

and

C
t D

α(t)
b x(t) = C

t D
α(t)
b x(t) +

α′(t)Ψ(1 − α(t))

Γ (1− α(t))

∫ b

t

(τ − t)−α(t)[x(τ) − x(b)]dτ.
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Theorem 26 Let x ∈ C1 ([a, b],R). At t = a

C
aD

α(t)
t x(t) = C

a D
α(t)
t x(t) = C

a D
α(t)
t x(t) = 0;

at t = b
C
t D

α(t)
b x(t) = C

t D
α(t)
b x(t) = C

t D
α(t)
b x(t) = 0.

Proof. We start proving the third equality at the initial time t = a. We simply
note that

∣

∣

∣

C
a D

α(t)
t x(t)

∣

∣

∣
≤ ‖x′‖
Γ (1− α(t))

∫ t

a

(t− τ)−α(t)dτ =
‖x′‖

Γ (2− α(t))
(t− a)1−α(t),

which is zero at t = a. For the first equality at t = a, using equation (3.1),
and the two next relations

∣

∣

∣

∣

∫ t

a

(t− τ)1−α(t) x′(τ)

1− α(t)
dτ

∣

∣

∣

∣

≤ ‖x′‖
(1− α(t))(2 − α(t))

(t− a)2−α(t)

and
∣

∣

∣

∣

∣

∫ t

a

(t− τ)1−α(t)x′(τ) ln(t− τ)dτ

∣

∣

∣

∣

∣

≤ ‖x′‖
2− α(t)

(t− a)2−α(t)

∣

∣

∣

∣

∣

ln(t− a)− 1

2− α(t)

∣

∣

∣

∣

∣

,

this latter inequality obtained from integration by parts, we prove that
C
aD

α(t)
t x(t) = 0 at t = a. Finally, we prove the second equality at t = a

by considering equation (3.2): performing an integration by parts, we get

∣

∣

∣

∣

∫ t

a

(t− τ)−α(t)[x(τ) − x(a)]dτ

∣

∣

∣

∣

≤ ‖x′‖
(1− α(t))(2 − α(t))

(t− a)2−α(t)

and so C
a D

α(t)
t x(t) = 0 at t = a. The proof that the right fractional operators

also vanish at the end point t = b follows by similar arguments.

With some computations, a relationship between the Riemann–Liouville
and the Caputo fractional derivatives is easily deduced:

aD
α(t)
t x(t) = C

aD
α(t)
t x(t) +

x(a)

Γ (1− α(t))

d

dt

∫ t

a

(t− τ)−α(t)dτ

= C
aD

α(t)
t x(t) +

x(a)

Γ (1− α(t))
(t− a)−α(t)

+
x(a)α′(t)

Γ (2− α(t))
(t− a)1−α(t)

[

1

1− α(t)
− ln(t− a)

]

and
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aDα(t)
t x(t) = C

a D
α(t)
t x(t) + x(a)

d

dt

(

1

Γ (1− α(t))

∫ t

a

(t− τ)−α(t)dτ

)

= C
a D

α(t)
t x(t) +

x(a)

Γ (1− α(t))
(t− a)−α(t)

+
x(a)α′(t)

Γ (2− α(t))
(t− a)1−α(t) [Ψ(2− α(t))− ln(t− a)] .

For the right fractional operators, we have

tD
α(t)
b x(t) = C

t D
α(t)
b x(t) +

x(b)

Γ (1− α(t))
(b− t)−α(t)

− x(b)α′(t)

Γ (2− α(t))
(b− t)1−α(t)

[

1

1− α(t)
− ln(b− t)

]

and

tDα(t)
b x(t) = C

t D
α(t)
b x(t) +

x(b)

Γ (1− α(t))
(b− t)−α(t)

− x(b)α′(t)

Γ (2− α(t))
(b− t)1−α(t) [Ψ(2− α(t))− ln(b− t)] .

Thus, it is immediate to conclude that if x(a) = 0, then

aD
α(t)
t x(t) = C

aD
α(t)
t x(t) and aDα(t)

t x(t) = C
a D

α(t)
t x(t)

and if x(b) = 0, then

tD
α(t)
b x(t) = C

t D
α(t)
b x(t) and tDα(t)

b x(t) = C
t D

α(t)
b x(t).

Next we obtain formulas for the Caputo fractional derivatives of a power
function.

Lemma 27 Let x(t) = (t− a)γ with γ > 0. Then,

C
aD

α(t)
t x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(t− a)γ−α(t)

− α′(t)
Γ (γ + 1)

Γ (γ − α(t) + 2)
(t− a)γ−α(t)+1

× [ln(t− a)− Ψ(γ − α(t) + 2) + Ψ(1− α(t))] ,

C
a D

α(t)
t x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(t− a)γ−α(t)

− α′(t)
Γ (γ + 1)

Γ (γ − α(t) + 2)
(t− a)γ−α(t)+1

× [ln(t− a)− Ψ(γ − α(t) + 2)] ,

C
a D

α(t)
t x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(t− a)γ−α(t).
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Proof. The formula for C
aD

α(t)
t x(t) follows immediately from (Samko and Ross,

1993). For the second equality, one has

C
a D

α(t)
t x(t) =

d

dt

(

1

Γ (1− α(t))

∫ t

a

(t− τ)−α(t)(τ − a)γdτ

)

=
d

dt

(

1

Γ (1− α(t))

∫ t

a

(t− a)−α(t)

(

1− τ − a

t− a

)−α(t)

(τ − a)γdτ

)

.

With the change of variables τ − a = s(t− a), and with the help of the Beta
function B(·, ·) (see Definition 3), we prove that

C
a D

α(t)
t x(t) =

d

dt

(

(t− a)−α(t)

Γ (1− α(t))

∫ 1

0

(1− s)−α(t)sγ(t− a)γ+1ds

)

=
d

dt

(

(t− a)γ−α(t)+1

Γ (1− α(t))
B(γ + 1, 1− α(t))

)

=
d

dt

(

Γ (γ + 1)

Γ (γ − α(t) + 2)
(t− a)γ−α(t)+1

)

.

We obtain the desired formula by differentiating this latter expression. The
last equality follows in a similar way.

Analogous relations to those of Lemma 27, for the right Caputo fractional
derivatives of variable-order, are easily obtained.

Lemma 28 Let x(t) = (b− t)γ with γ > 0. Then,

C
t D

α(t)
b x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(b− t)γ−α(t)

+ α′(t)
Γ (γ + 1)

Γ (γ − α(t) + 2)
(b− t)γ−α(t)+1

× [ln(b − t)− Ψ(γ − α(t) + 2) + Ψ(1− α(t))] ,

C
t D

α(t)
b x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(b− t)γ−α(t)

+ α′(t)
Γ (γ + 1)

Γ (γ − α(t) + 2)
(b− t)γ−α(t)+1

× [ln(b − t)− Ψ(γ − α(t) + 2)] ,

C
t D

α(t)
b x(t) =

Γ (γ + 1)

Γ (γ − α(t) + 1)
(b− t)γ−α(t).

With Lemma 27 in mind, we immediately see that

C
aD

α(t)
t x(t) 6= C

a D
α(t)
t x(t) 6= C

a D
α(t)
t x(t).

Also, at least for the power function, it suggests that C
a D

α(t)
t x(t) may be a

more suitable inverse operation of the fractional integral when the order is
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variable. For example, consider functions x(t) = t2 and y(t) = (1 − t)2, and
the fractional order α(t) = 5t+1

10 , t ∈ [0, 1]. Then, 0.1 ≤ α(t) ≤ 0.6 for all t.
Next we compare the fractional derivatives of x and y of order α(t) with the
fractional derivatives of constant order α = 0.1 and α = 0.6. By Lemma 27,
we know that the left Caputo fractional derivatives of order α(t) of x are given
by

C
0 D

α(t)
t x(t) =

2

Γ (3− α(t))
t2−α(t)

− t3−α(t)

Γ (4− α(t))
[ln(t)− Ψ(4− α(t)) + Ψ(1 − α(t))] ,

C
0 D

α(t)
t x(t) =

2

Γ (3− α(t))
t2−α(t) − t3−α(t)

Γ (4− α(t))
[ln(t)− Ψ(4 − α(t))] ,

C
0 D

α(t)
t x(t) =

2

Γ (3− α(t))
t2−α(t),

while by Lemma 28, the right Caputo fractional derivatives of order α(t) of y
are given by

C
t D

α(t)
1 y(t) =

2(1− t)2−α(t)

Γ (3− α(t))

+
(1− t)3−α(t)

Γ (4− α(t))
[ln(1− t)− Ψ(4− α(t)) + Ψ(1− α(t))] ,

C
t D

α(t)
1 y(t) =

2(1− t)2−α(t)

Γ (3− α(t))
+

(1− t)3−α(t)

Γ (4− α(t))
[ln(1− t)− Ψ(4− α(t))] ,

C
t D

α(t)
1 y(t) =

2(1− t)2−α(t)

Γ (3− α(t))
.

For a constant order α, we have

C
0 D

α
t x(t) =

2

Γ (3− α)
t2−α and C

t D
α
1 y(t) =

2

Γ (3− α)
(1− t)2−α.

The results can be seen in Figure 3.1.

3.1.2 Caputo derivatives for functions of several variables

Partial fractional derivatives are a natural extension and are defined in a simi-

lar way. Letm ∈ N, k ∈ {1, . . . ,m}, and consider a function x :

m
∏

i=1

[ai, bi] → R

with m variables. For simplicity, we define the vectors

[τ ]k = (t1, . . . , tk−1, τ, tk+1, . . . , tm) ∈ R
m

and
(t) = (t1, . . . , tm) ∈ R

m.
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(a) C
0 D

α(t)
t x(t) (b) C

0 D
α(t)
t x(t)

(c) C
0 D

α(t)
t x(t) (d) C

t D
α(t)
1 y(t)

(e) C
t D

α(t)
1 y(t) (f) C

t D
α(t)
1 y(t)

Fig. 3.1. Comparison between variable-order and constant-order fractional deriva-
tives.
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Definition 31 Given a function x :
∏m

i=1[ai, bi] → R and fractional orders
αk : [ak, bk] → (0, 1), k ∈ {1, . . . ,m},
1. the type I partial left Caputo derivative of order αk(tk) is defined by

C
ak
D

αk(tk)
tk x(t) =

1

Γ (1− αk(tk))

∂

∂tk

∫ tk

ak

(tk − τ)−αk(tk) (x[τ ]k − x[ak]k) dτ ;

2. the type I partial right Caputo derivative of order αk(tk) is defined by

C
tkD

αk(tk)
bk

x(t) =
−1

Γ (1− αk(tk))

∂

∂tk

∫ bk

tk

(τ − tk)
−αk(tk) (x[τ ]k − x[bk]k) dτ ;

3. the type II partial left Caputo derivative of order αk(tk) is defined by

C
ak
Dαk(tk)

tk
x(t)

=
∂

∂tk

(

1

Γ (1− αk(tk))

∫ tk

ak

(tk − τ)−αk(tk) (x[τ ]k − x[ak]k) dτ

)

;

4. the type II partial right Caputo derivative of order αk(tk) is defined by

C
tkD

αk(tk)
bk

x(t)

=
∂

∂tk

(

−1

Γ (1− αk(tk))

∫ bk

tk

(τ − tk)
−αk(tk) (x[τ ]k − x[bk]k) dτ

)

;

5. the type III partial left Caputo derivative of order αk(tk) is defined by

C
ak
D

αk(tk)
tk x(t) =

1

Γ (1− αk(tk))

∫ tk

ak

(tk − τ)−αk(tk)
∂x

∂tk
[τ ]kdτ ;

6. the type III partial right Caputo derivative of order αk(tk) is defined by

C
tkD

αk(tk)
bk

x(t) =
−1

Γ (1− αk(tk))

∫ bk

tk

(τ − tk)
−αk(tk)

∂x

∂tk
[τ ]kdτ.

Similarly as done before, relations between these definitions can be proven.

Theorem 29 The following four formulas hold:

C
ak
D

αk(tk)
tk

x(t) = C
ak
D

αk(tk)
tk

x(t)

+
α′
k(tk)

Γ (2− αk(tk))

∫ tk

ak

(tk − τ)1−αk(tk)
∂x

∂tk
[τ ]k

[

1

1− αk(tk)
− ln(tk − τ)

]

dτ,

(3.3)
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C
ak
D

αk(tk)
tk x(t) = C

ak
Dαk(tk)

tk x(t)

− α′
k(tk)Ψ(1− αk(tk))

Γ (1− αk(tk))

∫ tk

ak

(tk − τ)−αk(tk)[x[τ ]k − x[ak]k]dτ, (3.4)

C
tk
D

αk(tk)
bk

x(t) = C
tk
D

αk(tk)
bk

x(t)

+
α′
k(tk)

Γ (2− αk(tk))

∫ bk

tk

(τ − tk)
1−αk(tk)

∂x

∂tk
[τ ]k

[

1

1− αk(tk)
− ln(τ − tk)

]

dτ

and

C
tk
D

αk(tk)
bk

x(t) = C
tk
Dαk(tk)

bk
x(t)

+
α′
k(tk)Ψ(1− αk(tk))

Γ (1− αk(tk))

∫ bk

tk

(τ − tk)
−αk(tk)[x[τ ]k − x[bk]k]dτ.

3.2 Numerical approximations

Let p ∈ N. We define

Ap =
1

Γ (p+ 1− αk(tk))



1 +
N
∑

l=n−p+1

Γ (αk(tk)− n+ l)

Γ (αk(tk)− p)(l − n+ p)!



 ,

Bp =
Γ (αk(tk)− n+ p)

Γ (1− αk(tk))Γ (αk(tk))(p− n)!
,

Vp(t) =

∫ tk

ak

(τ − ak)
p−n ∂x

∂tk
[τ ]kdτ,

Lp(t) = max
τ∈[ak,tk]

∣

∣

∣

∣

∂px

∂tpk
[τ ]k

∣

∣

∣

∣

.

Theorem 30 Let x ∈ Cn+1 (
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
ak
D

αk(tk)
tk x(t) =

n
∑

p=1

Ap(tk − ak)
p−αk(tk)

∂px

∂tpk
[tk]k

+

N
∑

p=n

Bp(tk − ak)
n−p−αk(tk)Vp(t) + E(t).

The approximation error E(t) is bounded by

E(t) ≤ Ln+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(tk − ak)

n+1−αk(tk).
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Proof. By definition,

C
ak
D

αk(tk)
tk x(t) =

1

Γ (1− αk(tk))

∫ tk

ak

(tk − τ)−αk(tk)
∂x

∂tk
[τ ]kdτ

and, integrating by parts with u′(τ) = (tk − τ)−αk(tk) and v(τ) = ∂x
∂tk

[τ ]k, we
deduce that

C
ak
D

αk(tk)
tk

x(t) =
(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

∂x

∂tk
[ak]k

+
1

Γ (2− αk(tk))

∫ tk

ak

(tk − τ)1−αk(tk)
∂2x

∂t2k
[τ ]kdτ.

Integrating again by parts, taking u′(τ) = (tk−τ)1−αk(tk) and v(τ) = ∂2x
∂t2

k

[τ ]k,

we get

C
ak
D

αk(tk)
tk

x(t) =
(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

∂x

∂tk
[ak]k +

(tk − ak)
2−αk(tk)

Γ (3− αk(tk))

∂2x

∂t2k
[ak]k

+
1

Γ (3− αk(tk))

∫ tk

ak

(tk − τ)2−αk(tk)
∂3x

∂t3k
[τ ]kdτ.

Repeating the same procedure n−2 more times, we get the expansion formula

C
ak
D

αk(tk)
tk x(t) =

n
∑

p=1

(tk − ak)
p−αk(tk)

Γ (p+ 1− αk(tk))

∂px

∂tpk
[ak]k

+
1

Γ (n+ 1− αk(tk))

∫ tk

ak

(tk − τ)n−αk(tk)
∂n+1x

∂tn+1
k

[τ ]kdτ.

Using the equalities

(tk − τ)n−αk(tk) = (tk − ak)
n−αk(tk)

(

1− τ − ak
tk − ak

)n−αk(tk)

= (tk − ak)
n−αk(tk)

[

N
∑

p=0

(

n−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p
+ E(t)

]

with

E(t) =
∞
∑

p=N+1

(

n−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p
,

we arrive at
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C
ak
D

αk(tk)
tk

x(t) =
n
∑

p=1

(tk − ak)
p−αk(tk)

Γ (p+ 1− αk(tk))

∂px

∂tpk
[ak]k

+
(tk − ak)

n−αk(tk)

Γ (n+ 1− αk(tk))

∫ tk

ak

N
∑

p=0

(

n−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p
∂n+1x

∂tn+1
k

[τ ]kdτ + E(t)

=

n
∑

p=1

(tk − ak)
p−αk(tk)

Γ (p+ 1− αk(tk))

∂px

∂tpk
[ak]k +

(tk − ak)
n−αk(tk)

Γ (n+ 1− αk(tk))

×
N
∑

p=0

(

n−αk(tk)
p

) (−1)p

(tk − ak)p

∫ tk

ak

(τ − ak)
p ∂

n+1x

∂tn+1
k

[τ ]kdτ + E(t)

with

E(t) =
(tk − ak)

n−αk(tk)

Γ (n+ 1− αk(tk))

∫ tk

ak

E(t)
∂n+1x

∂tn+1
k

[τ ]kdτ.

Now, we split the last sum into p = 0 and the remaining terms p = 1, . . . , N

and integrate by parts with u(τ) = (τ−ak)p and v′(τ) = ∂n+1x
∂tn+1

k

[τ ]k. Observing

that
(

n−αk(tk)
p

)

(−1)p =
Γ (αk(tk)− n+ p)

Γ (αk(tk)− n)p!
,

we obtain:

(tk − ak)
n−αk(tk)

Γ (n+ 1− αk(tk))

N
∑

p=0

(

n−αk(tk)
p

) (−1)p

(tk − ak)p

∫ tk

ak

(τ − ak)
p ∂

n+1x

∂tn+1
k

[τ ]kdτ

=
(tk − ak)

n−αk(tk)

Γ (n+ 1− αk(tk))

[

∂nx

∂tnk
[tk]k −

∂nx

∂tnk
[ak]k

]

+
(tk − ak)

n−αk(tk)

Γ (n+ 1− αk(tk))

N
∑

p=1

Γ (αk(tk)− n+ p)

Γ (αk(tk)− n)p!(tk − ak)p

×
[

(tk − ak)
p ∂

nx

∂tnk
[tk]k −

∫ tk

ak

p(τ − ak)
p−1 ∂

nx

∂tnk
[τ ]kdτ

]

= − (tk − ak)
n−αk(tk)

Γ (n+ 1− αk(tk))

∂nx

∂tnk
[ak]k +

(tk − ak)
n−αk(tk)

Γ (n+ 1− αk(tk))

∂nx

∂tnk
[tk]k

×
[

1 +

N
∑

p=1

Γ (αk(tk)− n+ p)

Γ (αk(tk)− n)p!

]

+
(tk − ak)

n−αk(tk)−1

Γ (n− αk(tk))

×
N
∑

p=1

Γ (αk(tk)− n+ p)

Γ (αk(tk) + 1− n)(p− 1)!(tk − ak)p−1

∫ tk

ak

(τ − ak)
p−1 ∂

nx

∂tnk
[τ ]kdτ.

Thus, we get
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C
ak
D

αk(tk)
tk x(t) =

n−1
∑

p=1

(tk − ak)
p−αk(tk)

Γ (p+ 1− αk(tk))

∂px

∂tpk
[ak]k

+
(tk − ak)

n−αk(tk)

Γ (n+ 1− αk(tk))

∂nx

∂tnk
[tk]k

[

1 +
N
∑

p=1

Γ (αk(tk)− n+ p)

Γ (αk(tk)− n)p!

]

+
(tk − ak)

n−αk(tk)−1

Γ (n− αk(tk))

N
∑

p=1

Γ (αk(tk)− n+ p)

Γ (αk(tk) + 1− n)(p− 1)!(tk − ak)p−1

×
∫ tk

ak

(τ − ak)
p−1 ∂

nx

∂tnk
[τ ]kdτ + E(t).

Repeating the process n − 1 more times with respect to the last sum, that
is, splitting the first term of the sum and integrating by parts the obtained
result, we arrive to

C
ak
D

αk(tk)
tk

x(t) =

n
∑

p=1

(tk − ak)
p−αk(tk)

Γ (p+ 1− αk(tk))

∂px

∂tpk
[tk]k

×



1 +

N
∑

l=n−p+1

Γ (αk(tk)− n+ l)

Γ (αk(tk)− p)(l − n+ p)!





+

N
∑

p=n

Γ (αk(tk)− n+ p)

Γ (1− αk(tk))Γ (αk(tk))(p− n)!
(tk − ak)

n−p−αk(tk)

×
∫ tk

ak

(τ − ak)
p−n ∂x

∂tk
[τ ]kdτ + E(t).

We now seek the upper bound formula for E(t). Using the two relations
∣

∣

∣

∣

τ − ak
tk − ak

∣

∣

∣

∣

≤ 1, if τ ∈ [ak, tk]

and
∣

∣

∣

(

n−αk(tk)
p

)∣

∣

∣
≤ exp((n− αk(tk))

2 + n− αk(tk))

pn+1−αk(tk)
,

we get

E(t) ≤
∞
∑

p=N+1

exp((n− αk(tk))
2 + n− αk(tk))

pn+1−αk(tk)

≤
∫ ∞

N

exp((n− αk(tk))
2 + n− αk(tk))

pn+1−αk(tk)
dp

=
exp((n− αk(tk))

2 + n− αk(tk))

Nn−αk(tk)(n− αk(tk))
.

Then,
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E(t) ≤ Ln+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(tk − ak)

n+1−αk(tk).

This concludes the proof.

Remark 31 In Theorem 30 we have

lim
N→∞

E(t) = 0

for all t ∈ ∏m
i=1[ai, bi] and n ∈ N.

Theorem 32 Let x ∈ Cn+1 (
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
ak
D

αk(tk)
tk x(t) =

n
∑

p=1

Ap(tk − ak)
p−αk(tk)

∂px

∂tpk
[tk]k

+

N
∑

p=n

Bp(tk − ak)
n−p−αk(tk)Vp(t) +

α′
k(tk)(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

×
[

(

1

1− αk(tk)
− ln(tk − ak)

) N
∑

p=0

(

1−αk(tk)
p

) (−1)p

(tk − ak)p
Vn+p(t)

+

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
N
∑

r=1

1

r(tk − ak)p+r
Vn+p+r(t)

]

+ E(t).

The approximation error E(t) is bounded by

E(t) ≤ Ln+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(tk − ak)

n+1−αk(tk)

+ |α′
k(tk)|L1(t)

exp((1 − αk(tk))
2 + 1− αk(tk))

Γ (2− αk(tk))N1−αk(tk)(1− αk(tk))

×
[∣

∣

∣

∣

1

1− αk(tk)
− ln(tk − ak)

∣

∣

∣

∣

+
1

N

]

(tk − ak)
2−αk(tk).

Proof. Taking into account relation (3.3) and Theorem 30, we only need to
expand the term

α′
k(tk)

Γ (2− αk(tk))

∫ tk

ak

(tk − τ)1−αk(tk)
∂x

∂tk
[τ ]k

[

1

1− αk(tk)
− ln(tk − τ)

]

dτ.

(3.5)
Splitting the integral, and using the expansion formulas

(tk − τ)1−αk(tk) = (tk − ak)
1−αk(tk)

(

1− τ − ak
tk − ak

)1−αk(tk)

= (tk − ak)
1−αk(tk)

[

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p
+ E1(t)

]
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with

E1(t) =

∞
∑

p=N+1

(

1−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p

and

ln(tk − τ) = ln(tk − ak) + ln

(

1− τ − ak
tk − ak

)

= ln(tk − ak)−
N
∑

r=1

1

r

(τ − ak)
r

(tk − ak)r
− E2(t)

with

E2(t) =
∞
∑

r=N+1

1

r

(τ − ak)
r

(tk − ak)r
,

we conclude that (3.5) is equivalent to

α′
k(tk)

Γ (2− αk(tk))

[(

1

1− αk(tk)
− ln(tk − ak)

)
∫ tk

ak

(tk − τ)1−αk(tk)
∂x

∂tk
[τ ]kdτ

−
∫ tk

ak

(tk − τ)1−αk(tk) ln

(

1− τ − ak
tk − ak

)

∂x

∂tk
[τ ]kdτ

]

=
α′
k(tk)

Γ (2− αk(tk))

[(

1

1− αk(tk)
− ln(tk − ak)

)

×
∫ tk

ak

(tk − ak)
1−αk(tk)

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p
∂x

∂tk
[τ ]kdτ

+

∫ tk

ak

(tk − ak)
1−αk(tk)

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
(τ − ak)

p

(tk − ak)p

×
N
∑

r=1

1

r

(τ − ak)
r

(tk − ak)r
∂x

∂tk
[τ ]kdτ

]

+
α′
k(tk)

Γ (2− αk(tk))

[(

1

1− αk(tk)
− ln(tk − ak)

)

×
∫ tk

ak

(tk − ak)
1−αk(tk)E1(t)

∂x

∂tk
[τ ]kdτ

+

∫ tk

ak

(tk − ak)
1−αk(tk)E1(t)E2(t)

∂x

∂tk
[τ ]kdτ

]

=
α′
k(tk)(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

[

(

1

1− αk(tk)
− ln(tk − ak)

) N
∑

p=0

(

1−αk(tk)
p

)

× (−1)p

(tk − ak)p
Vn+p(t) +

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
N
∑

r=1

1

r(tk − ak)p+r
Vn+p+r(t)

]
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+
α′
k(tk)(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

[(

1

1− αk(tk)
− ln(tk − ak)

)

×
∫ tk

ak

E1(t)
∂x

∂tk
[τ ]kdτ +

∫ tk

ak

E1(t)E2(t)
∂x

∂tk
[τ ]kdτ

]

.

For the error analysis, we know from Theorem 30 that

E1(t) ≤
exp((1− αk(tk))

2 + 1− αk(tk))

N1−αk(tk)(1− αk(tk))
.

Then,
∣

∣

∣

∣

∫ tk

ak

(tk − ak)
1−αk(tk) E1(t)

∂x

∂tk
[τ ]kdτ

∣

∣

∣

∣

≤ L1(t)
exp((1− αk(tk))

2 + 1− αk(tk))

N1−αk(tk)(1− αk(tk))
(tk − ak)

2−αk(tk).

(3.6)

On the other hand, we have
∣

∣

∣

∣

∫ tk

ak

(tk − ak)
1−αk(tk)E1(t)E2(t)

∂x

∂tk
[τ ]kdτ

∣

∣

∣

∣

≤ L1(t)
exp((1 − αk(tk))

2 + 1− αk(tk))

N1−αk(tk)(1 − αk(tk))
(tk − ak)

1−αk(tk)

×
∞
∑

r=N+1

1

r(tk − ak)r

∫ tk

ak

(τ − ak)
rdτ

= L1(t)
exp((1 − αk(tk))

2 + 1− αk(tk))

N1−αk(tk)(1 − αk(tk))
(tk − ak)

1−αk(tk)
∞
∑

r=N+1

tk − ak
r(r + 1)

≤ L1(t)
exp((1 − αk(tk))

2 + 1− αk(tk))

N2−αk(tk)(1 − αk(tk))
(tk − ak)

2−αk(tk).

(3.7)

We get the desired result by combining inequalities (3.6) and (3.7).

Theorem 33 Let x ∈ Cn+1(
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
ak
Dαk(tk)

tk
x(t) =

n
∑

p=1

Ap(tk − ak)
p−αk(tk)

∂px

∂tpk
[tk]k

+

N
∑

p=n

Bp(tk − ak)
n−p−αk(tk)Vp(t) +

α′
k(tk)(tk − ak)

1−αk(tk)

Γ (2− αk(tk))

×
[

(Ψ(2− αk(tk))− ln(tk − ak))

N
∑

p=0

(

1−αk(tk)
p

) (−1)p

(tk − ak)p
Vn+p(t)

+
N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
N
∑

r=1

1

r(tk − ak)p+r
Vn+p+r(t)

]

+ E(t).
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The approximation error E(t) is bounded by

E(t) ≤ Ln+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(tk − ak)

n+1−αk(tk)

+ |α′
k(tk)|L1(t)

exp((1 − αk(tk))
2 + 1− αk(tk))

Γ (2− αk(tk))N1−αk(tk)(1− αk(tk))

×
[

|Ψ(2 − αk(tk))− ln(tk − ak)|+
1

N

]

(tk − ak)
2−αk(tk).

Proof. Starting with relation (3.4), and integrating by parts the integral, we
obtain that

C
ak
Dαk(tk)

tk x(t) = C
ak
D

αk(tk)
tk x(t)

+
α′
k(tk)Ψ(1 − αk(tk))

Γ (2− αk(tk))

∫ tk

ak

(tk − τ)1−αk(tk)
∂x

∂tk
[τ ]kdτ.

The rest of the proof is similar to the one of Theorem 32.

Remark 34 As particular cases of Theorems 30, 32 and 33, we obtain ex-

pansion formulas for C
aD

α(t)
t x(t), C

a D
α(t)
t x(t) and C

a D
α(t)
t x(t).

With respect to the three right fractional operators of Definition 31, we
set, for p ∈ N,

Cp =
(−1)p

Γ (p+ 1− αk(tk))



1 +

N
∑

l=n−p+1

Γ (αk(tk)− n+ l)

Γ (αk(tk)− p)(l − n+ p)!



 ,

Dp =
−Γ (αk(tk)− n+ p)

Γ (1− αk(tk))Γ (αk(tk))(p− n)!
,

Wp(t) =

∫ bk

tk

(bk − τ)p−n ∂x

∂tk
[τ ]kdτ,

Mp(t) = max
τ∈[tk,bk]

∣

∣

∣

∣

∂px

∂tpk
[τ ]k

∣

∣

∣

∣

.

The expansion formulas are given in Theorems 35, 36 and 37. We omit the
proofs since they are similar to the corresponding left ones.

Theorem 35 Let x ∈ Cn+1 (
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
tkD

αk(tk)
bk

x(t) =

n
∑

p=1

Cp(bk − tk)
p−αk(tk)

∂px

∂tpk
[tk]k

+
N
∑

p=n

Dp(bk − tk)
n−p−αk(tk)Wp(t) + E(t).
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The approximation error E(t) is bounded by

E(t) ≤Mn+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(bk − tk)

n+1−αk(tk).

Theorem 36 Let x ∈ Cn+1 (
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
tk
D

αk(tk)
bk

x(t) =

n
∑

p=1

Cp(bk − tk)
p−αk(tk)

∂px

∂tpk
[tk]k

+

N
∑

p=n

Dp(bk − tk)
n−p−αk(tk)Wp(t) +

α′
k(tk)(bk − tk)

1−αk(tk)

Γ (2− αk(tk))

×
[

(

1

1− αk(tk)
− ln(bk − tk)

) N
∑

p=0

(

1−αk(tk)
p

) (−1)p

(bk − tk)p
Wn+p(t)

+
N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
N
∑

r=1

1

r(bk − tk)p+r
Wn+p+r(t)

]

+ E(t).

The approximation error E(t) is bounded by

E(t) ≤Mn+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(bk − tk)

n+1−αk(tk)

+ |α′
k(tk)|M1(t)

exp((1 − αk(tk))
2 + 1− αk(tk))

Γ (2− αk(tk))N1−αk(tk)(1 − αk(tk))

×
[∣

∣

∣

∣

1

1− αk(tk)
− ln(bk − tk)

∣

∣

∣

∣

+
1

N

]

(bk − tk)
2−αk(tk).

Theorem 37 Let x ∈ Cn+1 (
∏m

i=1[ai, bi],R) with n ∈ N. Then, for all k ∈
{1, . . . ,m} and for all N ∈ N such that N ≥ n, we have

C
tkD

αk(tk)
bk

x(t) =

n
∑

p=1

Cp(bk − tk)
p−αk(tk)

∂px

∂tpk
[tk]k

+

N
∑

p=n

Dp(bk − tk)
n−p−αk(tk)Wp(t) +

α′
k(tk)(bk − tk)

1−αk(tk)

Γ (2− αk(tk))

×
[

(Ψ(2− αk(tk))− ln(bk − tk))

N
∑

p=0

(

1−αk(tk)
p

) (−1)p

(bk − tk)p
Wn+p(t)

+

N
∑

p=0

(

1−αk(tk)
p

)

(−1)p
N
∑

r=1

1

r(bk − tk)p+r
Wn+p+r(t)

]

+ E(t).

The approximation error E(t) is bounded by
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E(t) ≤Mn+1(t)
exp((n− αk(tk))

2 + n− αk(tk))

Γ (n+ 1− αk(tk))Nn−αk(tk)(n− αk(tk))
(bk − tk)

n+1−αk(tk)

+ |α′
k(tk)|M1(t)

exp((1 − αk(tk))
2 + 1− αk(tk))

Γ (2− αk(tk))N1−αk(tk)(1 − αk(tk))

×
[

|Ψ(2 − αk(tk))− ln(bk − tk)|+
1

N

]

(bk − tk)
2−αk(tk).

3.3 Example

To test the accuracy of the proposed method, we compare the fractional
derivative of a concrete given function with some numerical approximations
of it. For t ∈ [0, 1], let x(t) = t2 be the test function. For the order of the
fractional derivatives we consider two cases:

α(t) =
50t+ 49

100
and β(t) =

t+ 5

10
.

We consider the approximations given in Theorems 30, 32 and 33, with a fixed
n = 1 and N ∈ {2, 4, 6}. The error of approximating f(t) by f̃(t) is measured
by |f(t)− f̃(t)|. See Figures 3.2–3.7.

(a) C
0 D

α(t)
t x(t) (b) Error

Fig. 3.2. Type III left Caputo derivative of order α(t) for the example of Sec-
tion 3.3—analytic versus numerical approximations obtained from Theorem 30.

3.4 Applications

In this section we apply the proposed technique to some concrete fractional
differential equations of physical relevance.
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(a) C
0 D

α(t)
t x(t) (b) Error

Fig. 3.3. Type I left Caputo derivative of order α(t) for the example of Section 3.3—
analytic versus numerical approximations obtained from Theorem 32.

(a) C
0 D

α(t)
t x(t) (b) Error

Fig. 3.4. Type II left Caputo derivative of order α(t) for the example of Section 3.3—
analytic versus numerical approximations obtained from Theorem 33.

3.4.1 A time-fractional diffusion equation

We extend the one-dimensional time-fractional diffusion equation (Lin and Xu,
2007) to the variable-order case. Consider u = u(x, t) with domain [0, 1]2. The
partial fractional differential equation of order α(t) is the following:

C
0 D

α(t)
t u(x, t)− ∂2u

∂x2
(x, t) = f(x, t) for x ∈ [0, 1], t ∈ [0, 1], (3.8)

subject to the boundary conditions

u(x, 0) = g(x), for x ∈ (0, 1), (3.9)
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(a) C
0 D

β(t)
t x(t) (b) Error

Fig. 3.5. Type III left Caputo derivative of order β(t) for the example of Sec-
tion 3.3—analytic versus numerical approximations obtained from Theorem 30.

(a) C
0 D

β(t)
t x(t) (b) Error

Fig. 3.6. Type I left Caputo derivative of order β(t) for the example of Section 3.3—
analytic versus numerical approximations obtained from Theorem 32.

and
u(0, t) = u(1, t) = 0, for t ∈ [0, 1]. (3.10)

We mention that when α(t) ≡ 1, one obtains the classical diffusion equation,
and when α(t) ≡ 0 one gets the classical Helmholtz elliptic equation. Using
Lemma 27, it is easy to check that

u(x, t) = t2 sin(2πx)

is a solution to (3.8)–(3.10) with
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(a) C
0 D

β(t)
t x(t) (b) Error

Fig. 3.7. Type II left Caputo derivative of order β(t) for the example of Section 3.3—
analytic versus numerical approximations obtained from Theorem 33.

f(x, t) =

(

2

Γ (3− α(t))
t2−α(t) + 4π2t2

)

sin(2πx)

and
g(x) = 0

(compare with Example 1 in (Lin and Xu, 2007)). The numerical procedure is

the following: replace C
0 D

α(t)
t u with the approximation given in Theorem 30,

taking n = 1 and an arbitrary N ≥ 1, that is,

C
0 D

α(t)
t u(x, t) ≈ At1−α(t) ∂u

∂t
(x, t) +

N
∑

p=1

Bpt
1−p−α(t)Vp(x, t)

with

A =
1

Γ (2− α(t))

[

1 +

N
∑

l=1

Γ (α(t)− 1 + l)

Γ (α(t)− 1)l!

]

,

Bp =
Γ (α(t)− 1 + p)

Γ (1− α(t))Γ (α(t))(p− 1)!
,

Vp(x, t) =

∫ t

0

τp−1 ∂u

∂t
(x, τ)dτ.

Then, the initial fractional problem (3.8)–(3.10) is approximated by the fol-
lowing system of second-order partial differential equations:

At1−α(t) ∂u

∂t
(x, t) +

N
∑

p=1

Bpt
1−p−α(t)Vp(x, t)−

∂2u

∂x2
(x, t) = f(x, t)
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and
∂Vp
∂t

(x, t) = tp−1 ∂u

∂t
(x, t), p = 1, . . . , N,

for x ∈ [0, 1] and for t ∈ [0, 1], subject to the boundary conditions

u(x, 0) = 0, for x ∈ (0, 1),

u(0, t) = u(1, t) = 0, for t ∈ [0, 1],

and
Vp(x, 0) = 0, for x ∈ [0, 1], p = 1, . . . , N.

3.4.2 A fractional partial differential equation in fluid mechanics

We now apply our approximation techniques to the following one-dimensional
linear inhomogeneous fractional Burgers’ equation of variable-order (see (Odibat and Momani,
2009, Example 5.2)):

C
0 D

α(t)
t u(x, t) +

∂u

∂x
(x, t)− ∂2u

∂x2
(x, t) =

2t2−α(t)

Γ (3− α(t))
+ 2x− 2, (3.11)

for x ∈ [0, 1] and t ∈ [0, 1], subject to the boundary condition

u(x, 0) = x2, for x ∈ (0, 1). (3.12)

Here,

F (x, t) =
2t2−α(t)

Γ (3− α(t))
+ 2x− 2

is the external force field. Burgers’ equation is used to model gas dynamics,
traffic flow, turbulence, fluid mechanics, etc. The exact solution is

u(x, t) = x2 + t2.

The fractional problem (3.11)–(3.12) can be approximated by

At1−α(t) ∂u

∂t
(x, t) +

N
∑

p=1

Bpt
1−p−α(t)Vp(x, t) +

∂u

∂x
(x, t)− ∂2u

∂x2
(x, t)

=
2t2−α(t)

Γ (3− α(t))
+ 2x− 2

with A, Bp and Vp, p ∈ {1, . . . , N}, as in Section 3.4.1. The approximation
error can be decreased as much as desired by increasing the value of N .
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4

The fractional calculus of variations

In this chapter, we consider general fractional problems of the calculus of
variations, where the Lagrangian depends on a combined Caputo fractional

derivative of variable fractional order CD
α(·,·),β(·,·)
γ given as a combination

of the left and the right Caputo fractional derivatives of orders, respectively,
α(·, ·) and β(·, ·). More specifically, here we study some problems of the cal-
culus of variations with integrands depending on the independent variable t,

an arbitrary function x and a fractional derivative CD
α(·,·),β(·,·)
γ x defined by

CDα(·,·),β(·,·)
γ x(t) = γ1

C
aD

α(·,·)
t x(t) + γ2

C
t D

β(·,·)
b x(t),

where γ = (γ1, γ2) ∈ [0, 1]2, with γ1 and γ2 not both zero.
Starting from the fundamental variational problem, we investigate different

types of variational problems: problems with time delay or with higher-order
derivatives, isoperimetric problems, problems with holonomic constraints and
problems of Herglotz and those depending on combined Caputo fractional
derivatives of variable-order. Our variational problems are known as free-time
problems because, in general, we impose a boundary condition at the initial
time t = a, but we consider the endpoint b of the integral and the terminal
state x(b) to be free (variable). The main results provide necessary optimality
conditions of Euler–Lagrange type, described by fractional differential equa-
tions of variable-order, and different transversality optimality conditions.

Our main contributions are to consider the Lagrangian containing a frac-
tional operator where the order is not a constant, and may depend on time.
Moreover, we do not only assume that x(b) is free, but the endpoint b is also
free.

In Section 4.1, we introduce the combined Caputo fractional derivative
of variable-order and provide the necessary concepts and results needed in
the sequel (Section 4.1.1). We deduce two formulas of integration by parts
that involve the combined Caputo fractional derivative of higher order (Sec-
tion 4.1.2).
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The fractional variational problems under our consideration are formulated

in terms of the fractional derivative CD
α(·,·),β(·,·)
γ . We discuss the fundamen-

tal concepts of a variational calculus such as the Euler–Lagrange equations
and transversality conditions (Section 4.2), variational problems involving
higher-order derivatives (Section 4.3), variational problems with time delay
(Section 4.4), isoperimetric problems (Section 4.5), problems with holonomic
constraints (Section 4.6) and the last Section 4.7 investigates fractional vari-
ational Herglotz problems.

Some illustrative examples are presented for all considered variational
problems.

The results of this chapter first appeared in (Tavares, Almeida and Torres,
2015, 2017, 2018a,b).

4.1 Introduction

In this section, we recall the fundamental definition of the combined Caputo
fractional derivative presented in Section 1.3.3 (see Definition 15), and gen-
eralize it for fractional variable-order. In the end, we prove an integration
by parts formula, involving the higher-order Caputo fractional derivative of
variable-order.

4.1.1 Combined operators of variable-order

Motivated by the combined fractional Caputo derivative, we propose the fol-
lowing definitions about combined variable-order fractional calculus.

Let α, β : [a, b]2 → (0, 1) be two functions and γ = (γ1, γ2) ∈ [0, 1]2 a
vector, with γ1 and γ2 not both zero.

Definition 32 The combined Riemann–Liouville fractional derivative of variable-

order, denoted by D
α(·,·),β(·,·)
γ , is defined by

Dα(·,·),β(·,·)
γ = γ1 aD

α(·,·)
t + γ2 tD

β(·,·)
b ,

acting on x ∈ C([a, b];R) in the following way:

Dα(·,·),β(·,·)
γ x(t) = γ1 aD

α(·,·)
t x(t) + γ2 tD

β(·,·)
b x(t).

Definition 33 The combined Caputo fractional derivative operator of variable-

order, denoted by CD
α(·,·),β(·,·)
γ , is defined by

CDα(·,·),β(·,·)
γ = γ1

C
aD

α(·,·)
t + γ2

C
t D

β(·,·)
b ,

acting on x ∈ C1([a, b];R) in the following way:

CDα(·,·),β(·,·)
γ x(t) = γ1

C
aD

α(·,·)
t x(t) + γ2

C
t D

β(·,·)
b x(t).
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In the sequel, we need the auxiliary notation of the dual fractional deriva-
tive, defined by

D
β(·,·),α(·,·)
γ = γ2 aD

β(·,·)
t + γ1 tD

α(·,·)
T , (4.1)

where γ = (γ2, γ1) and T ∈ (a, b].
To generalize the concept of the combined fractional derivative to higher

orders, we need to review some definitions of higher-order operators.
Let n ∈ N and x : [a, b] → R be a function of class Cn. The fractional

order is a continuous function of two variables, αn : [a, b]2 → (n− 1, n).

Definition 34 The left and right Riemann–Liouville fractional integrals of
order αn(·, ·) are defined respectively by

aI
αn(·,·)
t x(t) =

∫ t

a

1

Γ (αn(t, τ))
(t− τ)αn(t,τ)−1x(τ)dτ

and

tI
αn(·,·)
b x(t) =

∫ b

t

1

Γ (αn(τ, t))
(τ − t)αn(τ,t)−1x(τ)dτ.

With this definition of Riemann–Liouville fractional integrals of variable-
order, and considering n = 1, in Appendix A.1 we implemented two func-
tions leftFI(x,alpha,a) and rightFI(x,alpha,b) that approximate, re-

spectively, the Riemann–Liouville fractional integrals aI
αn(·,·)
t x and tI

αn(·,·)
b x,

using the open source software package Chebfun (Trefethen, 2013). With
these two functions we present also, in Appendix A.1, an illustrative ex-
ample where we determine computational approximations to the fractional
integrals for a specific power function of the form x(t) = tγ (see Example 4.4
in Appendix A.1). For this numerical computations, we have used MATLAB

(Linge and Langtangen, 2016).

Definition 35 The left and right Riemann–Liouville fractional derivatives of
order αn(·, ·) are defined by

aD
αn(·,·)
t x(t) =

dn

dtn

∫ t

a

1

Γ (n− αn(t, τ))
(t− τ)n−1−αn(t,τ)x(τ)dτ

and

tD
αn(·,·)
b x(t) = (−1)n

dn

dtn

∫ b

t

1

Γ (n− αn(τ, t))
(τ − t)n−1−αn(τ,t)x(τ)dτ,

respectively.

Definition 36 The left and right Caputo fractional derivatives of order
αn(·, ·) are defined by
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C
aD

αn(·,·)
t x(t) =

∫ t

a

1

Γ (n− αn(t, τ))
(t− τ)n−1−αn(t,τ)x(n)(τ)dτ (4.2)

and

C
t D

αn(·,·)
b x(t) = (−1)n

∫ b

t

1

Γ (n− αn(τ, t))
(τ − t)n−1−αn(τ,t)x(n)(τ)dτ, (4.3)

respectively.

Remark 38 Definitions 35 and 36, for the particular case of order between
0 and 1, can be found in (Malinowska, Odzijewicz and Torres, 2015). They
seem to be new for the higher-order case.

Considering Definition 36, in Appendix A.2 we implement two new func-
tions leftCaputo(x,alpha,a,n) and rightCaputo(x,alpha,b,n) that ap-

proximate the higher-order Caputo fractional derivatives C
aD

αn(·,·)
t x and C

t D
αn(·,·)
b x,

respectively. With these two functions, we present, also in Appendix A.2, an
illustrative example where we study approximations to the Caputo fractional
derivatives for a specific power function of the form x(t) = tγ (see Example 4.5
in Appendix A.2).

Remark 39 From Definition 34, it follows that

aD
αn(·,·)
t x(t) =

dn

dtn
aI

n−αn(·,·)
t x(t), tD

αn(·,·)
b x(t) = (−1)n

dn

dtn
tI

n−αn(·,·)
b x(t)

and

C
aD

αn(·,·)
t x(t) = aI

n−αn(·,·)
t

dn

dtn
x(t), C

t D
αn(·,·)
b x(t) = (−1)n tI

n−αn(·,·)
b

dn

dtn
x(t).

In Lemma 40, we obtain higher-order Caputo fractional derivatives of a
power function. For that, we assume that the fractional order depends only
on the first variable: αn(t, τ) := αn(t), where αn : [a, b] → (n− 1, n) is a given
function.

Lemma 40 Let x(t) = (t− a)γ with γ > n− 1. Then,

C
aD

αn(t)
t x(t) =

Γ (γ + 1)

Γ (γ − αn(t) + 1)
(t− a)γ−αn(t).

Proof. As x(t) = (t− a)γ , if we differentiate it n times, we obtain

x(n)(t) =
Γ (γ + 1)

Γ (γ − n+ 1)
(t− a)γ−n.

Using Definition 36 of the left Caputo fractional derivative, we get
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C
aD

αn(t)
t x(t) =

∫ t

a

1

Γ (n− αn(t))
(t− τ)n−1−αn(t)x(n)(τ)dτ

=

∫ t

a

Γ (γ + 1)

Γ (γ − n+ 1)Γ (n− αn(t))
(t− τ)n−1−αn(t)(τ − a)γ−ndτ.

Now, we proceed with the change of variables τ −a = s(t−a). Using the Beta
function B(·, ·), we obtain that

C
aD

αn(t)
t x(t) =

Γ (γ + 1)

Γ (γ − n+ 1)Γ (n− αn(t))

×
∫ 1

0
(1− s)n−1−αn(t)sγ−n(t− a)γ−αn(t)ds

=
Γ (γ + 1)(t− a)γ−αn(t)

Γ (γ − n+ 1)Γ (n− αn(t))
B (γ − n+ 1, n− αn(t))

=
Γ (γ + 1)

Γ (γ − αn(t) + 1)
(t− a)γ−αn(t).

The proof is complete.

Considering the higher-order left Caputo fractional derivative’s formula of
a power function of the form x(t) = (t−a)γ , deduced before, in Appendix A.2
we determine the left Caputo fractional derivative of the particular function
x(t) = t4 for several values of t and compare them with the approximated
values obtained by the Chebfun function leftCaputo(x,alpha,a,n) (see Ex-
ample 4.7 in Appendix A.2).

For our next result, we assume that the fractional order depends only on
the second variable: αn(τ, t) := αn(t), where αn : [a, b] → (n− 1, n) is a given
function. The proof is similar to that of Lemma 40, and so we omit it here.

Lemma 41 Let x(t) = (b− t)γ with γ > n− 1. Then,

C
t D

αn(t)
b x(t) =

Γ (γ + 1)

Γ (γ − αn(t) + 1)
(b − t)γ−αn(t).

The next step is to consider a linear combination of the previous fractional
derivatives to define the combined fractional operators for higher-order.

Let αn, βn : [a, b]2 → (n − 1, n) be two variable fractional orders, γn =
(γn1 , γ

n
2 ) ∈ [0, 1]2 a vector, with γ1 and γ2 not both zero, and x ∈ Cn ([a, b];R)

a function.

Definition 37 The higher-order combined Riemann–Liouville fractional deriva-
tive is defined by

D
αn(·,·),βn(·,·)
γn = γn1 aD

αn(·,·)
t + γn2 tD

βn(·,·)
b ,

acting on x ∈ Cn ([a, b];R) in the following way:

D
αn(·,·),βn(·,·)
γn x(t) = γn1 aD

αn(·,·)
t x(t) + γn2 tD

βn(·,·)
b x(t).
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In our work, we use both Riemann–Liouville and Caputo derivatives defi-
nitions. The emphasis is, however, in Caputo fractional derivatives.

Definition 38 The higher-order combined Caputo fractional derivative of x
at t is defined by

CD
αn(·,·),βn(·,·)
γn x(t) = γn1

C
aD

αn(·,·)
t x(t) + γn2

C
t D

βn(·,·)
b x(t).

Similarly, in the sequel of this work, we need the auxiliary notation of the
dual fractional derivative:

D
βi(·,·),αi(·,·)
γi

= γi2 aD
βi(·,·)
t + γi1 tD

αi(·,·)
T , (4.4)

where γi = (γi2, γ
i
1) and T ∈ (a, b].

Some computational aspects about the combined Caputo fractional deriva-
tive of variable-order, are also discussed in Appendix A.3, using the software
package Chebfun. For that, we developed the new function (see Example 4.8
in Appendix A.3) combinedCaputo(x,alpha,beta,gamma1,gamma2,a,b,n)

and obtained approximated values for a particular power function.

4.1.2 Generalized fractional integration by parts

When dealing with variational problems, one key property is integration by
parts. Formulas of integration by parts have an important role in the proof
of Euler–Lagrange conditions. In the following theorem, such formulas are
proved for integrals involving higher-order Caputo fractional derivatives of
variable-order.

Let n ∈ N and x, y ∈ Cn ([a, b];R) be two functions. The fractional order
is a continuous function of two variables, αn : [a, b]2 → (n− 1, n).

Theorem 42 The higher-order Caputo fractional derivatives of variable-
order satisfy the integration by parts formulas

∫ b

a

y(t)CaD
αn(·,·)
t x(t)dt =

∫ b

a

x(t) tD
αn(·,·)
b y(t)dt

+

[

n−1
∑

k=0

(−1)kx(n−1−k)(t)
dk

dtk
tI

n−αn(·,·)
b y(t)

]t=b

t=a

and

∫ b

a

y(t)Ct D
αn(·,·)
b x(t)dt =

∫ b

a

x(t) aD
αn(·,·)
t y(t)dt

+

[

n−1
∑

k=0

(−1)n+kx(n−1−k)(t)
dk

dtk
aI

n−αn(·,·)
t y(t)

]t=b

t=a

.



4.1 Introduction 67

Proof. Considering the Definition 36 of left Caputo fractional derivatives of
order αn(·, ·), we obtain

∫ b

a

y(t)CaD
αn(·,·)
t x(t)dt

=

∫ b

a

∫ t

a

y(t)
1

Γ (n− αn(t, τ))
(t− τ)n−1−αn(t,τ)x(n)(τ)dτdt.

Using Dirichelt’s Formula, we rewrite it as

∫ b

a

∫ b

t

y(τ)
(τ − t)n−1−αn(τ,t)

Γ (n− αn(τ, t))
x(n)(t)dτdt

=

∫ b

a

x(n)(t)

∫ b

t

(τ − t)n−1−αn(τ,t)

Γ (n− αn(τ, t))
y(τ)dτdt =

∫ b

a

x(n)(t) tI
n−αn(·,·)
b y(t)dt.

(4.5)

Using the (usual) integrating by parts formula, we get that (4.5) is equal to

−
∫ b

a

x(n−1)(t)
d

dt
tI

n−αn(·,·)
b y(t)dt+

[

x(n−1)(t)tI
n−αn(·,·)
b y(t)

]t=b

t=a
.

Integrating by parts again, we obtain

∫ b

a

x(n−2)(t)
d2

dt2
tI

n−αn(·,·)
b y(t)dt

+

[

x(n−1)(t) tI
n−αn(·,·)
b y(t)− x(n−2)(t)

d

dt
tI

n−αn(·,·)
b y(t)

]t=b

t=a

.

If we repeat this process n− 2 times more, we get

∫ b

a

x(t)(−1)n
dn

dtn
tI

n−αn(·,·)
b y(t)dt

+

[

n−1
∑

k=0

(−1)kx(n−1−k)(t)
dk

dtk
tI

n−αn(·,·)
b y(t)

]t=b

t=a

=

∫ b

a

x(t)tD
αn(·,·)
b y(t)dt+

[

n−1
∑

k=0

(−1)kx(n−1−k)(t)
dk

dtk
tI

n−αn(·,·)
b y(t)

]t=b

t=a

.

The second relation of the theorem for the right Caputo fractional deriva-
tive of order αn(·, ·), follows directly from the first by Caputo–Torres duality
(Caputo and Torres, 2015).

Remark 43 If we consider in Theorem 42 the particular case when n = 1,
then the fractional integration by parts formulas take the well-known forms
presented in Theorem 13.
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Remark 44 If x is such that x(i)(a) = x(i)(b) = 0, i = 0, . . . , n− 1, then the
higher-order formulas of fractional integration by parts given by Theorem 42
can be rewritten as

∫ b

a

y(t)CaD
αn(·,·)
t x(t)dt =

∫ b

a

x(t) tD
αn(·,·)
b y(t)dt

and
∫ b

a

y(t)Ct D
αn(·,·)
b x(t)dt =

∫ b

a

x(t) aD
αn(·,·)
t y(t)dt.

4.2 Fundamental variational problem

This section is dedicated to establish necessary optimality conditions for vari-
ational problems with a Lagrangian depending on a combined Caputo deriva-
tive of variable fractional order. The problem is then stated in Section 4.2.1,
consisting of the variational functional

J (x, T ) =

∫ T

a

L
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

dt+ φ(T, x(T )),

where CD
α(·,·),β(·,·)
γ x(t) stands for the combined Caputo fractional derivative

of variable fractional order (Definition 33), subject to the boundary condition
x(a) = xa.

In this problem, we do not only assume that x(T ) is free, but the endpoint
T is also variable. Therefore, we are interested in finding an optimal curve
x(·) and also the endpoint of the variational integral, denoted in the sequel
by T .

We begin by proving in Section 4.2.1 necessary optimality conditions that
every extremizer (x, T ) must satisfy. The main results of this section pro-
vide necessary optimality conditions of Euler–Lagrange type, described by
fractional differential equations of variable-order, and different transversality
optimality conditions (Theorems 45 and 46). Some particular cases of inter-
est are considered in Section 4.2.2. We end with two illustrative examples
(Section 4.2.3).

4.2.1 Necessary optimality conditions

Let α, β : [a, b]2 → (0, 1) be two functions. Let D denote the set

D =
{

(x, t) ∈ C1([a, b])× [a, b] : CDα(·,·),β(·,·)
γ x ∈ C([a, b])

}

, (4.6)

endowed with the norm ‖(·, ·)‖ defined on the linear space C1([a, b])× R by

‖(x, t)‖ := max
a≤t≤b

|x(t)|+ max
a≤t≤b

∣

∣

∣

CDα(·,·),β(·,·)
γ x(t)

∣

∣

∣
+ |t|.
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Definition 39 We say that (x⋆, T ⋆) ∈ D is a local minimizer to the func-
tional J : D → R if there exists some ǫ > 0 such that

∀(x, T ) ∈ D : ‖(x⋆, T ⋆)− (x, T )‖ < ǫ⇒ J(x⋆, T ⋆) ≤ J(x, T ).

Along the work, we denote by ∂iz, i ∈ {1, 2, 3}, the partial derivative of a
function z : R3 → R with respect to its ith argument, and by L a differentiable
Lagrangian L : [a, b]× R

2 → R.
Consider the following problem of the calculus of variations:

Problem 1 Find the local minimizers of the functional J : D → R, with

J (x, T ) =

∫ T

a

L
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

dt+ φ(T, x(T )), (4.7)

over all (x, T ) ∈ D satisfying the boundary condition x(a) = xa, for a fixed
xa ∈ R. The terminal time T and terminal state x(T ) are free.
The terminal cost function φ : [a, b]× R → R is at least of class C1.

For simplicity of notation, we introduce the operator [·]α,βγ defined by

[x]α,βγ (t) =
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

. (4.8)

With the new notation, one can write (4.7) simply as

J (x, T ) =

∫ T

a

L[x]α,βγ (t)dt+ φ(T, x(T )).

The next theorem gives fractional necessary optimality conditions to Prob-
lem 1.

Theorem 45 Suppose that (x, T ) is a local minimizer to the functional (4.7)
on D. Then, (x, T ) satisfies the fractional Euler–Lagrange equations

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3L[x]

α,β
γ (t) = 0, (4.9)

on the interval [a, T ], and

γ2

(

aD
β(·,·)
t ∂3L[x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

)

= 0, (4.10)

on the interval [T, b]. Moreover, (x, T ) satisfies the transversality conditions















L[x]α,βγ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x
′(T ) = 0,

[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
= 0.

(4.11)
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Proof. Let (x, T ) be a solution to the problem and (x+ ǫh, T + ǫ∆T ) be an
admissible variation, where h ∈ C1([a, b];R) is a perturbing curve, △T ∈ R

represents an arbitrarily chosen small change in T and ǫ ∈ R represents a
small number. The constraint x(a) = xa implies that all admissible variations
must fulfill the condition h(a) = 0. Define j(·) on a neighborhood of zero by

j(ǫ) = J (x+ ǫh, T + ǫ△T )

=

∫ T+ǫ△T

a

L[x+ ǫh]α,βγ (t) dt+ φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) .

The derivative j′(ǫ) is

∫ T+ǫ△T

a

(

∂2L[x+ ǫh]α,βγ (t)h(t) + ∂3L[x+ ǫh]α,βγ (t)CDα(·,·),β(·,·)
γ h(t)

)

dt

+ L[x+ ǫh]α,βγ (T + ǫ∆T )∆T + ∂1φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) ∆T
+ ∂2φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) [(x+ ǫh)(T + ǫ△T )]′ .

Considering the differentiability properties of j, a necessary condition for
(x, T ) to be a local extremizer is given by j′(ǫ)|ǫ=0 = 0, that is,

∫ T

a

(

∂2L[x]
α,β
γ (t)h(t) + ∂3L[x]

α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)
)

dt+ L[x]α,βγ (T )∆T

+ ∂1φ (T, x(T ))∆T + ∂2φ(T, x(T )) [h(T ) + x′(T )△T ] = 0. (4.12)

The second addend of the integral function (4.12),

∫ T

a

∂3L[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)dt, (4.13)

can be written, using the definition of combined Caputo fractional derivative,
as

∫ T

a

∂3L[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)dt

=

∫ T

a

∂3L[x]
α,β
γ (t)

[

γ1
C
aD

α(·,·)
t h(t) + γ2

C
t D

β(·,·)
b h(t)

]

dt

= γ1

∫ T

a

∂3L[x]
α,β
γ (t)Ca D

α(·,·)
t h(t)dt

+ γ2

[

∫ b

a

∂3L[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt−

∫ b

T

∂3L[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt

]

.

Integrating by parts (see Theorem 13), and since h(a) = 0, the term (4.13)
can be written as
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γ1

[

∫ T

a

h(t)tD
α(·,·)
T ∂3L[x]

α,β
γ (t)dt +

[

h(t)tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)

]

t=T

]

+ γ2

[

∫ b

a

h(t)aD
β(·,·)
t ∂3L[x]

α,β
γ (t)dt−

[

h(t)aI
1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b

−
(

∫ b

T

h(t)TD
β(·,·)
t ∂3L[x]

α,β
γ (t)dt−

[

h(t)T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b

+
[

h(t)T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T

)]

.

Unfolding these integrals, and considering the fractional operator D
β(·,·),α(·,·)
γ

with γ = (γ2, γ1), then (4.13) is equivalent to

∫ T

a

h(t)D
β(·,·),α(·,·)
γ ∂3L[x]

α,β
γ (t)dt

+

∫ b

T

γ2h(t)
[

aD
β(·,·)
t ∂3L[x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

]

dt

+
[

h(t)
(

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=T

+
[

h(t)γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=b
.

Substituting these relations into equation (4.12), we obtain

0 =

∫ T

a

h(t)
[

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3L[x]

α,β
γ (t)

]

dt

+

∫ b

T

γ2h(t)
[

aD
β(·,·)
t ∂3L[x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

]

dt

+ h(T )
[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

+ ∂2φ(t, x(t))
]

t=T

+∆T
[

L[x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′(t)
]

t=T

+ h(b)
[

γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=b
.

(4.14)

As h and △T are arbitrary, we can choose △T = 0 and h(t) = 0, for all
t ∈ [T, b], but h is arbitrary in t ∈ [a, T ). Then, for all t ∈ [a, T ], we obtain
the first necessary condition (4.9):

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3L[x]

α,β
γ (t) = 0.

Analogously, considering △T = 0, h(t) = 0, for all t ∈ [a, T ] ∪ {b}, and h
arbitrary on (T, b), we obtain the second necessary condition (4.10):
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γ2

(

aD
β(·,·)
t ∂3L[x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

)

= 0.

As (x, T ) is a solution to the necessary conditions (4.9) and (4.10), then equa-
tion (4.14) takes the form

0 =h(T )
[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

L[x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′(t)
]

t=T

+ h(b)
[

γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=b
.

(4.15)

Transversality conditions (4.11) are obtained for appropriate choices of vari-
ations.

In the next theorem, considering the same Problem 1, we rewrite the
transversality conditions (4.11) in terms of the increment ∆T on time and
on the consequent increment ∆xT on x, given by

∆xT = (x+ h) (T +∆T )− x(T ). (4.16)

Theorem 46 Let (x, T ) be a local minimizer to the functional (4.7) on D.
Then, the fractional Euler–Lagrange equations (4.9) and (4.10) are satisfied
together with the following transversality conditions:



























L[x]α,βγ (T ) + ∂1φ(T, x(T ))

+x′(T )
[

γ2T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− γ1tI

1−α(·,·)
T ∂3L[x]

α,β
γ (t)

]

t=T
= 0,

[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
= 0.

(4.17)

Proof. The Euler–Lagrange equations are deduced following similar argu-
ments as the ones presented in Theorem 45. We now focus our attention
on the proof of the transversality conditions. Using Taylor’s expansion up to
first order for a small ∆T , and restricting the set of variations to those for
which h′(T ) = 0, we obtain

(x+ h) (T +∆T ) = (x+ h)(T ) + x′(T )∆T +O(∆T )2.

Rearranging the relation (4.16) allows us to express h(T ) in terms of ∆T and
∆xT :

h(T ) = ∆xT − x′(T )∆T +O(∆T )2.

Substitution of this expression into (4.15) gives us
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0 =∆xT

[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

L[x]α,βγ (t) + ∂1φ(t, x(t))

−x′(t)
(

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=T

+ h(b)
[

γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

)]

t=b
+O(∆T )2.

Transversality conditions (4.17) are obtained using appropriate choices of vari-
ations.

4.2.2 Particular cases

Now, we specify our results to three particular cases of variable terminal
points.

Vertical terminal line
This case involves a fixed upper bound T . Thus,∆T = 0 and, consequently,

the second term in (4.15) drops out. Since ∆xT is arbitrary, we obtain the
following transversality conditions: if T < b, then






[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
= 0;

if T = b, then ∆xT = h(b) and the transversality conditions reduce to
[

γ1 tI
1−α(·,·)
b ∂3L[x]

α,β
γ (t)− γ2 aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
+ ∂2φ(b, x(b)) = 0.

Horizontal terminal line
In this situation, we have∆xT = 0 but∆T is arbitrary. Thus, the transver-

sality conditions are














L[x]α,βγ (T ) + ∂1φ(T, x(T ))

+x′(T )
[

γ2T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− γ1tI

1−α(·,·)
T ∂3L[x]

α,β
γ (t)

]

t=T
= 0,

γ2

[

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
= 0.

Terminal curve
Now the terminal point is described by a given curve ψ : C1([a, b]) → R,

in the sense that x(T ) = ψ(T ). From Taylor’s formula, for a small arbitrary
∆T , one has

∆x(T ) = ψ′(T )∆T +O(∆T )2.

Hence, the transversality conditions are presented in the form














L[x]α,βγ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))ψ
′(T ) + (x′(T )− ψ′(T ))

×
[

γ2 T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− γ1 tI

1−α(·,·)
T ∂3L[x]

α,β
γ (t)

]

t=T
= 0,

γ2

[

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
= 0.
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4.2.3 Examples

In this section, we show two examples to illustrate the new results. Let
α(t, τ) = α(t) and β(t, τ) = β(τ) be two functions depending on a variable t
and τ only, respectively. Consider the following fractional variational problem:
to minimize the functional

J (x, T ) =

∫ T

0

[

2α(t)− 1

+

(

CDα(·),β(·)
γ x(t)− t1−α(t)

2Γ (2− α(t))
− (10− t)1−β(t)

2Γ (2− β(t))

)2]

dt

for t ∈ [0, 10], subject to the initial condition x(0) = 0 and where γ =
(γ1, γ2) = (1/2, 1/2). Simple computations show that for x(t) = t, with
t ∈ [0, 10], we have

CDα(·),β(·)
γ x(t) =

t1−α(t)

2Γ (2− α(t))
+

(10− t)1−β(t)

2Γ (2− β(t))
.

For x(t) = t the functional reduces to

J (x, T ) =

∫ T

0

(2α(t)− 1)dt.

In order to determine the optimal time T , we have to solve the equation
2α(T ) = 1. For example, let α(t) = t2/2. In this case, since J (x, T ) ≥ −2/3 for
all pairs (x, T ) and J (x, 1) = −2/3, we conclude that the (global) minimum
value of the functional is −2/3, obtained for x and T = 1. It is obvious that
the two Euler–Lagrange equations (4.9) and (4.10) are satisfied when x = x,
since

∂3L[x]
α,β
γ (t) = 0 for all t ∈ [0, 10].

Using this relation, together with

L[x]α,βγ (1) = 0,

the transversality conditions (4.11) are also verified.
For our last example, consider the functional

J (x, T ) =

∫ T

0

[

2α(t)− 1

+

(

CDα(·),β(·)
γ x(t)− t1−α(t)

2Γ (2− α(t))
− (10− t)1−β(t)

2Γ (2− β(t))

)3]

dt,

where the remaining assumptions and conditions are as in the previous ex-
ample. For this case, x(t) = t and T = 1 still satisfy the necessary optimality
conditions. However, we cannot assure that (x, 1) is a local minimizer to the
problem.
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4.3 Higher-order variational problems

In this section, we intend to generalize the results obtained in Section 4.2 by
considering higher-order variational problems with a Lagrangian depending
on a higher-order combined Caputo derivative of variable fractional order,
defined by

CD
αn(·,·),βn(·,·)
γn x(t) = γn1

C
aD

αn(·,·)
t x(t) + γn2

C
t D

βn(·,·)
b x(t),

subject to boundary conditions at the initial time t = a.
In Section 4.3.1, we obtain higher-order Euler–Lagrange equations and

transversality conditions for the generalized variational problem with a La-
grangian depending on a combined Caputo fractional derivative of variable
fractional order (Theorems 47 and 49).

One illustrative example is discussed in Section 4.3.2.

4.3.1 Necessary optimality conditions

Let n ∈ N and x : [a, b] → R be a function of class Cn. The fractional order is
a continuous function of two variables, αn : [a, b]2 → (n− 1, n).

Let D denote the linear subspace of Cn([a, b]) × [a, b] such that the frac-

tional derivative of x, CD
αi(·,·),βi(·,·)
γi x(t), exists and is continuous on the in-

terval [a, b] for all i ∈ {1, . . . , n}. We endow D with the norm

‖(x, t)‖ = max
a≤t≤b

|x(t)| + max
a≤t≤b

n
∑

i=1

∣

∣

∣

CD
αi(·,·),βi(·,·)
γi x(t)

∣

∣

∣
+ |t|.

Consider the following higher-order problem of the calculus of variations:

Problem 2 Minimize functional J : D → R, where

J (x, T ) =

∫ T

a

L
(

t, x(t), CD
α1(·,·),β1(·,·)
γ1 x(t), . . . , CD

αn(·,·),βn(·,·)
γn x(t)

)

dt

+ φ(T, x(T )), (4.18)

over all (x, T ) ∈ D subject to boundary conditions

x(a) = xa, x(i)(a) = xia, ∀i ∈ {1, . . . , n− 1},

for fixed xa, x
1
a, . . . , x

n−1
a ∈ R. Here the terminal time T and terminal state

x(T ) are both free. For all i ∈ {1, . . . , n}, αi, βi
(

[a, b]2
)

⊆ (i − 1, i) and γi =
(

γi1, γ
i
2

)

is a vector. The terminal cost function φ : [a, b]× R → R is at least
of class C1.
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For simplicity of notation, we introduce the operator [·]α,βγ defined by

[x]α,βγ (t) =
(

t, x(t), CD
α1(·,·),β1(·,·)
γ1 x(t), . . . , CD

αn(·,·),βn(·,·)
γn x(t)

)

.

We assume that the Lagrangian L : [a, b]×R
n+1 → R is a function of class C1.

Along the work, we denote by ∂iL, i ∈ {1, . . . , n + 2}, the partial derivative
of the Lagrangian L with respect to its ith argument.

Now, we can rewrite functional (4.18) as

J (x, T ) =

∫ T

a

L[x]α,βγ (t)dt+ φ(T, x(T )). (4.19)

In the previous section, we obtained fractional necessary optimality con-
ditions that every local minimizer of functional J , with n = 1, must fulfill.
Here, we generalize those results to arbitrary values of n, n ∈ N. Necessary
optimality conditions for Problem 2 are presented next.

Theorem 47 Suppose that (x, T ) gives a minimum to functional (4.19) on
D. Then, (x, T ) satisfies the following fractional Euler–Lagrange equations:

∂2L[x]
α,β
γ (t) +

n
∑

i=1

D
βi(·,·),αi(·,·)
γi

∂i+2L[x]
α,β
γ (t) = 0, (4.20)

on the interval [a, T ], and

n
∑

i=1

γi2

(

aD
βi(·,·)
t ∂i+2L[x]

α,β
γ (t)− TD

βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

)

= 0, (4.21)

on the interval [T, b]. Moreover, (x, T ) satisfies the following transversality
conditions:
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
























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

















































L[x]
α,β
γ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x

′(T ) = 0,
n
∑

i=1

[

γi1(−1)i−1 di−1

dti−1 tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

− γi2
di−1

dti−1 T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

+ ∂2φ(T, x(T )) = 0,

n
∑

i=j+1

[

γi1(−1)i−1−j d
i−1−j

dti−1−j tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

+ γi2(−1)j+1 di−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

= 0, ∀j = 1, . . . , n− 1,

n
∑

i=j+1

[

γi2(−1)j+1

[

di−1−j

dti−1−j aI
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

− di−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]]

t=b

= 0, ∀j = 0, . . . , n− 1.

(4.22)
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Proof. The proof is an extension of the one used in Theorem 45. Let h ∈
Cn([a, b];R) be a perturbing curve and △T ∈ R an arbitrarily chosen small
change in T . For a small number ǫ ∈ R, if (x, T ) is a solution to the problem,
we consider an admissible variation of (x, T ) of the form (x+ ǫh, T + ǫ∆T ),
and then, by the minimum condition, we have that

J (x, T ) ≤ J (x+ ǫh, T + ǫ∆T ).

The constraints x(i)(a) = x
(i)
a imply that all admissible variations must fulfill

the conditions h(i)(a) = 0, for all i = 0, . . . , n− 1. We define function j(·) on
a neighborhood of zero by

j(ǫ) = J (x+ ǫh, T + ǫ△T )

=

∫ T+ǫ△T

a

L[x+ ǫh]α,βγ (t) dt+ φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) .

The derivative j′(ǫ) is given by the expression

∫ T+ǫ△T

a

(

∂2L[x+ ǫh]α,βγ (t)h(t) +
n
∑

i=1

∂i+2L[x+ ǫh]α,βγ (t)CD
αi(·,·),βi(·,·)
γi h(t)

)

dt

+ L[x+ ǫh]α,βγ (T + ǫ∆T )∆T + ∂1φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) ∆T
+ ∂2φ (T + ǫ△T, (x+ ǫh)(T + ǫ△T )) (x + ǫh)′(T + ǫ△T ).

Hence, by Fermat’s theorem, a necessary condition for (x, T ) to be a local
minimizer of j is given by j′(0) = 0, that is,

∫ T

a

(

∂2L[x]
α,β
γ (t)h(t) +

n
∑

i=1

∂i+2L[x]
α,β
γ (t)CD

αi(·,·),βi(·,·)
γi h(t)

)

dt

+ L[x]α,βγ (T )∆T + ∂1φ (T, x(T ))∆T + ∂2φ(T, x(T )) [h(t) + x′(T )△T ] = 0.

(4.23)

Considering the second addend of the integral function (4.23), for i = 1, we
get

∫ T

a

∂3L[x]
α,β
γ (t)CD

α1(·,·),β1(·,·)
γ1 h(t)dt

=

∫ T

a

∂3L[x]
α,β
γ (t)

[

γ11
C
aD

α1(·,·)
t h(t) + γ12

C
t D

β1(·,·)
b h(t)

]

dt

= γ11

∫ T

a

∂3L[x]
α,β
γ (t)CaD

α1(·,·)
t h(t)dt

+ γ12

[

∫ b

a

∂3L[x]
α,β
γ (t)Ct D

β1(·,·)
b h(t)dt−

∫ b

T

∂3L[x]
α,β
γ (t)Ct D

β1(·,·)
b h(t)dt

]

.
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Integrating by parts (see Theorem 42), and since h(a) = 0, we obtain that

γ11

[

∫ T

a

h(t)tD
α1(·,·)
T ∂3L[x]

α,β
γ (t)dt+

[

h(t)tI
1−α1(·,·)
T ∂3L[x]

α,β
γ (t)

]

t=T

]

+ γ12

[

∫ b

a

h(t)aD
β1(·,·)
t ∂3L[x]

α,β
γ (t)dt −

[

h(t)aI
1−β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b

−
(

∫ b

T

h(t)TD
β1(·,·)
t ∂3L[x]

α,β
γ (t)dt−

[

h(t)T I
1−β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b

+
[

h(t)T I
1−β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T

)]

.

Unfolding these integrals, and considering the fractional operator Dβ1,α1

γ1
with

γ1 = (γ12 , γ
1
1), then the previous term is equal to

∫ T

a

h(t)D
β1(·,·),α1(·,·)
γ1

∂3L[x]
α,β
γ (t)dt

+

∫ b

T

γ12h(t)
[

aD
β1(·,·)
t ∂3L[x]

α,β
γ (t)− TD

β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

dt

+ h(T )
[

γ11 tI
1−α1(·,·)
T ∂3L[x]

α,β
γ (t)− γ12 T I

1−β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=T

− h(b)γ12

[

aI
1−β1(·,·)
t ∂3L[x]

α,β
γ (t)− T I

1−β1(·,·)
t ∂3L[x]

α,β
γ (t)

]

t=b
.

Considering the third addend of the integral function (4.23), for i = 2, we get

∫ T

a

∂4L[x]
α,β
γ (t)CD

α2(·,·),β2(·,·)
γ2 h(t)dt = γ21

∫ T

a

∂4L[x]
α,β
γ (t)CaD

α2(·,·)
t h(t)dt

+ γ22

[

∫ b

a

∂4L[x]
α,β
γ (t)Ct D

β2(·,·)
b h(t)dt−

∫ b

T

∂4L[x]
α,β
γ (t)Ct D

β2(·,·)
b h(t)dt

]

= γ21

[

∫ T

a

h(t)tD
α2(·,·)
T ∂4L[x]

α,β
γ (t)dt

+

[

h(1)(t)tI
2−α2(·,·)
T ∂4L[x]

α,β
γ (t)− h(t)

d

dt
tI

2−α2(·,·)
T ∂4L[x]

α,β
γ (t)

]

t=T

]

+ γ22

[

∫ b

a

h(t)aD
β2(·,·)
t ∂4L[x]

α,β
γ (t)dt

+

[

h(1)(t)aI
2−β2(·,·)
t ∂4L[x]

α,β
γ (t)− h(t)

d

dt
aI

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

]

t=b
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−
∫ b

T

h(t)TD
β2(·,·)
t ∂4L[x]

α,β
γ (t)dt

−
[

h(1)(t)T I
2−β2(·,·)
t ∂4L[x]

α,β
γ (t)− h(t)

d

dt
T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

]

t=b

+

[

h(1)(t)T I
2−β2(·,·)
t ∂4L[x]

α,β
γ (t)− h(t)

d

dt
T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

]

t=T

]

.

Again, with the auxiliary operator Dβ2,α2

γ2
, with γ2 = (γ22 , γ

2
1), we obtain

∫ T

a

h(t)D
β2(·,·),α2(·,·)
γ2

∂4L[x]
α,β
γ (t)dt

+

∫ b

T

γ22h(t)
[

aD
β2(·,·)
t ∂4L[x]

α,β
γ (t)− TD

β2(·,·)
t ∂4L[x]

α,β
γ (t)

]

dt

+
[

h(1)(t)
(

γ21 tI
2−α2(·,·)
T ∂4L[x]

α,β
γ (t) + γ22 T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

)]

t=T

−
[

h(t)

(

γ21
d

dt
tI

2−α2(·,·)
T ∂4L[x]

α,β
γ (t) + γ22

d

dt
T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

)]

t=T

+
[

h(1)(t)γ22

(

aI
2−β2(·,·)
t ∂4L[x]

α,β
γ (t)− T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

)]

t=b

−
[

h(t)γ22

(

d

dt
aI

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)− d

dt
T I

2−β2(·,·)
t ∂4L[x]

α,β
γ (t)

)]

t=b

.

Now, consider the general case
∫ T

a

∂i+2L[x]
α,β
γ (t)CD

αi(·,·),βi(·,·)
γi h(t)dt,

i = 3, . . . , n. Then, we obtain

γi1

[

∫ T

a

h(t)tD
αi(·,·)
T ∂i+2L[x]

α,β
γ (t)dt

+

[

i−1
∑

k=0

(−1)kh(i−1−k)(t)
dk

dtk
tI

i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)t)

]

t=T

]

+ γi2

[

∫ b

a

h(t)aD
βi(·,·)
t ∂i+2L[x]

α,β
γ (t)dt

+

[

i−1
∑

k=0

(−1)i+kh(i−1−k)(t)
dk

dtk
aI

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=b

−
∫ b

T

h(t)TD
βi(·,·)
t ∂i+2L[x]

α,β
γ (t)dt

−
[

i−1
∑

k=0

(−1)i+kh(i−1−k)(t)
dk

dtk
T I

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]t=b

t=T



 .
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Unfolding these integrals, we obtain

∫ T

a

h(t)D
βi(·,·),αi(·,·)
γi

∂i+2L[x]
α,β
γ (t)dt

+

∫ b

T

γi2h(t)
[

aD
βi(·,·)
t ∂i+2L[x]

α,β
γ (t)− TD

βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

dt

+ h(i−1)(T )
[

γi1 tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t) + γi2(−1)i T I

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

+ h(i−1)(b)γi2(−1)i
[

aI
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)− T I

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=b

+ h(i−2)(T )

[

γi1(−1)1
d

dt
tI

i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

+γi2(−1)i+1 d

dt
T I

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

+ h(i−2)(b)γi2(−1)i+1

[

d

dt
aI

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

− d

dt
T I

i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=b

+ . . .+ h(T )

[

γi1(−1)i−1 d
i−1

dti−1 tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

+ γi2(−1)2i−1 d
i−1

dti−1 T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

+ h(b)γi2(−1)2i−1

[

di−1

dti−1 aI
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

− di−1

dti−1 T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=b

.

Substituting all the relations into equation (4.23), we obtain that

0 =

∫ T

a

h(t)

(

∂2L[x]
α,β
γ (t) +

n
∑

i=1

D
βi(·,·),αi(·,·)
γi

∂i+2L[x]
α,β
γ (t)

)

dt

+

∫ b

T

h(t)

n
∑

i=1

γi2

[

aD
βi(·,·)
t ∂i+2L[x]

α,β
γ (t)− TD

βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

dt

+

n−1
∑

j=0

h(j)(T )

n
∑

i=j+1

[

γi1(−1)i−1−j d
i−1−j

dti−1−j tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

+γi2(−1)j+1 d
i−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T



4.3 Higher-order variational problems 81

+

n−1
∑

j=0

h(j)(b)

n
∑

i=j+1

γi2(−1)j+1

[

di−1−j

dti−1−j aI
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

− di−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=b

+ h(T )∂2φ (T, x(T ))

+∆T
[

L[x]α,βγ (T ) + ∂1φ (T, x(T )) + ∂2φ(T, x(T ))x
′(T )

]

.

(4.24)

We obtain the fractional Euler–Lagrange equations (4.20)–(4.21) and the
transversality conditions (4.22) applying the fundamental lemma of the cal-
culus of variations (see, e.g., (van Brunt, 2004)) for appropriate choices of
variations.

Remark 48 When n = 1, functional (4.18) takes the form

J (x, T ) =

∫ T

a

L
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

dt+ φ(T, x(T )),

and the fractional Euler–Lagrange equations (4.20)–(4.21) coincide with those
of Theorem 45.

Considering the increment ∆T on time T , and the consequent increment
∆xT on x, given by

∆xT = (x+ h) (T +∆T )− x(T ), (4.25)

in the next theorem we rewrite the transversality conditions (4.22) in terms
of these increments.

Theorem 49 If (x, T ) minimizes functional J defined by (4.19), then (x, T )
satisfies the Euler–Lagrange equations (4.20) and (4.21), and the following
transversality conditions:

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
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




































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



























































∂1φ(T, x(T ))− x′(T )

n
∑

i=1

[

γi1(−1)i−1 di−1

dti−1 tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

−γi2
di−1

dti−1 T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t) + L[x]α,βγ (T )

]

t=T

= 0,

n
∑

i=1

[

γi1(−1)i−1 di−1

dti−1 tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

− γi2
di−1

dti−1 T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

+ ∂2φ(T, x(T )) = 0,

n
∑

i=j+1

[

γi1(−1)i−1−j d
i−1−j

dti−1−j tI
i−αi(·,·)
T ∂i+2L[x]

α,β
γ (t)

+ γi2(−1)j+1 di−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]

t=T

= 0, ∀j = 2, . . . , n− 1,

n
∑

i=j+1

[

γi2(−1)j+1

[

di−1−j

dti−1−j aI
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

− di−1−j

dti−1−j T I
i−βi(·,·)
t ∂i+2L[x]

α,β
γ (t)

]]

t=b

= 0, ∀j = 0, . . . , n− 1.
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Proof. Using Taylor’s expansion up to first order, and restricting the set of
variations to those for which h′(T ) = 0, we obtain that

(x+ h) (T +∆T ) = (x+ h)(T ) + x′(T )∆T +O(∆T )2.

According to the increment on x given by (4.25), we get

h(T ) = ∆xT − x′(T )∆T +O(∆T )2.

From substitution of this expression into (4.24), and by using appropriate
choices of variations, we obtain the intended transversality conditions.

4.3.2 Example

We provide an illustrative example. It is covered by Theorem 47 .
Let pn−1(t) be a polynomial of degree n − 1. If α, β : [0, b]2 → (n − 1, n)

are the fractional orders, then CD
α(·,·),β(·,·)
γ pn−1(t) = 0 since p

(n)
n−1(t) = 0 for

all t. Consider the functional

J (x, T ) =

∫ T

0

[

(

CDα(·,·),β(·,·)
γ x(t)

)2

+ (x(t) − pn−1(t))
2 − t− 1

]

dt+ T 2

subject to the initial constraints

x(0) = pn−1(0) and x(k)(0) = p
(k)
n−1(0), k = 1, . . . , n− 1.

Observe that, for all t ∈ [0, b],

∂iL[pn−1]
α,β
γ (t) = 0, i = 2, 3.

Thus, function x ≡ pn−1 and the final time T = 1 satisfy the necessary
optimality conditions of Theorem 47. We also remark that, for any curve x,
one has

J (x, T ) ≥
∫ T

0

[−t− 1] dt+ T 2 =
T 2

2
− T,

which attains a minimum value −1/2 at T = 1. Since J (pn−1, 1) = −1/2, we
conclude that (pn−1, 1) is the (global) minimizer of J .

4.4 Variational problems with time delay

In this section, we consider fractional variational problems with time delay.
As mentioned in (Machado, 2011), “we verify that a fractional derivative re-
quires an infinite number of samples capturing, therefore, all the signal his-
tory, contrary to what happens with integer order derivatives that are merely
local operators. This fact motivates the evaluation of calculation strategies
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based on delayed signal samples”. This subject has already been studied for
constant fractional order (Almeida, 2016; Baleanu, Maaraba and Jarad, 2008;
Jarad, Abdeljawad and Baleanu, 2010). However, for a variable fractional or-
der, it is, to the authors’ best knowledge, an open question. We also refer
to the works (Daftardar–Gejji, Sukale and Bhalekar, 2015; Deng, Li and Lü,
2007; Lazarević and Spasić, 2009; Wang et al., 2015), where fractional differ-
ential equations are considered with a time delay.

In Section 4.4.1, we deduce necessary optimality conditions when the La-
grangian depends on a time delay (Theorem 50). One illustrative example is
discussed in Section 4.4.2.

4.4.1 Necessary optimality conditions

For simplicity of presentation, we consider fractional orders α, β : [a, b]2 →
(0, 1). Using similar arguments, the problem can be easily generalized for
higher-order derivatives. Let σ > 0 and define the vector

σ[x]
α,β
γ (t) =

(

t, x(t),CDα(·,·),β(·,·)
γ x(t), x(t − σ)

)

.

For the domain of the functional, we consider the set

Dσ =
{

(x, t) ∈ C1([a− σ, b])× [a, b] : CDα(·,·),β(·,·)
γ x ∈ C([a, b])

}

.

Let J : Dσ → R be the functional defined by

J (x, T ) =

∫ T

a

Lσ[x]
α,β
γ (t) + φ(T, x(T )), (4.26)

where we assume again that the Lagrangian L and the payoff term φ are
differentiable.

The optimization problem with time delay is the following:

Problem 3 Minimize functional (4.26) on Dσ subject to the boundary con-
dition

x(t) = ϕ(t)

for all t ∈ [a− σ, a], where ϕ is a given (fixed) function.

We now state and prove the Euler–Lagrange equations for this problem.

Theorem 50 Suppose that (x, T ) gives a local minimum to functional (4.26)
on Dσ. If σ ≥ T − a, then (x, T ) satisfies

∂2Lσ[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3Lσ[x]

α,β
γ (t) = 0, (4.27)

for t ∈ [a, T ], and



84 4 The fractional calculus of variations

γ2

(

aD
β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− TD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

)

= 0, (4.28)

for t ∈ [T, b]. Moreover, (x, T ) satisfies



























Lσ[x]
α,β
γ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x

′(T ) = 0,
[

γ1 tI
1−α(·,·)
T ∂3Lσ[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

t=T

+∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

t=b
= 0.

(4.29)

If σ < T − a, then Eq. (4.27) is replaced by the two following ones:

∂2Lσ[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3Lσ[x]

α,β
γ (t) + ∂4Lσ[x]

α,β
γ (t+ σ) = 0, (4.30)

for t ∈ [a, T − σ], and

∂2Lσ[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3Lσ[x]

α,β
γ (t) = 0, (4.31)

for t ∈ [T − σ, T ].

Proof. Consider variations of the solution (x+ ǫh, T + ǫ∆T ), where h ∈
C1([a − σ, b];R) is such that h(t) = 0 for all t ∈ [a − σ, a], and ǫ,△T are
two reals. If we define j(ǫ) = J (x+ ǫh, T + ǫ∆T ), then j′(0) = 0, that is,

∫ T

a

(

∂2Lσ[x]
α,β
γ (t)h(t) + ∂3Lσ[x]

α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)

+ ∂4Lσ[x]
α,β
γ (t)h(t− σ)

)

dt+ Lσ[x]
α,β
γ (T )∆T

+ ∂1φ (T, x(T ))∆T + ∂2φ(T, x(T )) [h(T ) + x′(T )△T ] = 0. (4.32)

First, suppose that σ ≥ T − a. In this case, since

∫ T

a

∂4Lσ[x]
α,β
γ (t)h(t− σ) dt =

∫ T−σ

a−σ

∂4Lσ[x]
α,β
γ (t+ σ)h(t) dt

and h ≡ 0 on [a−σ, a], this term vanishes in (4.32) and we obtain Eq. (4.12).
The rest of the proof is similar to the one presented in Section 4.2, Theorem
45, and we obtain (4.27)–(4.29). Suppose now that σ < T − a. In this case,
we have that

∫ T

a

∂4Lσ[x]
α,β
γ (t)h(t− σ) dt =

∫ T−σ

a−σ

∂4Lσ[x]
α,β
γ (t+ σ)h(t) dt

=

∫ T−σ

a

∂4Lσ[x]
α,β
γ (t+ σ)h(t) dt.

Next, we evaluate the integral
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∫ T

a

∂3Lσ[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t) dt

=

∫ T−σ

a

∂3Lσ[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t) dt

+

∫ T

T−σ

∂3Lσ[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t) dt.

For the first integral, integrating by parts, we have
∫ T−σ

a

∂3Lσ[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t) dt = γ1

∫ T−σ

a

∂3Lσ[x]
α,β
γ (t)CaD

α(·,·)
t h(t)dt

+ γ2

[

∫ b

a

∂3Lσ[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt−

∫ b

T−σ

∂3Lσ[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt

]

=

∫ T−σ

a

h(t)
[

γ1tD
α(·,·)
T−σ ∂3Lσ[x]

α,β
γ (t) + γ2aD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

dt

+

∫ b

T−σ

γ2h(t)
[

aD
β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− T−σD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

dt

+
[

h(t)
[

γ1tI
1−α(·,·)
T−σ ∂3Lσ[x]

α,β
γ (t)− γ2T−σI

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]]

t=T−σ

+
[

γ2h(t)
[

−aI
1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t) + T−σI

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]]

t=b
.

For the second integral, in a similar way, we deduce that
∫ T

T−σ

∂3Lσ[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h(t) dt

= γ1

[

∫ T

a

∂3Lσ[x]
α,β
γ (t)CaD

α(·,·)
t h(t)dt−

∫ T−σ

a

∂3Lσ[x]
α,β
γ (t)CaD

α(·,·)
t h(t)dt

]

+ γ2

[

∫ b

T−σ

∂3Lσ[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt−

∫ b

T

∂3Lσ[x]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt

]

=

∫ T−σ

a

γ1h(t)
[

tD
α(·,·)
T ∂3Lσ[x]

α,β
γ (t)− tD

α(·,·)
T−σ ∂3Lσ[x]

α,β
γ (t)

]

dt

+

∫ T

T−σ

h(t)
[

γ1tD
α(·,·)
T ∂3Lσ[x]

α,β
γ (t) + γ2T−σD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

dt

+

∫ b

T

γ2h(t)
[

T−σD
β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− TD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

dt

+
[

h(t)
[

−γ1tI1−α(·,·)
T−σ ∂3Lσ[x]

α,β
γ (t) + γ2T−σI

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]]

t=T−σ

+
[

h(t)
[

γ1tI
1−α(·,·)
T ∂3Lσ[x]

α,β
γ (t)− γ2T I

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]]

t=T

+
[

γ2h(t)
[

−T−σI
1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t) + T I

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]]

t=b
.
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Replacing the above equalities into (4.32), we prove that

0 =

∫ T−σ

a

h(t)
[

∂2Lσ[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3Lσ[x]

α,β
γ (t) + ∂4Lσ[x]

α,β
γ (t+ σ)

]

dt

+

∫ T

T−σ

h(t)
[

∂2Lσ[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ ∂3Lσ[x]

α,β
γ (t)

]

dt

+

∫ b

T

γ2h(t)
[

aD
β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− TD

β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

]

dt

+ h(T )
[

γ1 tI
1−α(·,·)
T ∂3Lσ[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

Lσ[x]
α,β
γ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x

′(t)
]

t=T

+ h(b)
[

γ2

(

T I
1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3Lσ[x]

α,β
γ (t)

)]

t=b
.

By the arbitrariness of h in [a, b] and of △T , we obtain Eqs. (4.28)–(4.31).

4.4.2 Example

Let α, β : [0, b]2 → (0, 1), σ = 1, f be a function of class C1, and f̂(t) =
CD

α(·,·),β(·,·)
γ f(t). Consider the following problem of the calculus of variations:

J (x, T ) =

∫ T

0

[

(

CDα(·,·),β(·,·)
γ x(t) − f̂(t)

)2

+ (x(t) − f(t))2

+ (x(t− 1)− f(t− 1))2 − t− 2

]

dt+ T 2 → min

subject to the condition x(t) = f(t) for all t ∈ [−1, 0].
In this case, we can easily verify that (x, T ) = (f, 2) satisfies all the conditions
in Theorem 50 and that it is actually the (global) minimizer of the problem.

4.5 Isoperimetric problems

Isoperimetric problems are optimization problems, that consist in minimizing
or maximizing a cost functional subject to an integral constraint. From the
variational problem with dependence on a combined Caputo derivative of
variable fractional order (see Definition 33) discussed in Section 4.2, here we
study two variational problems subject to an additional integral constraint.
In each of the problems, the terminal point in the cost integral, as well as the
terminal state, are considered to be free, and we obtain corresponding natural
boundary conditions.

In Sections 4.5.1 and 4.5.2, we study necessary optimality conditions in
order to determine the minimizers for each of the problems. We end this sec-
tion with an example (Section 4.5.3).
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For the two isoperimetric problems considered in the next sections, let D
be the set given by (4.6) and [x]α,βγ (t) the vector (4.8).

Picking up the problem of the fractional calculus of variations with
variable-order, discussed in Section 4.2, we consider also a differentiable La-
grangian L : [a, b]× R

2 → R and the functional J : D → R of the form

J (x, T ) =

∫ T

a

L[x]α,βγ (t)dt+ φ(T, x(T )), (4.33)

where the terminal cost function φ : [a, b]× R → R is of class C1.
In the sequel, we need the auxiliary notation of the dual fractional deriva-

tive:

D
β(·,·),α(·,·)
γ,c = γ2 aD

β(·,·)
t + γ1 tD

α(·,·)
c , where γ = (γ2, γ1) and c ∈ (a, b].

(4.34)
With the functional J , defined by (4.33), we consider two different isoperi-

metrics problems.

4.5.1 Necessary optimality conditions I

The first fractional isoperimetric problem of the calculus of variations is Prob-
lem 4.

Problem 4 Determine the local minimizers of J over all (x, T ) ∈ D satisfy-
ing a boundary condition

x(a) = xa (4.35)

for a fixed xa ∈ R and an integral constraint of the form

∫ T

a

g[x]α,βγ (t)dt = ψ(T ), (4.36)

where g : C1
(

[a, b]× R
2
)

→ R and ψ : [a, b] → R are two differentiable
functions. The terminal time T and terminal state x(T ) are free.

In this problem, the condition of the form (4.36) is called an isoperimetric
constraint. The next theorem gives fractional necessary optimality conditions
for Problem 4.

Theorem 51 Suppose that (x, T ) gives a local minimum for functional (4.33)
on D subject to the boundary condition (4.35) and the isoperimetric constraint
(4.36). If (x, T ) does not satisfy the Euler–Lagrange equations with respect to
the isoperimetric constraint, that is, if one of the two following conditions are
not verified,

∂2g[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3g[x]

α,β
γ (t) = 0, t ∈ [a, T ], (4.37)
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or

γ2

[

aD
β(·,·)
t ∂3g[x]

α,β
γ (t)− TDt

β(·,·)∂3g[x]
α,β
γ (t)

]

= 0, t ∈ [T, b], (4.38)

then there exists a constant λ such that, if we define the function F : [a, b]×
R

2 → R by F = L−λg, (x, T ) satisfies the fractional Euler–Lagrange equations

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3F [x]

α,β
γ (t) = 0 (4.39)

on the interval [a, T ] and

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3F [x]

α,β
γ (t)

)

= 0 (4.40)

on the interval [T, b]. Moreover, (x, T ) satisfies the transversality conditions















F [x]α,βγ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x
′(T ) + λψ′(T ) = 0,

[

γ1 tI
1−α(·,·)
T ∂3F [x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3F [x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

]

t=b
= 0.

(4.41)

Proof. Consider variations of the optimal solution (x, T ) of the type

(x∗, T ∗) = (x+ ǫ1h1 + ǫ2h2, T + ǫ1∆T ) , (4.42)

where, for each i ∈ {1, 2}, ǫi ∈ R is a small parameter, hi ∈ C1([a, b];R)
satisfies hi(a) = 0, and △T ∈ R. The additional term ǫ2h2 must be selected
so that the admissible variations (x∗, T ∗) satisfy the isoperimetric constraint
(4.36). For a fixed choice of hi, let

i(ǫ1, ǫ2) =

∫ T+ǫ1△T

a

g[x∗]α,βγ (t)dt− ψ(T + ǫ1△T ).

For ǫ1 = ǫ2 = 0, we obtain that

i(0, 0) =

∫ T

a

g[x]α,βγ (t)dt − ψ(T ) = ψ(T )− ψ(T ) = 0.

The derivative
∂i

∂ǫ2
is given by

∂i

∂ǫ2
=

∫ T+ǫ1△T

a

(

∂2g[x
∗]α,βγ (t)h2(t) + ∂3g[x

∗]α,βγ (t)CDα(·,·),β(·,·)
γ h2(t)

)

dt.

For ǫ1 = ǫ2 = 0 one has

∂i

∂ǫ2

∣

∣

∣

∣

(0,0)

=

∫ T

a

(

∂2g[x]
α,β
γ (t)h2(t) + ∂3g[x]

α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)

dt.

(4.43)
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The second term in (4.43) can be written as

∫ T

a

∂3g[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)dt

=

∫ T

a

∂3g[x]
α,β
γ (t)

[

γ1
C
aD

α(·,·)
t h2(t) + γ2

C
t D

β(·,·)
b h2(t)

]

dt

= γ1

∫ T

a

∂3g[x]
α,β
γ (t)CaD

α(·,·)
t h2(t)dt

+ γ2

[

∫ b

a

∂3g[x]
α,β
γ (t)Ct D

β(·,·)
b h2(t)dt −

∫ b

T

∂3g[x]
α,β
γ (t)Ct D

β(·,·)
b h2(t)dt

]

.

(4.44)

Using the fractional integrating by parts formula, (4.44) is equal to

∫ T

a

h2(t)
[

γ1tDT
α(·,·)∂3g[x]

α,β
γ (t) + γ2aDt

β(·,·)∂3g[x]
α,β
γ (t)

]

dt

+

∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]

α,β
γ (t)− TDt

β(·,·)∂3g[x]
α,β
γ (t)

]

dt

+

[

h2(t)

(

γ1tIT
1−α(·,·)∂3g[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂3g[x]
α,β
γ (t)

)]

t=T

+

[

γ2h2(t)

(

T It
1−β(·,·)∂3g[x]

α,β
γ (t)− aIt

1−β(·,·)∂3g[x]
α,β
γ (t)

)]

t=b

.

Substituting these relations into (4.43), and considering the fractional opera-

tor D
β(·,·),α(·,·)
γ,c as defined in (4.34), we obtain that

∂i

∂ǫ2

∣

∣

∣

∣

(0,0)

=

∫ T

a

h2(t)
[

∂2g[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3g[x]

α,β
γ (t)

]

dt

+

∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]

α,β
γ (t)− TDt

β(·,·)∂3g[x]
α,β
γ (t)

]

dt

+

[

h2(t)

(

γ1tIT
1−α(·,·)∂3g[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂3g[x]
α,β
γ (t)

)]

t=T

+

[

γ2h2(t)

(

T It
1−β(·,·)∂3g[x]

α,β
γ (t)− aIt

1−β(·,·)∂3g[x]
α,β
γ (t)

)]

t=b

.

Since (4.37) or (4.38) fails, there exists a function h2 such that

∂i

∂ǫ2

∣

∣

∣

∣

(0,0)

6= 0.
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In fact, if not, from the arbitrariness of the function h2 and the fundamental
lemma of the calculus of the variations, (4.37) and (4.38) would be verified.
Thus, we may apply the implicit function theorem, that ensures the existence
of a function ǫ2(·), defined in a neighborhood of zero, such that i(ǫ1, ǫ2(ǫ1)) =
0. In conclusion, there exists a subfamily of variations of the form (4.42) that
verifies the integral constraint (4.36). We now seek to prove the main result.
For that purpose, consider the auxiliary function j(ǫ1, ǫ2) = J (x∗, T ∗).

By hypothesis, function j attains a local minimum at (0, 0) when subject
to the constraint i(·, ·) = 0, and we proved before that ∇i(0, 0) 6= (0, 0).
Applying the Lagrange multiplier rule, we ensure the existence of a number
λ such that

∇ (j(0, 0)− λi(0, 0)) = (0, 0).

In particular,
∂ (j − λi)

∂ǫ1
(0, 0) = 0. (4.45)

Let F = L− λg. The relation (4.45) can be written as

0 =

∫ T

a

h1(t)
[

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3F [x]

α,β
γ (t)

]

dt

+

∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3F [x]

α,β
γ (t)

]

dt

+ h1(T )
[

γ1 tI
1−α(·,·)
T ∂3F [x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3F [x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

F [x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′(t) + λψ′(t)

]

t=T

+ h1(b)γ2

[

T I
1−β(·,·)
t ∂3F [x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

]

t=b
.

(4.46)

As h1 and △T are arbitrary, we can choose △T = 0 and h1(t) = 0 for all
t ∈ [T, b]. But h1 is arbitrary in t ∈ [a, T ). Then, we obtain the first necessary
condition (4.39):

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3F [x]

α,β
γ (t) = 0 ∀t ∈ [a, T ].

Analogously, considering △T = 0 and h1(t) = 0 for all t ∈ [a, T ] ∪ {b}, and
h1 arbitrary on (T, b), we obtain the second necessary condition (4.40):

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3F [x]

α,β
γ (t)

)

= 0 ∀t ∈ [T, b].

As (x, T ) is a solution to the necessary conditions (4.39) and (4.40), then
equation (4.46) takes the form
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h1(T )
[

γ1 tI
1−α(·,·)
T ∂3F [x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3F [x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

F [x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′(t) + λψ′(t)

]

t=T

+ h1(b)
[

γ2

(

T I
1−β(·,·)
t ∂3F [x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

)]

t=b
= 0.

(4.47)

Transversality conditions (4.41) are obtained for appropriate choices of vari-
ations.

In the next theorem, considering the same Problem 4, we rewrite the
transversality conditions (4.41) in terms of the increment on time ∆T and
on the increment of space ∆xT given by

∆xT = (x + h1)(T +∆T )− x(T ). (4.48)

Theorem 52 Let (x, T ) be a local minimizer to the functional (4.33) on
D subject to the boundary condition (4.35) and the isoperimetric constraint
(4.36). Then (x, T ) satisfies the transversality conditions



























F [x]α,βγ (T ) + ∂1φ(T, x(T )) + λψ′(T )

+x′(T )
[

γ2T I
1−β(·,·)
t ∂3F [x]

α,β
γ (t)− γ1tI

1−α(·,·)
T ∂3F [x]

α,β
γ (t)

]

t=T
= 0,

[

γ1 tI
1−α(·,·)
T ∂3F [x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂3F [x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

]

t=b
= 0.

(4.49)

Proof. Suppose (x∗, T ∗) is an admissible variation of the form (4.42) with
ǫ1 = 1 and ǫ2 = 0. Using Taylor’s expansion up to first order for a small ∆T ,
and restricting the set of variations to those for which h′1(T ) = 0, we obtain
the increment ∆xT on x:

(x + h1) (T +∆T ) = (x+ h1)(T ) + x′(T )∆T + O(∆T )2.

Relation (4.48) allows us to express h1(T ) in terms of ∆T and ∆xT :

h1(T ) = ∆xT − x′(T )∆T +O(∆T )2.

Substituting this expression into (4.47), and using appropriate choices of vari-
ations, we obtain the new transversality conditions (4.49).

Theorem 53 Suppose that (x, T ) gives a local minimum for functional (4.33)
on D subject to the boundary condition (4.35) and the isoperimetric constraint
(4.36). Then, there exists (λ0, λ) 6= (0, 0) such that, if we define the function
F : [a, b]× R

2 → R by F = λ0L − λg, (x, T ) satisfies the following fractional
Euler–Lagrange equations:

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3F [x]

α,β
γ (t) = 0
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on the interval [a, T ], and

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3F [x]

α,β
γ (t)

)

= 0

on the interval [T, b].

Proof. If (x, T ) does not verifies (4.37) or (4.38), then the hypothesis of The-
orem 51 is satisfied and we prove Theorem 53 considering λ0 = 1. If (x, T )
verifies (4.37) and (4.38), then we prove the result by considering λ = 1 and
λ0 = 0.

4.5.2 Necessary optimality conditions II

We now consider a new isoperimetric type problem with the isoperimetric
constraint of form

∫ b

a

g[x]α,βγ (t)dt = C, (4.50)

where C is a given real number.

Problem 5 Determine the local minimizers of J (4.33), over all (x, T ) ∈ D
satisfying a boundary condition

x(a) = xa (4.51)

for a fixed xa ∈ R and an integral constraint of the form (4.50).

In the follow theorem, we give fractional necessary optimality conditions
for Problem 5.

Theorem 54 Suppose that (x, T ) gives a local minimum for functional (4.33)
on D subject to the boundary condition (4.51) and the isoperimetric constraint
(4.50). If (x, T ) does not satisfy the Euler–Lagrange equation with respect to
the isoperimetric constraint, that is, the condition

∂2g[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,b ∂3g[x]

α,β
γ (t) = 0, t ∈ [a, b],

is not satisfied, then there exists λ 6= 0 such that, if we define the function
F : [a, b] × R

2 → R by F = L − λg, (x, T ) satisfies the fractional Euler–
Lagrange equations

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3L[x]

α,β
γ (t)− λD

β(·,·),α(·,·)
γ,b ∂3g[x]

α,β
γ (t) = 0 (4.52)

on the interval [a, T ], and

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

)

− λ
(

∂2g[x]
α,β
γ (t) + γ1tD

α(·,·)
b ∂3g[x]

α,β
γ (t)

)

= 0 (4.53)
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on the interval [T, b]. Moreover, (x, T ) satisfies the transversality conditions



























L[x]α,βγ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x
′(T ) = 0,

[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T
= 0

[

−λγ1tI1−α(·,·)
b ∂3g[x]

α,β
γ (t)

+γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

)]

t=b
= 0.

(4.54)

Proof. Similarly as done to prove Theorem 51, let

(x∗, T ∗) = (x+ ǫ1h1 + ǫ2h2, T + ǫ1∆T )

be a variation of the solution, and define

i(ǫ1, ǫ2) =

∫ b

a

g[x∗]α,βγ (t)dt− C.

The derivative
∂i

∂ǫ2
, when ǫ1 = ǫ2 = 0, is

∂i

∂ǫ2

∣

∣

∣

∣

(0,0)

=

∫ b

a

(

∂2g[x]
α,β
γ (t)h2(t) + ∂3g[x]

α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)

dt.

Integrating by parts and choosing variations such that h2(b) = 0, we have

∂i

∂ǫ2

∣

∣

∣

∣

(0, 0) =

∫ b

a

h2(t)
[

∂2g[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,b ∂3g[x]

α,β
γ (t)

]

dt.

Thus, there exists a function h2 such that

∂i

∂ǫ2

∣

∣

∣

∣

(0, 0) 6= 0.

We may apply the implicit function theorem to conclude that there exists a
subfamily of variations satisfying the integral constraint. Consider the new
function j(ǫ1, ǫ2) = J (x∗, T ∗). Since j has a local minimum at (0, 0) when
subject to the constraint i(·, ·) = 0 and ∇i(0, 0) 6= (0, 0), there exists a number
λ such that

∂

∂ǫ1
(j − λi) (0, 0) = 0. (4.55)

Let F = L− λg. Relation (4.55) can be written as
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∫ T

a

h1(t)
[

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3L[x]

α,β
γ (t)− λD

β(·,·),α(·,·)
γ,b ∂3g[x]

α,β
γ (t)

]

dt

+

∫ b

T

h1(t)
[

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

)

− λ
(

∂2g[x]
α,β
γ (t) + γ1tD

α(·,·)
b ∂3g[x]

α,β
γ (t)

)]

dt

+ h1(T )
[

γ1 tI
1−α(·,·)
T ∂3L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂3L[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+∆T
[

L[x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′(t)
]

t=T

+ h1(b)
[

−λγ1tI1−α(·,·)
b ∂3g[x]

α,β
γ (t)

+γ2

(

T I
1−β(·,·)
t ∂3L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂3F [x]

α,β
γ (t)

)]

t=b
= 0.

Considering appropriate choices of variations, we obtain the first (4.52) and
the second (4.53) necessary optimality conditions, and also the transversality
conditions (4.54).

Similarly to Theorem 53, the following result holds.

Theorem 55 Suppose that (x, T ) gives a local minimum for functional (4.33)
on D subject to the boundary condition (4.51) and the isoperimetric constraint
(4.50). Then there exists (λ0, λ) 6= (0, 0) such that, if we define the function
F : [a, b] × R

2 → R by F = λ0L − λg, (x, T ) satisfies the fractional Euler–
Lagrange equations

∂2F [x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂3L[x]

α,β
γ (t)− λD

β(·,·),α(·,·)
γ,b ∂3g[x]

α,β
γ (t) = 0

on the interval [a, T ], and

γ2

(

aD
β(·,·)
t ∂3F [x]

α,β
γ (t)− TD

β(·,·)
t ∂3L[x]

α,β
γ (t)

)

− λ
(

∂2g[x]
α,β
γ (t) + γ1tD

α(·,·)
b ∂3g[x]

α,β
γ (t)

)

= 0

on the interval [T, b].

4.5.3 Example

Let α(t, τ) = α(t) and β(t, τ) = β(τ). Define the function

ψ(T ) =

∫ T

0

(

t1−α(t)

2Γ (2− α(t))
+

(b− t)1−β(t)

2Γ (2− β(t))

)2

dt

on the interval [0, b] with b > 0. Consider the functional J defined by
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J(x, t) =

∫ T

0

[

α(t) +
(

CDα(·,·),β(·,·)
γ x(t)

)2

+

(

t1−α(t)

2Γ (2− α(t))
+

(b− t)1−β(t)

2Γ (2− β(t))

)2
]

dt

for t ∈ [0, b] and γ = (1/2, 1/2), subject to the initial condition

x(0) = 0

and the isoperimetric constraint

∫ T

0

CDα(·,·),β(·,·)
γ x(t)

(

t1−α(t)

2Γ (2− α(t))
+

(b− t)1−β(t)

2Γ (2− β(t))

)2

dt = ψ(T ).

Define F = L− λg with λ = 2, that is,

F = α(t) +

(

CDα(·),β(·)
γ x(t) − t1−α(t)

2Γ (2− α(t))
− (b − t)1−β(t)

2Γ (2− β(t))

)2

.

Consider the function x(t) = t with t ∈ [0, b]. Because

CDα(·,·),β(·,·)
γ x(t) =

t1−α(t)

2Γ (2− α(t))
+

(b − t)1−β(t)

2Γ (2− β(t))
,

we have that x satisfies conditions (4.39), (4.40) and the two last of (4.41).
Using the first condition of (4.41), that is,

α(t) + 2

(

T 1−α(T )

2Γ (2− α(T ))
+

(b− T )1−β(T )

2Γ (2− β(T ))

)2

= 0,

we obtain the optimal time T .

4.6 Variational problems with holonomic constraints

In this section, we present a new variational problem subject to a new type
of constraints. A holonomic constraint is a condition of the form

g(t, x) = 0,

where x = (x1, x2, ..., xn), n ≥ 2, and g is a given function (see, e.g.,
(van Brunt, 2004)).

Consider the space

U = {(x1, x2, T ) ∈ C1([a, b])× C1([a, b])× [a, b] : x1(a) = x1a ∧ x2(a) = x2a}
(4.56)

for fixed reals x1a, x2a ∈ R. In this section, we consider the following varia-
tional problem:



96 4 The fractional calculus of variations

Problem 6 Find functions x1 and x2 that maximize or minimize the func-
tional J defined in U by

J (x1, x2, T ) =

∫ T

a

L(t, x1(t), x2(t),
CDα(·,·),β(·,·)

γ x1(t),
CDα(·,·),β(·,·)

γ x2(t))dt

+ φ(T, x1(T ), x2(T )),

(4.57)

where the admissible functions satisfy the constraint

g(t, x1(t), x2(t)) = 0, t ∈ [a, b], (4.58)

called a holonomic constraint, where g : [a, b] × R
2 → R is a continuous

function and continuously differentiable with respect to second and third argu-
ments.
The terminal time T and terminal states x1(T ) and x2(T ) are free and the
Lagrangian L : [a, b] × R

4 → R is a continuous function and continuously
differentiable with respect to its ith argument, i ∈ {2, 3, 4, 5}. The terminal
cost function φ : [a, b]× R

2 → R is of class C1.

4.6.1 Necessary optimality conditions

The next theorem gives fractional necessary optimality conditions to the vari-
ational problem with a holonomic constraint. To simplify the notation, we de-

note by x the vector (x1, x2); by
CD

α(·,·),β(·,·)
γ x we mean the two-dimensional

vector (CD
α(·,·),β(·,·)
γ x1,

CD
α(·,·),β(·,·)
γ x2); and we use the operator

[x]α,βγ (t) :=
(

t, x(t),CDα(·,·),β(·,·)
γ x(t)

)

.

The next result given necessary optimality conditions for Problem 6.

Theorem 56 Suppose that (x, T ) gives a local minimum to functional J as
in (4.57), under the constraint (4.58) and the boundary conditions defined in
(4.56) . If

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b],

then there exists a piecewise continuous function λ : [a, b] → R such that (x, T )
satisfies the following fractional Euler–Lagrange equations:

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂4L[x]

α,β
γ (t) + λ(t)∂2g(t, x(t)) = 0 (4.59)

and

∂3L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂5L[x]

α,β
γ (t) + λ(t)∂3g(t, x(t)) = 0 (4.60)

on the interval [a, T ], and
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γ2

(

aD
β(·,·)
t ∂4L[x]

α,β
γ (t)− TDt

β(·,·)∂4L[x]
α,β
γ (t) + λ(t)∂2g(t, x(t))

)

= 0

(4.61)
and

aD
β(·,·)
t ∂5L[x]

α,β
γ (t)− TDt

β(·,·)∂5L[x]
α,β
γ (t) + λ(t)∂3g(t, x(t)) = 0 (4.62)

on the interval [T, b]. Moreover, (x, T ) satisfies the transversality conditions


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








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







L[x]α,βγ (T ) + ∂1φ(T, x(T )) + ∂2φ(T, x(T ))x
′
1(T ) + ∂3φ(T, x(T ))x

′
2(T ) = 0,

[

γ1 tI
1−α(·,·)
T ∂4L[x]

α,β
γ (t)− γ2 T I

1−β(·,·)
t ∂4L[x]

α,β
γ (t)

]

t=T
+ ∂2φ(T, x(T )) = 0,

[

γ1tIT
1−α(·,·)∂5L[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂5L[x]
α,β
γ (t)

]

t=T
+ ∂3φ(T, x(T )) = 0,

γ2

[

T I
1−β(·,·)
t ∂4L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂4L[x]

α,β
γ (t)

]

t=b
= 0,

γ2

[

T I
1−β(·,·)
t ∂5L[x]

α,β
γ (t)− aI

1−β(·,·)
t ∂5L[x]

α,β
γ (t)

]

t=b
= 0.

(4.63)

Proof. Consider admissible variations of the optimal solution (x, T ) of the
type

(x∗, T ∗) = (x+ ǫh, T + ǫ∆T ) ,

where ǫ ∈ R is a small parameter, h = (h1, h2) ∈ C1([a, b])×C1([a, b]) satisfies
hi(a) = 0, i = 1, 2, and △T ∈ R. Because

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b],

by the implicit function theorem there exists a subfamily of variations of (x, T )
that satisfy (4.58), that is, there exists a unique function h2(ǫ, h1) such that
the admissible variation (x∗, T ∗) satisfies the holonomic constraint (4.58):

g(t, x1(t) + ǫh1(t), x2(t) + ǫh2(t)) = 0 ∀t ∈ [a, b].

Differentiating this condition with respect to ǫ and considering ǫ = 0, we
obtain that

∂2g(t, x(t))h1(t) + ∂3g(t, x(t))h2(t) = 0,

which is equivalent to

∂2g(t, x(t))h1(t)

∂3g(t, x(t))
= −h2(t). (4.64)

Define j on a neighbourhood of zero by

j(ǫ) =

∫ T+ǫ△T

a

L[x∗]α,βγ (t)dt+ φ(T + ǫ△T, x∗(T + ǫ△T )).

The derivative
∂j

∂ǫ
for ǫ = 0 is
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∂j

∂ǫ

∣

∣

∣

∣

ǫ=0

=

∫ T

a

(

∂2L[x]
α,β
γ (t)h1(t) + ∂3L[x]

α,β
γ (t)h2(t)

+∂4L[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t) + ∂5L[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)

dt

+ L[x]α,βγ (T )△T + ∂1φ(T, x(T ))△T + ∂2φ(T, x(T )) [h1(T ) + x′1(T )△T ]
+ ∂3φ(T, x(T )) [h2(T ) + x′2(T )△T ] .

(4.65)

The third term in (4.65) can be written as

∫ T

a

∂4L[x]
α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t)dt

=

∫ T

a

∂4L[x]
α,β
γ (t)

[

γ1
C
aD

α(·,·)
t h1(t) + γ2

C
t D

β(·,·)
b h1(t)

]

dt

= γ1

∫ T

a

∂4L[x]
α,β
γ (t)CaD

α(·,·)
t h1(t)dt

+ γ2

[

∫ b

a

∂4L[x]
α,β
γ (t)Ct D

β(·,·)
b h1(t)dt −

∫ b

T

∂4L[x]
α,β
γ (t)Ct D

β(·,·)
b h1(t)dt

]

.

(4.66)

Integrating by parts, (4.66) can be written as

∫ T

a

h1(t)
[

γ1tDT
α(·,·)∂4L[x]

α,β
γ (t) + γ2aDt

β(·,·)∂4L[x]
α,β
γ (t)

]

dt

+

∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂4L[x]

α,β
γ (t) − TDt

β(·,·)∂4L[x]
α,β
γ (t)

]

dt

+

[

h1(t)

(

γ1tIT
1−α(·,·)∂4L[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂4L[x]
α,β
γ (t)

)]

t=T

+

[

γ2h1(t)

(

T It
1−β(·,·)∂4L[x]

α,β
γ (t)− aIt

1−β(·,·)∂4L[x]
α,β
γ (t)

)]

t=b

.

By proceeding similarly to the 4th term in (4.65), we obtain an equivalent ex-
pression. Substituting these relations into (4.65) and considering the fractional

operator D
β(·,·),α(·,·)
γ,c as defined in (4.34), we obtain that
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0 =

∫ T

a

[

h1(t)
[

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂4L[x]

α,β
γ (t)

]

+ h2(t)
[

∂3L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂5L[x]

α,β
γ (t)

]

]

dt

+γ2

∫ b

T

[

h1(t)
[

aD
β(·,·)
t ∂4L[x]

α,β
γ (t)− TDt

β(·,·)∂4L[x]
α,β
γ (t)

]

+ h2(t)
[

aD
β(·,·)
t ∂5L[x]

α,β
γ (t)− TDt

β(·,·)∂5L[x]
α,β
γ (t)

]

dt

]

+h1(T )

[

γ1tIT
1−α(·,·)∂4L[x]

α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]

α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

(4.67)

+h2(T )

[

γ1tIT
1−α(·,·)∂5L[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂5L[x]
α,β
γ (t) + ∂3φ(t, x(t))

]

t=T

+△T
[

L[x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′
1(t) + ∂3φ(t, x(t))x

′
2(t)

]

t=T

+h1(b)

[

γ2

(

T It
1−β(·,·)∂4L[x]

α,β
γ (t)− aIt

1−β(·,·)∂4L[x]
α,β
γ (t)

)]

t=b

+h2(b)

[

γ2

(

T It
1−β(·,·)∂5L[x]

α,β
γ (t)− aIt

1−β(·,·)∂5L[x]
α,β
γ (t)

)]

t=b

.

Define the piecewise continuous function λ by

λ(t) =



















−
∂3L[x]

α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂5L[x]

α,β
γ (t)

∂3g(t, x(t))
, t ∈ [a, T ]

−aD
β(·,·)
t ∂5L[x]

α,β
γ (t)−T D

β(·,·)
t ∂5L[x]

α,β
γ (t)

∂3g(t, x(t))
, t ∈ [T, b].

(4.68)

Using equations (4.64) and (4.68), we obtain that

λ(t)∂2g(t, x(t))h1(t)

=

{

(∂3L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂5L[x]

α,β
γ (t))h2(t), t ∈ [a, T ]

(aD
β(·,·)
t ∂5L[x]

α,β
γ (t)−T D

β(·,·)
t ∂5L[x]

α,β
γ (t))h2(t), t ∈ [T, b].

Substituting in (4.67), we have
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0 =

∫ T

a

h1(t)
[

∂2L[x]
α,β
γ (t) +D

β(·,·),α(·,·)
γ,T ∂4L[x]

α,β
γ (t) + λ(t)∂2g(t, x(t))

]

dt

+γ2

∫ b

T

h1(t)
[

aD
β(·,·)
t ∂4L[x]

α,β
γ (t)− TDt

β(·,·)∂4L[x]
α,β
γ (t) + λ(t)∂2g(t, x(t))

]

dt

+h1(T )

[

γ1tIT
1−α(·,·)∂4L[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂4L[x]
α,β
γ (t) + ∂2φ(t, x(t))

]

t=T

+h2(T )

[

γ1tIT
1−α(·,·)∂5L[x]

α,β
γ (t)− γ2T It

1−β(·,·)∂5L[x]
α,β
γ (t) + ∂3φ(t, x(t))

]

t=T

+△T
[

L[x]α,βγ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x
′
1(t) + ∂3φ(t, x(t))x

′
2(t)

]

t=T

+h1(b)

[

γ2

(

T It
1−β(·,·)∂4L[x]

α,β
γ (t)− aIt

1−β(·,·)∂4L[x]
α,β
γ (t)

)]

t=b

+h2(b)

[

γ2

(

T It
1−β(·,·)∂5L[x]

α,β
γ (t)− aIt

1−β(·,·)∂5L[x]
α,β
γ (t)

)]

t=b

.

Considering appropriate choices of variations, we obtained the first (4.59) and
the third (4.61) necessary conditions, and also the transversality conditions
(4.63). The remaining conditions (4.60) and (4.62) follow directly from (4.68).

4.6.2 Example

We end this section with a simple illustrative example. Consider the following
problem:

J(x, t) =

∫ T

0

[

α(t) +

(

CDα(·,·),β(·,·)
γ x1(t)−

t1−α(t)

2Γ (2− α(t))
− (b− t)1−β(t)

2Γ (2− β(t))

)2

+
(

CDα(·,·),β(·,·)
γ x2(t)

)2
]

dt −→ min,

x1(t) + x2(t) = t+ 1,

x1(0) = 0, x2(0) = 1.

It is a simple exercise to check that x1(t) = t, x2(t) ≡ 1 and λ(t) ≡ 0 satisfy
our Theorem 56.

4.7 Fractional variational Herglotz problem

In this section, we study fractional variational problems of Herglotz type,

depending on the combined Caputo fractional derivatives CD
α(·,·),β(·,·)
γ . Two
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different cases are considered.
The variational problem of Herglotz is a generalization of the classical vari-
ational problem. It allows us to describe nonconservative processes, even in
case the Lagrange function is autonomous (that is, when the Lagrangian does
not depend explicitly on time). In opposite to calculus of variations, where
the cost functional is given by an integral depending only on time, space
and on the dynamics, in the Herglotz variational problem the model is given
by a differential equation involving the derivative of the objective function
z, and the Lagrange function depends on time, trajectories x and z, and
on the derivative of x. The problem of Herglotz was posed by (Herglotz,
1930), but only in 1996, with the works (Guenther, Gottsch and Kramer,
1996; Guenther, Guenther and Gottsch, 1996), it has gained the attention
of the mathematical community. Since then, several papers were devoted
to this subject. For example, see references (Almeida and Malinowska, 2014;
Georgieva and Guenther, 2002; Georgieva, Guenther and Bodurov, 2003; Santos, Martins and Torres,
2014, 2015a,b).

In Section 4.7.1, we obtain fractional Euler–Lagrange conditions for the
fractional variational problem of Herglotz, with one variable, and the general
case, for several independent variables is discussed in Section 4.7.2. Finally,
three illustrative examples are presented in detail (Section 4.7.3).

4.7.1 Fundamental problem of Herglotz

Let α, β : [a, b]2 → (0, 1) be two functions. The fractional Herglotz variational
problem that we study is as follows.

Problem 7 Determine the trajectories x ∈ C1 ([a, b];R) satisfying a given
boundary condition x(a) = xa, for a fixed xa ∈ R, and a real T ∈ (a, b], that
extremize the value of z(T ), where z satisfies the differential equation

ż(x, t) = L
(

t, x(t),CDα(·,·),β(·,·)
γ x(t), z(t)

)

, t ∈ [a, b], (4.69)

with dependence on a combined Caputo fractional derivative operator, subject
to the initial condition

z(a) = za, (4.70)

where za is a fixed real number.

In the sequel, we use the auxiliary notation

[x, z]α,βγ (t) =
(

t, x(t),CDα(·,·),β(·,·)
γ x(t), z(t)

)

.

The Lagrangian L is assumed to satisfy the following hypothesis:

1. L : [a, b]× R
3 → R is differentiable,
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2. t→ λ(t)∂3L[x, z]
α,β
γ (t) is such that TD

β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

,

aD
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

, andD
β(·,·),α(·,·)
γ

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

exist and
are continuous on [a, b], where

λ(t) = exp

(

−
∫ t

a

∂4L [x, z]
α,β
γ (τ)dτ

)

.

The following result gives necessary conditions of Euler–Lagrange type for a
solution of Problem 7.

Theorem 57 Let x ∈ C1 ([a, b];R) be such that z defined by Eq. (4.69), sub-
ject to the initial condition (4.70), has an extremum at T ∈]a, b]. Then, (x, z)
satisfies the fractional differential equations

∂2L[x, z]
α,β
γ (t)λ(t) +D

β(·,·),α(·,·)
γ

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

= 0, (4.71)

on [a, T ], and

γ2

(

aD
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

− TD
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

)

= 0,

(4.72)
on [T, b]. Moreover, the following transversality conditions are satisfied:






[

γ1tI
1−α(·,·)
T

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

− γ2T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=T
= 0,

γ2

[

T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

− aI
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=b
= 0.

(4.73)
If T < b, then L[x, z]α,βγ (T ) = 0.

Proof. Let x be a solution of the problem. Consider an admissible variation
of x, x = x + ǫh, where h ∈ C1([a, b];R) is an arbitrary perturbation curve
and ǫ ∈ R represents a small number (|ǫ| ≪ 1). The constraint x(a) = xa
implies that all admissible variations must fulfill the condition h(a) = 0. On
the other hand, consider an admissible variation of z, z = z + ǫθ, where θ is
a perturbation curve (not arbitrary) such that

1. θ(a) = 0, so that z(a) = za,
2. θ(T ) = 0 because z(T ) is a maximum (or a minimum),

i.e., z(T )− z(T ) ≤ 0 (z(T )− z(T ) ≥ 0),

3. θ(t) =
d

dε
z(x, t)

∣

∣

∣

∣

ε=0

, so that the variation satisfies the differential equation

(4.69).

Differentiating θ with respect to t, we obtain that

d

dt
θ(t) =

d

dt

d

dε
z(x, t)

∣

∣

∣

∣

ε=0

=
d

dε

d

dt
z(x, t)

∣

∣

∣

∣

ε=0

=
d

dε
L
(

t, x(t) + ǫh(t),CDα(·,·),β(·,·)
γ x(t) + ǫCDα(·,·),β(·,·)

γ h(t), z(x, t)
)

∣

∣

∣

∣

ε=0

,
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and rewriting this relation, we obtain the following differential equation for θ:

θ̇(t)−∂4L[x, z]α,βγ (t)θ(t) = ∂2L[x, z]
α,β
γ (t)h(t)+∂3L[x, z]

α,β
γ (t)CDα(·,·),β(·,·)

γ h(t).

Considering λ(t) = exp

(

−
∫ t

a

∂4L[x, z]
α,β
γ (τ)dτ

)

, we obtain the solution for

the last differential equation

θ(T )λ(T )− θ(a)

=

∫ T

a

(

∂2L[x, z]
α,β
γ (t)h(t) + ∂3L[x, z]

α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)
)

λ(t)dt.

By hypothesis, θ(a) = 0. If x is such that z(x, t) defined by (4.69) attains an
extremum at t = T , then θ(T ) is identically zero. Hence, we get

∫ T

a

(

∂2L[x, z]
α,β
γ (t)h(t) + ∂3L[x, z]

α,β
γ (t)CDα(·,·),β(·,·)

γ h(t)
)

λ(t)dt = 0.

(4.74)
Considering only the second term in Eq. (4.74) and the definition of combined
Caputo derivative operator, we obtain that

∫ T

a

λ(t)∂3L[x, z]
α,β
γ (t)

(

γ1
C
aD

α(·,·)
t h(t) + γ2

C
t D

β(·,·)
b h(t)

)

dt

= γ1

∫ T

a

λ(t)∂3L[x, z]
α,β
γ (t)Ca D

α(·,·)
t h(t)dt

+ γ2

[

∫ b

a

λ(t)∂3L[x, z]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt

−
∫ b

T

λ(t)∂3L[x, z]
α,β
γ (t)Ct D

β(·,·)
b h(t)dt

]

= ⋆.

Using the fractional integration by parts formula and considering γ = (γ
2
, γ1),

we get

⋆ =

∫ T

a

h(t)D
β(·,·),α(·,·)
γ

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

dt

+

∫ b

T

γ2h(t)
[

aD
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

−T D
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

dt

+ h(T )
[

γ1tI
1−α(·,·)
T

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

− γ2T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=T

+ h(b)γ2

[

T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

−a I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=b
.

Substituting this relation into expression (4.74), we obtain
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0 =

∫ T

a

h(t)
[

∂2L[x, z]
α,β
γ (t)λ(t) +D

β(·,·),α(·,·)
γ

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

dt

+

∫ b

T

γ2h(t)
[

aD
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

−T D
β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

dt

+ h(T )
[

γ1tI
1−α(·,·)
T

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

− γ2T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=T

+ h(b)γ2

[

T I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

−a I
1−β(·,·)
t

(

λ(t)∂3L[x, z]
α,β
γ (t)

)

]

t=b
.

With appropriate choices for the variations h(·), we get the Euler–Lagrange
equations (4.71)–(4.72) and the transversality conditions (4.73).

Remark 58 If α(·, ·) and β(·, ·) tend to 1, and if the Lagrangian L is of class
C2, then the first Euler–Lagrange equation (4.71) becomes

∂2L[x, z]
α,β
γ (t)λ(t) + (γ2 − γ1)

d

dt

[

λ(t)∂3L[x, z]
α,β
γ (t)

]

= 0.

Differentiating and considering the derivative of the lambda function, we ob-
tain

λ(t)

[

∂2L[x, z]
α,β
γ (t)

+ (γ2 − γ1)

[

−∂4L[x, z]α,βγ (t)∂3L[x, z]
α,β
γ (t) +

d

dt
∂3L[x, z]

α,β
γ (t)

]

]

= 0.

As λ(t) > 0, for all t, we deduce that

∂2L[x, z]
α,β
γ (t)+(γ2−γ1)

[

d

dt
∂3L[x, z]

α,β
γ (t)− ∂4L[x, z]

α,β
γ (t)∂3L[x, z]

α,β
γ (t)

]

= 0.

4.7.2 Several independent variables

Consider the following generalization of the problem of Herglotz involving n+1
independent variables. Define Ω =

∏n
i=1[ai, bi], with n ∈ N, P = [a, b] × Ω

and consider the vector s = (s1, s2, . . . , sn) ∈ Ω. The new problem consists
in determining the trajectories x ∈ C1 (P ) that give an extremum to z[x, T ],
where the functional z satisfies the differential equation

ż(t) =

∫

Ω

L
(

t, s, x(t, s),CDα(·,·),β(·,·)
γ x(t, s),

CD
α1(·,·),β1(·,·)
γ1 x(t, s), . . . ,C D

αn(·,·),βn(·,·)
γn x(t, s), z(t)

)

dns (4.75)

subject to the constraint

x(t, s) = g(t, s), for all (t, s) ∈ ∂P, (4.76)

where ∂P is the boundary of P and g is a given function g : ∂P → R. We
assume that
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1. α, αi, β, βi : [a, b]
2 → (0, 1) with i = 1, . . . , n,

2. γ, γ1, . . . , γn ∈ [0, 1]2,
3. dns = ds1 . . . dsn,

4. CD
α(·,·),β(·,·)
γ x(t, s), CD

α1(·,·),β1(·,·)
γ1 x(t, s), . . . ,C D

αn(·,·),βn(·,·)
γn x(t, s) exist and

are continuous functions,
5. the Lagrangian L : P × R

n+3 → R is of class C1.

Remark 59 By CD
α(·,·),β(·,·)
γ x(t, s) we mean the Caputo fractional derivative

with respect to the independent variable t, and by CD
αi(·,·),βi(·,·)
γi x(t, s) we mean

the Caputo fractional derivative with respect to the independent variable si,
for i = 1, . . . , n.

In the sequel, we use the auxiliary notation [x, z]α,βn,γ (t, s) to represent the
following vector

(

t, s, x(t, s),CDα(·,·),β(·,·)
γ x(t, s),C D

α1(·,·),β1(·,·)
γ1 x(t, s),

. . . ,C D
αn(·,·),βn(·,·)
γn x(t, s), z(t)

)

.

Consider the function

λ(t) = exp

(

−
∫ t

a

∫

Ω

∂2n+4 [x, z]
α,β
n,γ (τ, s)dnsdτ

)

.

Theorem 60 If (x, z, T ) is an extremizer of the functional defined by Eq.
(4.75), then (x, z, T ) satisfies the fractional differential equations

∂n+2L[x, z]
α,β
n,γ (t, s)λ(t) +D

β(·,·),α(·,·)
γ

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

+

n
∑

i=1

D
βi(·,·),αi(·,·)
γi

(

λ(t)∂n+3+iL[x, z]
α,β
n,γ (t, s)

)

= 0 (4.77)

on [a, T ]×Ω, and

γ2

(

aD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

− TD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

)

= 0

(4.78)
on [T, b]×Ω.
Moreover, (x, z) satisfies the transversality condition

[

γ1tI
1−α(·,·)
T

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

− γ2T I
1−β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

]

t=T
= 0, s ∈ Ω. (4.79)

If T < b, then

∫

Ω

L[x, z]α,βn,γ (T, s)d
ns = 0.
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Proof. Let x be a solution of the problem. Consider an admissible variation of
x, x(t, s) = x(t, s)+ǫh(t, s), where h ∈ C1(P ) is an arbitrary perturbing curve
and ǫ ∈ R is such that |ǫ| ≪ 1. Consequently, h(t, s) = 0 for all (t, s) ∈ ∂P by
the boundary condition (4.76).
On the other hand, consider an admissible variation of z, z = z + ǫθ, where θ
is a perturbing curve such that θ(a) = 0 and

θ(t) =
d

dε
z(x, t)

∣

∣

∣

∣

ε=0

.

Differentiating θ(t) with respect to t, we obtain that

d

dt
θ(t) =

d

dt

d

dε
z(x, t)

∣

∣

∣

∣

ε=0

=
d

dε

d

dt
z (x, t)

∣

∣

∣

∣

ε=0

=
d

dε

∫

Ω

L[x, z]α,βn,γ (t, s)d
ns

∣

∣

∣

∣

ε=0

.

We conclude that

θ̇(t) =

∫

Ω

(

∂n+2L[x, z]
α,β
n,γ (t, s)h(t, s)+∂n+3L[x, z]

α,β
n,γ (t, s)

CDα(·,·),β(·,·)
γ h(t, s)

+

n
∑

i=1

∂n+3+iL[x, z]
α,β
n,γ (t, s)

CD
αi(·,·),βi(·,·)
γi h(t, s)+∂2n+4L[x, z]

α,β
n,γ (t, s)θ(t)

)

dns.

To simplify the notation, we define

B(t) =

∫

Ω

∂2n+4L[x, z]
α,β
n,γ (t, s)d

ns

and

A(t) =

∫

Ω

(

∂n+2L[x, z]
α,β
n,γ (t, s)h(t, s)+∂n+3L[x, z]

α,β
n,γ (t, s)

CDα(·,·),β(·,·)
γ h(t, s)

+

n
∑

i=1

∂n+3+iL[x, z]
α,β
n,γ (t, s)

CD
αi(·,·),βi(·,·)
γi h(t, s)

)

dns.

Then, we obtain the linear differential equation

θ̇(t)−B(t)θ(t) = A(t),

whose solution is

θ(T )λ(T )− θ(a) =

∫ T

a

A(t)λ(t)dt.
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Since θ(a) = θ(T ) = 0, we get

∫ T

a

A(t)λ(t)dt = 0. (4.80)

Considering only the second term in (4.80), we can write

∫ T

a

∫

Ω

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

(

γ1
C
aD

α(·,·)
t h(t, s) + γ2

C
t D

β(·,·)
b h(t, s)

)

dnsdt

= γ1

∫ T

a

∫

Ω

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

C
aD

α(·,·)
t h(t, s)dnsdt

+ γ2

[

∫ b

a

∫

Ω

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

C
t D

β(·,·)
b h(t, s)dnsdt

−
∫ b

T

∫

Ω

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

C
t D

β(·,·)
b h(t, s)dnsdt

]

.

Let γ = (γ
2
, γ1). Integrating by parts (cf. Theorem 13), and since h(a, s) =

h(b, s) = 0 for all s ∈ Ω, we obtain the following expression:

∫ T

a

∫

Ω

h(t, s)D
β(·,·),α(·,·)
γ

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

dnsdt

+ γ2

∫ b

T

∫

Ω

h(t, s)
[

aD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

− TD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

]

dnsdt

+

∫

Ω

h(T, s)
[

γ1tI
1−α(·,·)
T

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

−γ2 T I
1−β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

dns
]

t=T
.

Doing similarly for the (i + 2)th term in (4.80), with i = 1, . . . , n, letting
γi = (γi

2
, γi1), and since h(t, ai) = h(t, bi) = 0 for all t ∈ [a, b], we obtain

∫ T

a

∫

Ω

λ(t)∂n+3+iL[x, z]
α,β
n,γ (t, s)

(

γi1
C
ai
Dαi(·,·)

si h(t, s) + γi2
C
siD

βi(·,·)
bi

h(t, s)
)

dnsdt

=

∫ T

a

∫

Ω

h(t, s)D
βi(·,·),αi(·,·)

γi

(

λ(t)∂n+3+iL[x, z]
α,β
n,γ (t, s)

)

dnsdt.

Substituting these relations into (4.80), we deduce that
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∫ T

a

∫

Ω

h(t, s)
[

∂n+2L[x, z]
α,β
n,γ (t, s)λ(t) +D

β(·,·),α(·,·)
γ

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

+
n
∑

i=1

D
βi(·,·),αi(·,·)

γi

(

λ(t)∂n+3+iL[x, z]
α,β
n,γ (t, s)

)

dnsdt

+ γ2

∫ b

T

∫

Ω

h(t, s)
[

aD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

−TD
β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

]

dnsdt

+

∫

Ω

h(T, s)
[

γ1tI
1−α(·,·)
T

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

−γ2 T I
1−β(·,·)
t

(

λ(t)∂n+3L[x, z]
α,β
n,γ (t, s)

)

dns
]

t=T
.

For appropriate choices with respect to h, we get the Euler–Lagrange equa-
tions (4.77)–(4.78) and the transversality condition (4.79).

4.7.3 Examples

We present three examples, with and without the dependence on z.

Example 4.1. Consider

ż(t) =
(

CDα(·,·),β(·,·)
γ x(t)

)2

+ z(t) + t2 − 1, t ∈ [0, 3],

x(0) = 1, z(0) = 0.
(4.81)

In this case, λ(t) = exp(−t). The necessary optimality conditions (4.71)–(4.72)
of Theorem 57 hold for x(t) ≡ 1. If we replace x by x in (4.81), we obtain

ż(t)− z(t) = t2 − 1, t ∈ [0, 3],

z(0) = 0,

whose solution is
z(t) = exp(t)− (t+ 1)2. (4.82)

The last transversality condition of Theorem 57 asserts that

L[x, z]α,βγ (T ) = 0 ⇔ exp(T )− 2T − 2 = 0,

whose solution is approximately

T ≈ 1.67835.

We remark that z (4.82) actually attains a minimum value at this point (see
Figure 4.1, (a)):

z(1.67835) ≈ −1.81685.
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Example 4.2. Consider now

ż(t) = (t− 1)
(

x2(t) + z2(t) + 1
)

, t ∈ [0, 3],

x(0) = 0, z(0) = 0.
(4.83)

Since the first Euler–Lagrange equation (4.71) reads

(t− 1)x(t) = 0, ∀t ∈ [0, T ],

we see that x(t) ≡ 0 is a solution of this equation. The second transversality
condition of (4.73) asserts that, at t = T , we must have

L[x, z]α,βγ (t) = 0,

that is,
(t− 1)(z2(t) + 1) = 0,

and so T = 1 is a solution for this equation. Substituting x by x in (4.83), we
get

ż(t) = (t− 1)(z2(t) + 1), t ∈ [0, 3],

z(0) = 0.

The solution to this Cauchy problem is the function

z(t) = tan

(

t2

2
− t

)

,

(see Figure 4.1, (b)) and the minimum value is

z(1) = tan

(

−1

2

)

.

Example 4.3. For our last example, consider

ż(t) =
(

CDα(·,·),β(·,·)
γ x(t) − f(t)

)2

+ t2 − 1, t ∈ [0, 3],

x(0) = 0, z(0) = 0,
(4.84)

where

f(t) :=
t1−α(t)

2Γ (2− α(t))
− (3− t)1−β(t)

2Γ (2− β(t))
.

In this case, λ(t) ≡ 1. We intend to find a pair (x, z), satisfying all the con-
ditions in (4.84), for which z(T ) attains a minimum value. It is easy to verify
that x(t) = t and T = 1 satisfy the necessary conditions given by Theorem
57. Replacing x by x in (4.84), we get a Cauchy problem of form

ż(t) = t2 − 1, t ∈ [0, 3],

z(0) = 0,
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whose solution is

z(t) =
t3

3
− t.

Observe that this function attains a minimum value at T = 1, which is z(1) =
−2/3 (Figure 4.1, (c)).

(a) Extremal z of Example 4.1. (b) Extremal z of Example 4.2.

(c) Extremal z of Example 4.3.

Fig. 4.1. Graphics of function z(x, t).
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Appendix

In this appendix, we use a specific MATLAB software, the package Chebfun, to
obtain a few computational approximations for the main fractional operators
in this book.

Chebfun is an open source software package that “aims to provide numer-
ical computing with functions” in MATLAB (Linge and Langtangen, 2016).
Chebfun overloads MATLAB’s discrete operations for matrices to analogous
continuous operations for functions and operators (Trefethen, 2013). For the
mathematical underpinnings of Chebfun, we refer the reader to (Trefethen,
2013). For the algorithmic backstory of Chebfun, we refer to (Driscoll, Hale and Trefethen,
2014).

In what follows, we study some computational approximations of Riemann–
Liouville fractional integrals, of Caputo fractional derivatives and conse-
quently of the combined Caputo fractional derivative, all of them with
variable-order. We provide, also, the necessary Chebfun code for the variable-
order fractional calculus.

To implement these operators, we need two auxiliary functions: the gamma
function Γ (Definition 1) and the beta function B (Definition 3). Both
functions are available in MATLAB through the commands gamma(t) and
beta(t,u), respectively.

A.1 Higher-order Riemann–Liouville fractional integrals

In this section, we discuss computational aspects to the higher-order Riemann–

Liouville fractional integrals of variable-order aI
αn(·,·)
t x(t) and tI

αn(·,·)
b x(t).

Considering the Definition 34 of higher-order Riemann–Liouville fractional
integrals, we implemented in Chebfun two functions leftFi(x,alpha,a) and
rightFI(x,alpha,b) that approximate, respectively, the Riemann–Liouville

fractional integrals aI
αn(·,·)
t x(t) and tI

αn(·,·)
b x(t), through the following Cheb-

fun/MATLAB code.
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function r = leftFI(x,alpha,a)

g = @(t,tau) x(tau)./(gamma(alpha(t,tau)).*(t-tau).^(1-alpha(t,tau)));

r = @(t) sum(chebfun(@(tau) g(t,tau),[a t],’splitting’,’on’),[a t]);

end

and

function r = rightFI(x,alpha,b)

g = @(t,tau) x(tau)./(gamma(alpha(tau,t)).*(tau-t).^(1-alpha(tau,t)));

r = @(t) sum(chebfun(@(tau) g(t,tau),[t b],’splitting’,’on’),[t b]);

end

With these two functions, we illustrate their use in the following exam-
ple, where we determine computacional approximations for Riemann–Liouville
fractional integrals of a special power function.

Example 4.4. Let α(t, τ) = t2+τ2

4 and x(t) = t2 with t ∈ [0, 1]. In this case,

a = 0, b = 1 and n = 1. We have aI
α(·,·)
0.6 x(0.6) ≈ 0.2661 and 0.6I

α(·,·)
b x(0.6) ≈

0.4619, obtained in MATLAB with our Chebfun functions as follows:

a = 0; b = 1; n = 1;

alpha = @(t,tau) (t.^2+tau.^2)/4;

x = chebfun(@(t) t.^2, [0,1]);

LFI = leftFI(x,alpha,a);

RFI = rightFI(x,alpha,b);

LFI(0.6)

ans = 0.2661

RFI(0.6)

ans = 0.4619

Other values for aI
α(·,·)
t x(t) and tI

α(·,·)
b x(t) are plotted in Figure 4.2.

A.2 Higher-order Caputo fractional derivatives

In this section, considering the Definition 36, we implement in Chebfun two
new functions leftCaputo(x,alpha,a,n) and rightCaputo(x,alpha,b,n)

that approximate, respectively, the higher-order Caputo fractional derivatives

of variable-order C
aD

αn(·,·)
t x(t) and C

t D
αn(·,·)
b x(t).

The following code implements the left operator (4.2):

function r = leftCaputo(x,alpha,a,n)

dx = diff(x,n);

g = @(t,tau) dx(tau)./(gamma(n-alpha(t,tau)).

*(t-tau).^(1+alpha(t,tau)-n));

r = @(t) sum(chebfun(@(tau) g(t,tau),[a t],’splitting’,’on’),[a t]);

end

Similarly, we define the right operator (4.3) with Chebfun in MATLAB as
follows:
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Fig. 4.2. Riemann–Liouville fractional integrals of Example 4.4: x(t) = t2 in con-

tinuous line, left integral aI
α(·,·)
t x(t) with “◦−” style, and right integral tI

α(·,·)
b x(t)

with “×−” style.

function r = rightCaputo(x,alpha,b,n)

dx = diff(x,n);

g = @(t,tau) dx(tau)./(gamma(n-alpha(tau,t)).

*(tau-t).^(1+alpha(tau,t)-n));

r = @(t)(-1).^n.* sum(chebfun(@(tau) g(t,tau),[t b],

’splitting’,’on’),[t b]);

end

We use the two functions leftCaputo and rightCaputo to determine apro-
ximations for the Caputo fractional derivatives of a power function of the form
x(t) = tγ .

Example 4.5. Let α(t, τ) = t2

2 and x(t) = t4 with t ∈ [0, 1]. In this case, a = 0,

b = 1 and n = 1. We have C
aD

α(·,·)
0.6 x(0.6) ≈ 0.1857 and C

0.6D
α(·,·)
b x(0.6) ≈

−1.0385, obtained in MATLAB with our Chebfun functions as follows:

a = 0; b = 1; n = 1;

alpha = @(t,tau) t.^2/2;

x = chebfun(@(t) t.^4, [a b]);

LC = leftCaputo(x,alpha,a,n);

RC = rightCaputo(x,alpha,b,n);

LC(0.6)

ans = 0.1857

RC(0.6)
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ans = -1.0385

See Figure 4.3 for a plot with other values of C
aD

α(·,·)
t x(t) and C

t D
α(·,·)
b x(t).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Fig. 4.3. Caputo fractional derivatives of Example 4.5: x(t) = t4 in continuous line,

left derivative C
a D

α(·,·)
t x(t) with “◦−” style, and right derivative C

t D
α(·,·)
b x(t) with

“×−” style.

Example 4.6. In Example 4.5, we have used the polynomial x(t) = t4. It is
worth mentioning that our Chebfun implementation works well for functions
that are not a polynomial. For example, let x(t) = et. In this case, we just
need to change

x = chebfun(@(t) t.^4, [a b]);

in Example 4.5 by

x = chebfun(@(t) exp(t), [a b]);

to obtain

LC(0.6)

ans = 0.9917

RC(0.6)

ans = -1.1398

See Figure 4.4 for a plot with other values of C
aD

α(·,·)
t x(t) and C

t D
α(·,·)
b x(t).
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Fig. 4.4. Caputo fractional derivatives of Example 4.6: x(t) = et in continuous line,

left derivative C
a D

α(·,·)
t x(t) with “◦−” style, and right derivative C

t D
α(·,·)
b x(t) with

“×−” style.

With Lemma 40 in Section 4.1 we can obtain, analytically, the higher-order
left Caputo fractional derivative of a power function of the form x(t) = (t−a)γ .
This allows us to show the effectiveness of our computational approach, that
is, the usefulness of polynomial interpolation in Chebyshev points in fractional
calculus of variable-order. In Lemma 40, we assume that the fractional order
depends only on the first variable: αn(t, τ) := αn(t), where αn : [a, b] →
(n− 1, n) is a given function.

Example 4.7. Let us revisit Example 4.5 by choosing α(t, τ) = t2

2 and x(t) = t4

with t ∈ [0, 1]. Table 4.1 shows the approximated values obtained by our Cheb-
fun function leftCaputo(x,alpha,a,n) and the exact values computed with
the formula given by Lemma 40. Table 4.1 was obtained using the following
MATLAB code:

format long

a = 0; b = 1; n = 1;

alpha = @(t,tau) t.^2/2;

x = chebfun(@(t) t.^4, [a b]);

exact = @(t) (gamma(5)./gamma(5-alpha(t))).*t.^(4-alpha(t));

approximation = leftCaputo(x,alpha,a,n);

for i = 1:9

t = 0.1*i;

E = exact(t);
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A = approximation(t);

error = E - A;

[t E A error]

end

t Exact Value Approximation Error

0.1 1.019223177296953e-04 1.019223177296974e-04 -2.046431600566390e-18

0.2 0.001702793965464 0.001702793965464 -2.168404344971009e-18

0.3 0.009148530806348 0.009148530806348 3.469446951953614e-18

0.4 0.031052290994593 0.031052290994592 9.089951014118469e-16

0.5 0.082132144921157 0.082132144921157 6.522560269672795e-16

0.6 0.185651036003120 0.185651036003112 7.938094626069869e-15

0.7 0.376408251363662 0.376408251357416 6.246059225389899e-12

0.8 0.704111480975332 0.704111480816562 1.587694420379648e-10

0.9 1.236753486749357 1.236753486514274 2.350835082154390e-10

Table 4.1. Exact values obtained by Lemma 40 for functions of Example 4.7 versus
computational approximations obtained using the Chebfun code.

Computational experiments similar to those of Example 4.7, obtained by
substituting Lemma 40 by Lemma 41 and our leftCaputo routine by the
rightCaputo one, reinforce the validity of our computational methods. In
this case, we assume that the fractional order depends only on the second
variable: αn(τ, t) := αn(t), where αn : [a, b] → (n− 1, n) is a given function.

A.3 Higher-order combined fractional Caputo derivative

The higher-order combined Caputo fractional derivative combines both left
and right Caputo fractional derivatives, that is, we make use of functions
leftCaputo(x,alpha,a,n)and rightCaputo(x,alpha,b,n)provided in Sec-
tion A.1 to define Chebfun computational code for the higher-order combined
fractional Caputo derivative of variable-order:

function r = combinedCaputo(x,alpha,beta,gamma1,gamma2,a,b,n)

lc = leftCaputo(x,alpha,a,n);

rc = rightCaputo(x,beta,b,n);

r = @(t) gamma1 .* lc(t) + gamma2 .* rc(t);

end

Then we illustrate the behavior of the combined Caputo fractional deriva-
tive of variable-order for different values of t ∈ (0, 1), using MATLAB.

Example 4.8. Let α(t, τ) = t2+τ2

4 , β(t, τ) = t+τ
3 and x(t) = t, t ∈ [0, 1].

We have a = 0, b = 1 and n = 1. For γ = (γ1, γ2) = (0.8, 0.2), we have
CD

α(·,·),β(·,·)
γ x(0.4) ≈ 0.7144:
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a = 0; b = 1; n = 1;

alpha = @(t,tau) (t.^2 + tau.^2)/.4;

beta = @(t,tau) (t + tau)/3;

x = chebfun(@(t) t, [0 1]);

gamma1 = 0.8;

gamma2 = 0.2;

CC = combinedCaputo(x,alpha,beta,gamma1,gamma2,a,b,n);

CC(0.4)

ans = 0.7144

For other values of CD
α(·,·),β(·,·)
γn x(t), for different values of t ∈ (0, 1) and

γ = (γ1, γ2), see Figure 4.5 and Table 4.2.
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Fig. 4.5. Combined Caputo fractional derivative CD
α(·,·),β(·,·)
γ x(t) for α(·, ·), β(·, ·)

and x(t) of Example 4.8: continuous line for γ = (γ1, γ2) = (0.2, 0.8), “◦−” style for
γ = (γ1, γ2) = (0.5, 0.5), and “×−” style for γ = (γ1, γ2) = (0.8, 0.2).
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t Case 1 Case 2 Case 3

0.4500 -0.5630 -0.3371 -0.1112

0.5000 -790.4972 -1.9752e+03 -3.1599e+03

0.5500 -3.5738e+06 -8.9345e+06 -1.4295e+07

0.6000 -2.0081e+10 -5.0201e+10 -8.0322e+10

0.6500 2.8464e+14 7.1160e+14 1.1386e+15

0.7000 4.8494e+19 1.2124e+20 1.9398e+20

0.7500 3.8006e+24 9.5015e+24 1.5202e+25

0.8000 -1.3648e+30 -3.4119e+30 -5.4591e+30

0.8500 -1.6912e+36 -4.2280e+36 -6.7648e+36

0.9000 5.5578e+41 1.3895e+42 2.2231e+42

0.9500 1.5258e+49 3.8145e+49 6.1033e+49

0.9900 1.8158e+54 4.5394e+54 7.2631e+54

Table 4.2. Combined Caputo fractional derivative CD
α(·,·),β(·,·)
γ x(t) for α(·, ·), β(·, ·)

and x(t) of Example 4.8. Case 1: γ = (γ1, γ2) = (0.2, 0.8); Case 2: γ = (γ1, γ2) =
(0.5, 0.5); Case 3: γ = (γ1, γ2) = (0.8, 0.2).

Trefethen LN (2013) Approximation Theory and Approximation Practice.
Society for Industrial and Applied Mathematics
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