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Preface
There are several good recent textbooks on algebraic geometry at the graduate level,
but not (to my knowledge) any designed for an undergraduate course. Humble notes
are from a course given in two successive years in the 3rd year of the Warwick under-
graduate math course, and are intended as a self-contained introductory textbook.
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Chapter 0

Woffle

This section is intended as a cultural introduction, and is not logically part of the course, so just
skip through it.

0.1 What it’s about
A variety is (roughly) a locus defined by polynomial equations:

V =
{
P ∈ kn

∣∣ fi(P ) = 0
}
⊂ kn,

where k is a field and fi ∈ k[X1, . . . , Xn] are polynomials; so for example, the plane curves C :
(f(x, y) = 0) ⊂ R2 or C2.

Figure 1: The cubic curves (a) y2 = (x+1)(x2+ε), (b) y2 = (x+1)x2, and (c) y2 = (x+1)(x2−ε).

I want to study V ; several questions present themselves:

Number Theory For example, if k = Q and V ⊂ Qn, how can we tell if V is nonempty, or find
all its points if it is? A specific case is historically of some significance: how many solutions are
there to

xn + yn = 1, with x, y ∈ Q and n ≥ 3?

Questions of this kind are generally known as Diophantine problems.

11
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Topology If k is R or C (which it quite often is), what kind of topological space is V ? For
example, the connected components of the above cubics are obvious topological invariants.

Singularity theory What kind of topological space is V near P ∈ V ; if f : V1 → V2 is a regular
map between two varieties (for example, a polynomial map R2 → R), what kind of topology and
geometry does f have near P ∈ V1?

0.2 Specific calculations versus general theory
There are two possible approaches to studying varieties:

Particular Given specific polynomials fi, we can often understand the variety V by explicit tricks
with the fi; this is fun if the dimension n and the degrees of the fi are small, or the fi are specially
nice, but things get progressively more complicated, and there rapidly comes a time when mere
ingenuity with calculations doesn’t tell you much about the problem.

General The study of properties of V leads at once to basic notions such as regular functions on
V , nonsingularity and tangent planes, the dimension of a variety: the idea that curves such as the
above cubics are 1-dimensional is familiar from elementary Cartesian geometry, and the pictures
suggest at once what singularity should mean.

Now a basic problem in giving an undergraduate algebraic geometry course is that an adequate
treatment of the ‘general’ approach involves so many definitions that they fill the entire course and
squeeze out all substance. Therefore one has to compromise, and my solution is to cover a small
subset of the general theory, with constant reference to specific examples. These notes therefore
contain only a fraction of the ‘standard bookwork’ which would form the compulsory core of a
3–year undergraduate math course devoted entirely to algebraic geometry. On the other hand, I
hope that each section contains some exercises and worked examples of substance.

0.3 Rings of functions and categories of geometry
The specific flavour of algebraic geometry comes from the use of only polynomial functions (together
with rational functions); to explain this, if U ⊂ R2 is an open interval, one can reasonably consider
the following rings of functions on U :

• C0(U) = all continuous functions f : U → R;

• C∞(U) = all smooth functions (that is, differentiable to any order);

• Cω(U) = all analytic functions (that is, convergent power series);

• R[X] = the polynomial ring, viewed as polynomial functions on U .

There are of course inclusions R[X] ⊂ Cω(U) ⊂ C∞(U) ⊂ C0(U).
These rings of functions correspond to some of the important categories of geometry: C0(U)

to the topological category, C∞(U) to the differentiable category (differentiable manifolds), Cω to
real analytic geometry, and R[X] to algebraic geometry. The point I want to make here is that
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each of these inclusion signs represents an absolutely huge gap, and that this leads to the main
characteristics of geometry in the different categories. Although it’s not stressed very much in
school and first year university calculus, any reasonable way of measuring C0(U) will reveal that
the differentiable functions have measure 0 in the continuous functions (so if you pick a continuous
function at random then with probability 1 it will be nowhere differentiable, like Brownian motion).
The gap between Cω(U) and C∞(U) is exemplified by the behaviour of exp(−1/x2), the standard
function which is differentiable infinitely often, but for which the Taylor series (at 0) does not
converge to f ; using this, you can easily build a C∞ ‘bump function’ f : R→ R such that f(x) = 1
if |x| ≤ 0.9, and f(x) = 0 if |x| ≥ 1: In contrast, an analytic function on U extends (as a convergent

Figure 2: A C∞ bump function.

power series) to an analytic function of a complex variable on a suitable domain in C, so that (using
results from complex analysis), if f ∈ Cω(U) vanishes on a real interval, it must vanish identically.
This is a kind of ‘rigidity’ property which characterises analytic geometry as opposed to differential
topology.

0.4 Geometry from polynomials

There are very few polynomial functions: the polynomial ring R[X] is just a countable dimensional
R-vector space, whereas Cω(U) is already uncountable. Even allowing rational functions – that is,
extending R[X] to its field of fractions R(X) – doesn’t help much. (2.2) will provide an example
of the characteristic rigidity of the algebraic category. The fact that it is possible to construct
a geometry using only this set of functions is itself quite remarkable. Not surprisingly, there are
difficulties involved in setting up this theory:

Foundations via commutative algebra Topology and differential topology can rely on the
whole corpus of ε-δ analysis taught in a series of 1st and 2nd year undergraduate courses; to do
algebraic geometry working only with polynomial rings, we need instead to study rings such as the
polynomial ring k[X1, . . . , Xn] and their ideals. In other words, we have to develop commutative
algebra in place of calculus. The Nullstellensatz (§3 below) is a typical example of a statement
having direct intuitive geometric content (essentially, “different ideals of functions in k[X1, . . . , Xn]
define different varieties V ⊂ kn”) whose proof involves quite a lengthy digression through finiteness
conditions in commutative algebra.

Rational maps and functions Another difficulty arising from the decision to work with poly-
nomials is the necessity of introducing ‘partially defined functions’; because of the ‘rigidity’ hinted
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at above, we’ll see that for some varieties (in fact for all projective varieties), there do not exist
any nonconstant regular functions (see Ex. 5.1, Ex. 5.12 and the discussion in (8.10)). Rational
functions (that is, ‘functions’ of the form f = g/h, where g, h are polynomial functions) are not
defined at points where the denominator vanishes. Although reprehensible, it is a firmly entrenched
tradition among algebraic geometers to use ‘rational function’ and ‘rational map’ to mean ‘only
partially defined function (or map)’. So a rational map f : V1 99K V2 is not a map at all; the broken
arrow here is also becoming traditional. Students who disapprove are recommended to give up at
once and take a reading course in Category Theory instead.

This is not at all a frivolous difficulty. Even regular maps (= morphisms, these are genuine maps)
have to be defined as rational maps which are regular at all points P ∈ V (that is, well defined, the
denominator can be chosen not to vanish at P ). Closely related to this is the difficulty of giving a
proper intrinsic definition of a variety: in this course (and in others like it, in my experience), affine
varieties V ⊂ An and quasiprojective varieties V ⊂ Pn will be defined, but there will be no proper
definition of ‘variety’ without reference to an ambient space. Roughly speaking, a variety should
be what you get if you glue together a number of affine varieties along isomorphic open subsets.
But our present language, in which isomorphisms are themselves defined more or less explicitly in
terms of rational functions, is just too cumbersome; the proper language for this glueing is sheaves,
which are well treated in graduate textbooks.

0.5 “Purely algebraically defined”

So much for the drawbacks of the algebraic approach to geometry. Having said this, almost all the
algebraic varieties of importance in the world today are quasiprojective, and we can have quite a
lot of fun with varieties without worrying overmuch about the finer points of definition.

The main advantages of algebraic geometry are that it is purely algebraically defined, and that
it applies to any field, not just R or C; we can do geometry over fields of characteristic p. Don’t
say ‘characteristic p – big deal, that’s just the finite fields’; to start with, very substantial parts of
group theory are based on geometry over finite fields, as are large parts of combinatorics used in
computer science. Next, there are lots of interesting fields of characteristic p other than finite ones.
Moreover, at a deep level, the finite fields are present and working inside Q and C. Most of the
deep results on arithmetic of varieties over Q use a considerable amount of geometry over C or over
the finite fields and their algebraic closures.

This concludes the introduction; see the informal discussion in (2.15) and the final §8 for more
general culture.

0.6 Plan of the book

As to the structure of the book, Part I and Part III aim to indicate some worthwhile problems
which can be studied by means of algebraic geometry. Part II is an introduction to the commutative
algebra referred to in (0.4) and to the categorical framework of algebraic geometry; the student who
is prone to headaches could perhaps take some of the proofs for granted here, since the material is
standard, and the author is a professional algebraic geometer of the highest moral fibre.

§8 contains odds and ends that may be of interest or of use to the student, but that don’t fit in
the main text: a little of the history and sociology of the modern subject, hints as to relations of
the subject matter with more advanced topics, technical footnotes, etc.
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Prerequisites for this course:
Algebra: Quadratic forms, easy properties of commutative rings and their ideals, principal ideal

domains and unique factorisation.

Galois Theory: Fields, polynomial rings, finite extensions, algebraic versus transcendental exten-
sions, separability.

Topology and geometry: Definition of topological space, projective space Pn (but I’ll go through
it again in detail).

Calculus in Rn: Partial derivatives, implicit function theorem (but I’ll remind you of what I need
when we get there).

Commutative algebra: Other experience with commutative rings is desirable, but not essential.

Course relates to:
Complex Function Theory An algebraic curve over C is a 1-dimensional complex manifold,

and regular functions on it are holomorphic, so that this course is closely related to complex
function theory, even if the relation is not immediately apparent.

Algebraic Number Theory For example the relation with Fermat’s Last Theorem.

Catastrophe Theory Catastrophes are singularities, and are essentially always given by poly-
nomial functions, so that the analysis of the geometry of the singularities is pure algebraic
geometry.

Commutative Algebra Algebraic geometry provides motivation for commutative algebra, and
commutative algebra provides technical support for algebraic geometry, so that the two sub-
jects enrich one another.

Exercises to Chapter 0
0.1 (a) Show that for fixed values of (y, z), x is a repeated root of x3 + xy+ z = 0 if and only if

x = −3z/2y and 4y3 + 27z2 = 0;
(b) there are 3 distinct roots if and only if 4y3 + 27z2 < 0;
(c) sketch the surface S : (x3 + xy + z = 0) ⊂ R3 and its projection onto the (y, z)-plane;
(d) now open up any book or article on catastrophe theory and compare.

0.2 Let f ∈ R[X,Y ] and let C : (f = 0) ⊂ R2; say that P ∈ C is isolated if there is an ε > 0 such
that C ∩B(P, ε) = P . Show by example that C can have isolated points. Prove that if P ∈ C
is an isolated point then f : R2 → R must have a max or min at P , and deduce that ∂f

∂x and
∂f
∂y vanish at P . This proves that an isolated point of a real curve is singular.

0.3 Cubic curves:

(i) Draw the graph of y = 4x3 + 6x2 and its intersection with the horizontal lines y = t for
integer values of t ∈ [−1, 3];

(ii) draw the cubic curves y2 = 4x3 + 6x2 − t for the same values of t.
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Books
Most of the following are textbooks at a graduate level, and some are referred to in the text:

W. Fulton, Algebraic curves, Springer. (This is the most down-to-earth and self-contained of
the graduate texts; Ch. 1–6 are quite well suited to an undergraduate course, although the material
is somewhat dry.)

I.R. Shafarevich, Basic algebraic geometry, Springer. (A graduate text, but Ch. I, and SII.1 are
quite suitable material.)

P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley. (Gives the complex analytic
point of view.)

David Mumford, Algebraic geometry I, Complex projective varieties, Springer.
D. Mumford, Introduction to algebraic geometry, Harvard notes. (Not immediately very read-

able, but goes directly to the main points; many algebraic geometers of my generation learned their
trade from these notes. Recently reissued as Springer LNM 1358, and therefore no longer a little
red book.)

K. Kendig, Elementary algebraic geometry, Springer. (Treats the relation between algebraic
geometry and complex analytic geometry.)

R. Hartshorne, Algebraic geometry, Springer. (This is the professional’s handbook, and covers
much more advanced material; Ch. I is an undergraduate course in bare outline.)

M. Berger, Geometry I and II, Springer. (Some of the material of the sections on quadratic
forms and quadric hypersurfaces in II is especially relevant.)

M.F. Atiyah and I.G. Macdonald, Commutative algebra, Addison-Wesley. (An invaluable text-
book.)

E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser.
H. Matsumura, Commutative ring theory, Cambridge. (A more detailed text on commutative

algebra.)
D. Mumford, Curves and their Jacobians, Univ. of Michigan Press. (Colloquial lectures, going

quite deep quite fast.)
C.H. Clemens, A scrapbook of complex curves, Plenum. (Lots of fun.).
E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser.
A. Beauville, Complex algebraic surfaces, LMS Lecture Notes, Cambridge.
J. Kollár, The structure of algebraic threefolds: An introduction to Mori’s program, Bull. Amer.

Math. Soc. 17 (1987), 211–273. (A nicely presented travel brochure to one active area of research.
Mostly harmless.)

J.G. Semple and L. Roth, Introduction to algebraic geometry, Oxford. (A marvellous old book,
full of information, but almost entirely lacking in rigour.)

J.L. Coolidge, Treatise on algebraic plane curves, Oxford and Dover.
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Playing with plane curves
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Chapter 1

Plane conics

I start by studying the geometry of conics as motivation for the projective plane P2. Projective
geometry is usually mentioned in 2nd year undergraduate geometry courses, and I recall some of
the salient features, with some emphasis on homogeneous coordinates, although I completely ignore
the geometry of linear subspaces and the ‘cross-ratio’. The most important aim for the student
should be to grasp the way in which geometric ideas (for example, the idea that ‘points at infinity’
correspond to asymptotic directions of curves) are expressed in terms of coordinates. The interplay
between the intuitive geometric picture (which tells you what you should be expecting), and the
precise formulation in terms of coordinates (which allows you to cash in on your intuition) is a
fascinating aspect of algebraic geometry.

1.1 Example of a parametrised curve
Pythagoras’ Theorem says that, in the diagram

X2 + Y 2 = Z2,

so (3, 4, 5) and (5, 12, 13), as every ancient Egyptian knew. How do you find all integer solutions?
The equation is homogeneous, so that x = X/Z, y = Y/Z gives the circle C : (x2 + y2 = 1) ⊂ R2,
which can easily be seen to be parametrised as

x =
2λ

λ2 + 1
, y =

λ2 − 1

λ2 + 1
, where λ =

x

1− y
;

so this gives all solutions:

X = 2`m, Y = `2 −m2, Z = `2 +m2 with `,m ∈ Z coprime

19
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(or each divided by 2 if `,m are both odd). Note that the equation is homogeneous, so that if
(X,Y, Z) is a solution, then so is (λX, λY, λZ).

Maybe the parametrisation was already familiar from school geometry, and in any case, it’s easy
to verify that it works. However, if I didn’t know it already, I could have obtained it by an easy
geometric argument, namely linear projection from a given point: P = (0, 1) ∈ C, and if λ ∈ Q

Figure 1.1: Linear projection of a conic to a line

is any value, then the line Lλ through P with slope −λ meets C in a further point Qλ. This
construction of a map by means of linear projection will appear many times in what follows.

1.2 Similar example

C : (2X2 + Y 2 = 5Z2). The same method leads to the parametrisation R→ C given by

x =
2
√

5λ

1 + 2λ2
, y =

2λ2 − 1

1 + 2λ2
.

This allows us to understand all about points of C with coefficients in R, and there’s no real
difference from the previous example; what about Q?

Proposition If (a, b, c) ∈ Q satisfies 2a2 + b2 = 5c2 then (a, b, c) = (0, 0, 0).

Proof Multiplying through by a common denominator and taking out a common factor if nec-
essary, I can assume that a, b, c are integers, not all of which are divisible by 5; also if 5 | a and
5 | b then 25 | 5c2, so that 5 | c, which contradicts what I’ve just said. It is now easy to get a
contradiction by considering the possible values of a and b mod 5: since any square is 0, 1 or 4
mod 5, clearly 2a2 + b2 is one of 0 + 1, 0 + 4, 2 + 0, 2 + 1, 2 + 4, 8 + 0, 8 + 1 or 8 + 4 mod 5, none
of which can be of the form 5c2. Q.E.D.

Note that this is a thoroughly arithmetic argument.
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1.3 Conics in R2

A conic in R2 is a plane curve given by a quadratic equation

q(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0.

Everyone has seen the classification of nondegenerate conics:

Figure 1.2: The nondegenerate conics: (a) ellipse; (b) parabola; (c) hyperbola.

in addition, there are a number of peculiar cases:
(d) single point given by x2 + y2 = 0;
(e, f, g) empty set given by any of the 3 equations: (e) x2 + y2 = −1, (f) x2 = −1 or (g) 0 = 1.

These three equations are different, although they define the same locus of zeros in R2; consider for
example their complex solutions.

(h) line x = 0;
(i) line pair xy = 0;
(j) parallel lines x(x− 1) = 0;
(k) ‘double line’ x2 = 0; you can choose for yourself whether you’ll allow the final case:
(l) whole plane given by 0 = 0.

1.4 Projective plane
The definition ‘out of the blue’:

P2
R =

{
lines of R3 through origin

}
=
{
ratios X : Y : Z

}
=
(
R3 \ {0}

)
/∼, where (X,Y, Z)∼(λX, λY, λZ) if λ ∈ R \ {0}.

(The sophisticated reader will have no difficulty in generalising from R3 to an arbitrary vector
space over a field, and in replacing work in a chosen coordinate system with intrinsic arguments.)

To represent a ratio X : Y : Z for which Z 6= 0, I can set x = X/Z, y = Y/Z; this simplifies
things, since the ratio corresponds to just two real numbers. In other words, the equivalence class
of (X,Y, Z) under ∼ has a unique representative (x, y, 1) with 3rd coordinate = 1. Unfortunately,
sometimes Z might be = 0, so that this way of choosing a representative of the equivalence class is
then no good. This discussion means that P2

R contains a copy of R2. A picture:
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Figure 1.3: R2 ↪→ R3 \ {0} → P2
R by (x, y) 7→ (x, y, 1)

The general line in R3 through 0 is not contained in the plane (Z = 0), so that it meets (Z = 1)
in exactly one point, which is a representative for that equivalence class. The lines in (Z = 0) never
meet (Z = 1), so they correspond not to points of R2, but to asymptotic directions, or to pencils of
parallel lines of R2; so you can think of P2

R as consisting of R2 together with one ‘point at infinity’
for every pencil of parallel lines. From this point of view, you calculate in R2, try to guess what’s
going on at infinity by some kind of ‘asymptotic’ argument, then (if necessary), prove it in terms
of homogeneous coordinates. The definition in terms of lines in R3 makes this respectable, since it
treats all points of P2

R on an equal footing.

Groups of transformations are of central importance throughout geometry; properties of a geo-
metric figure must be invariant under the appropriate kind of transformations before they are sig-
nificant. An affine change of coordinates in R2 is of the form T (x) = Ax+B, where x = (x, y) ∈ R2,
and A is a 2× 2 invertible matrix, B a translation vector; if A is orthogonal then the transforma-
tion T is Euclidean. As everyone knows, every nondegenerate conic can be reduced to one of the
standard forms (a–c) above by a Euclidean transformation. It is an exercise to the reader to show
that every conic can be reduced to one of the forms (a–l) by an affine transformation.

A projectivity, or projective transformation of P2
R is a map of the form T (X) = MX, where M

is an invertible 3× 3 matrix. It’s easy to understand the effect of this transformation on the affine
piece R2 ⊂ P2

R: as a partially defined map R2 99K R2, it is the fractional-linear transformation

(
x
y

)
7→
(
A

(
x
y

)
+B

)/
(cx+ dy + e), where M =

(
A B
c d e

)
.

T is of course not defined when cx + dy + e = 0. Perhaps this looks rather unintuitive, but it
really occurs in nature: two different photographs of the same (plane) object are obviously related
by a projectivity; see for example [Berger, 4.7.4] for pictures. So a math graduate getting a job
interpreting satellite photography (whether for the peaceful purposes of the Forestry Commission,
or as part of the vast career prospects opened up by President Reagan’s defence policy) will spend
a good part of his or her time computing projectivities.

Projective transformations are used implicitly throughout these notes, usually in the form ‘by
a suitable choice of coordinates, I can assume . . . ’.
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1.5 Equation of a conic

The inhomogeneous quadratic polynomial

q(x, y) = ax2 + bxy + cy2 + dx+ ey + f

corresponds to the homogeneous quadratic

Q(X,Y, Z) = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2;

the correspondence is easy to understand as a recipe, or you can think of it as the bijection q ↔ Q
given by

q(x, y) = Q(X/Z, Y/Z, 1) with x = X/Z, y = Y/Z

and inversely,
Q = Z2q(X/Z, Y/Z).

A conic C ⊂ P2 is the curve given by C : (Q(X,Y, Z) = 0), where Q is a homogeneous quadratic
expression; note that the condition Q(X,Y, Z) = 0 is well defined on the equivalence class, since
Q(λX) = λ2Q(X) for any λ ∈ R. As an exercise, check that the projective curve C meets the affine
piece R2 in the affine conic given by (q = 0).

‘Line at infinity’ and asymptotic directions

Points of P2 with Z = 0 correspond to ratios (X : Y : 0). These points form the line at infinity, a
copy of P1

R = R ∪ {∞} (since (X : Y ) 7→ X/Y defines a bijection P1
R → R ∪ {∞}).

A line in P2 is by definition given by L : (aX + bY + cZ = 0), and

L passes through (X,Y, 0) ⇐⇒ aX + bY = 0.

In affine coordinates the same line is given by ax+ by+ c = 0, so that all lines with the same ratio
a : b pass through the same point at infinity. This is called ‘parallel lines meet at infinity’.

Example (a) The hyperbola (x
2

a2 −
y2

b2 = 1) in R2 corresponds in P2
R to C : (X

2

a2 −
Y 2

b2 = Z2);
clearly this meets (Z = 0) in the two points (a,±b, 0) ∈ P2

R, corresponding in the obvious way
to the asymptotic lines of the hyperbola.

Note that in the affine piece (X 6= 0) of P2
R, the affine coordinates are u = Y/X, v = Z/X, so

that C becomes the ellipse (u
2

b2 + v2 = 1
a2 ). See Ex. 1.7 for an artistic interpretation.

(b) The parabola (y = mx2) in R2 corresponds to C : (Y Z = mX2) in P2
R; this now meets (Z = 0)

at the single point (0, 1, 0). So in P2, the ‘two branches of the parabola meet at infinity’; note
that this is a statement with intuitive content (maybe you feel it’s pretty implausible?), but
is not a result you could arrive at just by contemplating within R2 – maybe it’s not even
meaningful.
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1.6 Classification of conics in P2

Let k be any field of characteristic 6= 2; recall two results from the linear algebra of quadratic forms:

Proposition (A) There are natural bijections{
homogeneous

quadratic polys.

}
=

{
quad. forms
k3 → k

}
←bij−−−→

{
symmetric bilinear

forms on k3

}
given in formulas by

aX2 + 2bXY + cY 2 + 2dXZ + 2eY Z + fZ2 ←→

a b d
b c e
d e f


A quadratic form is nondegenerate if the corresponding bilinear form is nondegenerate, that is,

its matrix is nonsingular.

Theorem (B) Let V be a vector space over k and Q : V → k a quadratic form; then there exists
a basis of V such that

Q = ε1x
2
1 + ε2x

2
2 + · · ·+ εnx

2
n, with εi ∈ k.

(This is proved by Gram-Schmidt orthogonalisation, if that rings a bell.) Obviously, for λ ∈
k \ {0} the substitution xi 7→ λxi takes εi into λ−2εi.

Corollary In a suitable system of coordinates, any conic in P2
R is one of the following:

(α) nondegenerate conic, C : (X2 + Y 2 − Z2 = 0);

(β) empty set, given by (X2 + Y 2 + Z2 = 0);

(γ) line pair, given by (X2 − Y 2 = 0);

(δ) one point (0, 0, 1), given by (X2 + Y 2 = 0);

(ε) double line, given by (X2 = 0).

(Optionally you have the whole of P2
R given by (0 = 0).)

Proof Any real number ε is either 0, or ± a square, so that I only have to consider Q as in the
theorem with εi = 0 or ±1. In addition, since I’m only interested in the locus (Q = 0), I’m allowed
to multiply Q through by −1. This leads at once to the given list. Q.E.D.

There are two points to make about this corollary: firstly, the list is quite a lot shorter than
that in (1.3); for example, the 3 nondegenerate cases (ellipse, parabola, hyperbola) of (1.3) all
correspond to case (α), and the 2 cases of intersecting and parallel line pairs are not distinguished
in the projective case. Secondly, the derivation of the list from general algebraic principles is much
simpler.
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1.7 Parametrisation of a conic
Let C be a nondegenerate, nonempty conic of P2

R. Then by Corollary 1.6, taking new coordinates
(X+Z, Y, Z−X), C is projectively equivalent to the curve (XZ = Y 2); this is the curve parametrised
by

Φ: P1
R −→ C ⊂ P2

R,

(U : V ) 7→ (U2 : UV : V 2).

Remarks 1 The inverse map Ψ: C → P1
R is given by

(X : Y : Z) 7→ (X : Y ) = (Y : Z);

here the left-hand ratio is defined if X 6= 0, and the right-hand ratio if Z 6= 0. In terminology to
be introduced later, Φ and Ψ are inverse isomorphisms of varieties.

2 Throughout §§1–2, nonempty nondegenerate conics are tacitly assumed to be projectively equiv-
alent to (XZ − Y 2); over a field of characteristic 6= 2, this is justified in Ex. 1.5. (The reader
interested in characteristic 2 should take this as the definition of a nondegenerate conic.)

1.8 Homogeneous form in 2 variables
Let F (U, V ) be a nonzero homogeneous polynomial of degree d in U, V , with coefficients in a fixed
field k; (I will follow tradition, and use the word form for ‘homogeneous polynomial’):

F (U, V ) = adU
d + ad−1U

d−1V + · · ·+ aiU
iV d−i + · · ·+ a0V

d.

F has an associated inhomogeneous polynomial in 1 variable,

f(u) = adu
d + ad−1u

d−1 + · · ·+ aiu
i + · · ·+ a0.

Clearly for α ∈ k,

f(α) = 0 ⇐⇒ (u− α) | f(u)

⇐⇒ (U − αV ) | F (U, V ) ⇐⇒ F (α, 1) = 0;

so zeros of f correspond to zeros of F on P1 away from the point (1, 0), the ‘point α =∞.’ What
does it mean for F to have a zero at infinity?

F (1, 0) = 0 ⇐⇒ ad = 0 ⇐⇒ deg f < d.

Now define the multiplicity of a zero of F on P1 to be

(i) the multiplicity of f at the corresponding α ∈ k; or

(ii) d− deg f if (1, 0) is the zero.

So the multiplicity of zero of F at a point (α, 1) is the greatest power of (U − αV ) dividing F ,
and at (1, 0) it is the greatest power of V dividing F .

Proposition Let F (U, V ) be a nonzero form of degree d in U, V . Then F has at most d zeros on
P1; furthermore, if k is algebraically closed, then F has exactly d zeros on P1 provided these are
counted with multiplicities as defined above.
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Proof Let m∞ be the multiplicity of the zero of F at (1, 0); then by definition, d −m∞ is the
degree of the inhomogeneous polynomial f , and the proposition reduces to the well known fact that
a polynomial in one variable has at most deg f roots. Q.E.D.

Note that over an algebraically closed field, F will factorise as a product F =
∏
λmi
i of linear

forms λi = (aiU + biV ), and treated in this way, the point (1, 0) corresponds to the form λ∞ = V ,
and is on the same footing as all other points.

1.9 Easy cases of Bézout’s Theorem
Bézout’s theorem says that if C and D are plane curves of degrees degC = m, degD = n, then
the number of points of intersection of C and D is mn, provided that (i) the field is algebraically
closed; (ii) points of intersection are counted with the right multiplicities; (iii) we work in P2 to
take right account of intersections ‘at infinity’. See for example [Fulton, p. 112] for a self-contained
proof. In this section I am going to treat the case when one of the curves is a line or conic.

Theorem Let L ⊂ P2
k be a line (respectively C ⊂ P2

k a nondegenerate conic), and let D ⊂ P2
k be

a curve defined by D : (Gd(X,Y, Z) = 0), where G is a form of degree d in X,Y, Z. Assume that
L 6⊂ D (respectively, C 6⊂ D); then

#{L ∩D} ≤ d (respectively #{C ∩D} ≤ 2d).

In fact there is a natural definition of multiplicity of intersection such that the inequality still holds
for ‘number of points counted with multiplicities’, and if k is algebraically closed then equality holds.

Proof A line L ⊂ P2
k is given by an equation λ = 0, with λ a linear form; for my purpose, it is

convenient to give it parametrically as

X = a(U, V ), Y = b(U, V ), Z = c(U, V ),

where a, b, c are linear forms in U, V . So for example, if λ = αX + βY + γZ, and γ 6= 0, then L can
be given as

X = U, Y = V, Z = −α
γ
U − β

γ
V.

Similarly, as explained in (1.7), a nondegenerate conic can be given parametrically as

X = a(U, V ), Y = b(U, V ), Z = c(U, V ),

where a, b, c are quadratic forms in U, V . This is because C is a projective transformation of
(XZ = Y 2), which is parametrically (X,Y, Z) = (U2, UV, V 2), so C is given byXY

Z

 = M

U2

UV
V 2


where M is a nonsingular 3× 3 matrix.
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Figure 1.4: (a) Parametrised line; (b) parametrised conic

Then the intersection of L (respectively C) with D is given by finding the values of the ratios
(U : V ) such that

F (U, V ) = Gd(a(U, V ), b(U, V ), c(U, V )) = 0.

But F is a form of degree d (respectively 2d) in U, V , so the result follows by (1.8). Q.E.D.

Corollary 1.10 If P1, . . . , P5 ∈ P2
R are distinct points and no 4 are collinear, there exists at most

one conic through P1, . . . , P5.

Proof Suppose by contradiction that C1 and C2 are conics with C1 6= C2 such that

C1 ∩ C2 ⊃ {P1, . . . , P5}.

C1 is nonempty, so that if it’s nondegenerate, then by (1.7), it’s projectively equivalent to the
parametrised curve

C1 =
{

(U2, UV, V 2)
∣∣ (U, V ) ∈ P1

}
;

by (1.9), C1 ⊂ C2. Now if Q2 is the equation of C2, it follows that Q2(U2, UV, V 2) ≡ 0 for all
(U, V ) ∈ P1, and an easy calculation (see Ex. 1.6) shows that Q2 is a multiple of (XZ − Y 2); this
contradicts C1 6= C2.

Now suppose C1 is degenerate; by (1.6) again, it’s either a line pair or a line, and one sees easily
that

C1 = L0 ∪ L1, C2 = L0 ∪ L2,

with L1, L2 distinct lines. Then C1 ∩ C2 = L0 ∪ (L1 ∩ L2):
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Figure 1.5: Lines meeting

thus 4 points out of P1, . . . , P5 lie on L0, a contradiction. Q.E.D.

1.11 Space of all conics

Let
S2 = {quadratic forms on R3} = {3× 3 symmetric matrixes} ∼= R6.

If Q ∈ S2, write Q = aX2 + 2bXY + · · · + fZ2; for P0 = (X0, Y0, Z0) ∈ P2
R, consider the relation

P0 ∈ C : (Q = 0). This is of the form

Q(X0, Y0, Z0) = aX2
0 + 2bX0Y0 + · · ·+ fZ2

0 = 0,

and for fixed P0, this is a linear equation in (a, b, . . . , f). So

S2(P0) =
{
Q ∈ S2

∣∣ Q(P0) = 0
} ∼= R5 ⊂ S2 = R6

is a 5-dimensional hyperplane. For P1, . . . , Pn ∈ P2
R, define similarly

S2(P1, . . . , Pn) =
{
Q ∈ S2

∣∣ Q(Pi) = 0 for i = 1, . . . , n
}

;

then there are n linear equations in the 6 coefficients (a, b, . . . , f) of Q. This gives the result:

Proposition dimS2(P1, . . . , Pn) ≥ 6− n.

We can also expect that ‘equality holds if P1, . . . , Pn are general enough’. More precisely:

Corollary If n ≤ 5 and no 4 of P1, . . . , Pn are collinear, then

dimS2(P1, . . . , Pn) = 6− n.



1.12. INTERSECTION OF TWO CONICS 29

Proof Corollary 1.10 implies that if n = 5, dimS2(P1, . . . , P5) ≤ 1, which gives the corollary in
this case. If n ≤ 4, then I can add in points Pn+1, . . . , P5 while preserving the condition that no 4
points are collinear, and since each point imposes at most one linear condition, this gives

1 = dimS2(P1, . . . , P5) ≥ dimS2(P1, . . . , Pn)− (5− n). Q.E.D.

Note that if 6 points P1, . . . , P6 ∈ P2
R are given, they may or may not lie on a conic.

1.12 Intersection of two conics
As we have seen above, it often happens that two conics meet in 4 points:

Conversely according to Corollary 1.11, given 4 points P1, . . . , P4 ∈ P2, under suitable conditions
S2(P1, . . . , P4) is a 2-dimensional vector space, so choosing a basis Q1, Q2 for S2(P1, . . . , P4) gives
2 conics C1, C2 such that C1 ∩ C2 = {P1, . . . , P4}. There are lots of possibilities for multiple
intersections of nonsingular conics:

Figure 1.6: (a) 2P1 + P2 + P3; (b) 2P + 2Q; (c) 3P +Q; (d) 4P

see Ex. 1.9 for suitable equations.
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1.13 Degenerate conics in a pencil
Definition A pencil of conics is a family of the form

C(λ,µ) : (λQ1 + µQ2 = 0);

each element is a plane curve, depending in a linear way on the parameters (λ, µ); think of the ratio
(λ : µ) as a point of P1.

Looking at the examples, one expects that for special values of (λ : µ) the conic C(λ,µ) is
degenerate. In fact, writing det(Q) for the determinant of the symmetric 3×3 matrix corresponding
to the quadratic form Q, it is clear that

C(λ,µ) is degenerate ⇐⇒ det(λQ1 + µQ2) = 0.

Writing out Q1 and Q2 as symmetric matrixes expresses this condition as

F (λ, µ) = det

∣∣∣∣∣∣λ
a b d
b c e
d e f

+ µ

a′ b′ d′

b′ c′ e′

d′ e′ f ′

∣∣∣∣∣∣ = 0.

Now notice that F (λ, µ) is a homogeneous cubic form in λ, µ. In turn I can apply (1.8) to F to
deduce:

Proposition Suppose C(λ,µ) is a pencil of conics of P2
k, with at least one nondegenerate conic (so

that F (λ, µ) is not identically zero). Then the pencil has at most 3 degenerate conics. If k = R
then the pencil has at least one degenerate conic.

Proof A cubic form has ≤ 3 zeros. Also over R, it must have at least one zero.

1.14 Worked example
Let P1, . . . , P4 be 4 points of P2

R such that no 3 are collinear; then the pencil of conics C(λ,µ) through
P1, . . . , P4 has 3 degenerate elements, namely the line pairs L12 + L34, L13 + L24, L14 + L23, where
Lij is the line through Pi, Pj :

Next, suppose that I start from the pencil of conics generated by Q1 = Y 2 + rY + sX + t and
Q2 = Y −X2, and try to find the points P1, . . . , P4 of intersection.
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This can be done as follows: (1) find the 3 ratios (λ : µ) for which C(λ,µ) are degenerate conics.
Using what has been said above, this just means that I have to find the 3 roots of the cubic

F (λ, µ) = det

∣∣∣∣∣∣λ
 0 0 s/2

0 1 r/2
s/2 r/2 t

+ µ

−1 0 0
0 0 1/2
0 1/2 0

∣∣∣∣∣∣
= −1

4
(s2λ3 + (4t− r2)λ2µ− 2rλµ2 − µ3).

(2) Separate out 2 of the degenerate conics into pairs of lines (this involves solving 2 quadratic
equations). (3) The 4 points Pi are the points of intersection of the lines.

This procedure gives a geometric interpretation of the reduction of the general quartic in Galois
theory (see for example [van der Waerden, Algebra, Ch. 8, §64]): let k be a field, and f(X) =
X4 + rX2 + sX + t ∈ k[X] a quartic polynomial. Then the two parabolas C1 and C2 meet in the
4 points Pi = (ai, a

2
i ) for i = 1, . . . , 4, where the ai are the 4 roots of f .

Then the line Lij = PiPj is given by

Lij : (Y = (ai + aj)X − aiaj),

and the reducible conic L12 + L34 is given by

Y 2 + (a1a2 + a3a4)Y + (a1 + a2)(a3 + a4)X2 + sX + t = 0,

that is, by Q1− (a1 +a2)(a3 +a4)Q2 = 0. Hence the 3 values of µ/λ for which the conic λQ1 +µQ2

breaks up as a line pair are

−(a1 + a2)(a3 + a4), −(a1 + a3)(a2 + a4), −(a1 + a4)(a2 + a3).

The cubic equation whose roots are these 3 quantities is called the auxiliary cubic associated with
the quartic; it can be calculated using the theory of elementary symmetric functions; this is a fairly
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laborious procedure. On the other hand, the geometric method sketched above gives an elegant
derivation of the auxiliary cubic which only involves evaluating a 3× 3 determinant.

The above treatment is taken from [M.Berger, 16.4.10 and 16.4.11.1].

Exercises to Chapter 1

1.1 Parametrise the conic C : (x2 +y2 = 5) by considering a variable line through (2, 1) and hence
find all rational solutions of x2 + y2 = 5.

1.2 Let p be a prime; by experimenting with various p, guess a necessary and sufficient condition
for x2 +y2 = p to have rational solutions; prove your guess (a hint is given after Ex. 1.9 below
– bet you can’t do it for yourself!).

1.3 Prove the statement in (1.3), that an affine transformation can be used to put any conic of
R2 into one of the standard forms (a–l). [Hint: use a linear transformation x 7→ Ax to take
the leading term ax2 + bxy+ cy2 into one of ±x2 ± y2 or ±x2 or 0; then complete the square
in x and y to get rid of as much of the linear part as possible.]

1.4 Make a detailed comparison of the affine conics in (1.3) with the projective conics in (1.6).

1.5 Let k be any field of characteristic 6= 2, and V a 3-dimensional k-vector space; let Q : V → k
be a nondegenerate quadratic form on V . Show that if 0 6= e1 ∈ V satisfies Q(e1) = 0 then
V has a basis e1, e2, e3 such that Q(x1e1 + x2e2 + x3e3) = x1x3 + ax2

2. [Hint: work with the
symmetric bilinear form ϕ associated to Q; since ϕ is nondegenerate, there is a vector e3 such
that ϕ(e1, e3) = 1. Now find a suitable e2.]

Deduce that a nonempty, nondegenerate conic C ⊂ P2
k is projectively equivalent to (XZ =

Y 2).

1.6 Let k be a field with at least 4 elements, and C : (XZ = Y 2) ⊂ P2
k; prove that if Q(X,Y, Z)

is a quadratic form which vanishes on C then Q = λ(XZ − Y 2). [Hint: if you really can’t do
this for yourself, compare with the argument in the proof of Lemma 2.5.]

1.7 In R3, consider the two planes A : (Z = 1) and B : (X = 1); a line through 0 meeting A in
(x, y, 1) meets B in (1, y/x, 1/x). Consider the map ϕ : A 99K B defined by (x, y) 7→ (y′ =
y/x, z′ = 1/x); what is the image under ϕ of

(i) the line ax = y + b; the pencil of parallel lines ax = y + b (fixed a and variable b);

(ii) circles (x− 1)2 + y2 = c for variable c (distinguish the 3 cases c > 1, c = 1 and c < 1).

Try to imagine the above as a perspective drawing by an artist sitting at 0 ∈ R3, on a plane
(X = 1), of figures from the plane (Z = 1). Explain what happens to the points of the two
planes where ϕ and ϕ−1 are undefined.

1.8 Let P1, . . . , P4 be distinct points of P2 with no 3 collinear. Prove that there is a unique
coordinate system in which the 4 points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1). Find all
conics passing through P1, . . . , P5, where P5 = (a, b, c) is some other point, and use this to
give another proof of Corollary 1.10 and Proposition 1.11.
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1.9 In (1.12) there is a list of possible ways in which two conics can intersect. Write down equations
showing that each possibility really occurs. Find all the singular conics in the corresponding
pencils. [Hint: you will save yourself a lot of trouble by using symmetry and a well chosen
coordinate system.]

Hint for 1.2: it is known from elementary number theory that −1 is a quadratic residue
modulo p if and only if p = 2 or p ≡ 1 mod 4.

1.10 (Sylvester’s determinant). Let k be an algebraically closed field, and suppose given a quadratic
and cubic form in U, V as in (1.8):

q(U, V ) = a0U
2 + a1UV + a2V

2,

c(U, V ) = b0U
3 + b1U

2V + b2UV
2 + b3V

3.

Prove that q and c have a common zero (η : τ) ∈ P1 if and only if

det

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2

a0 a1 a2

a0 a1 a2

b0 b1 b2 b3

b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

[Hint: Show that if q and c have a common root then the 5 elements

U2q, UV q, V 2q, Uc and V c

do not span the 5-dimensional vector space of forms of degree 4, and are therefore linearly de-
pendent. Conversely, use unique factorisation in the polynomial ring k[U, V ] to say something
about relations of the form Aq = Bc with A and B forms in U, V , degA = 2, degB = 1.]

1.11 Generalise the result of Ex. 1.10 to two forms in U, V of any degrees n and m.
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Chapter 2

Cubics and the group law

2.1 Examples of parametrised cubics

Some plane cubic curves can be parametrised, just as the conics:

Nodal cubic C : (y2 = x3 + x2) ⊂ R2 is the image of the map ϕ : R1 → R2 given by t 7→
(t2 − 1, t3 − t) (check it and see);

Cuspidal cubic C : (y2 = x3) ⊂ R2 is the image of ϕ : R1 → R2 given by t 7→ (t2, t3):

Figure 2.1: Parametrised cubic curves

35
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Think about the singularities of the image curve, and of the map ϕ. These examples will occur
throughout the course, so spend some time playing with the equations; see Ex. 2.1–2.

2.2 The curve (y2 = x(x− 1)(x− λ)) has no
rational parametrisation

Parametrised curves are nice; for example, if you’re interested in Diophantine problems, you could
hope for a rule giving all Q-valued points, as in (1.1). The parametrisation of (1.1) was of the form
x = f(t), y = g(t), where f and g were rational functions, that is, quotients of two polynomials.

Theorem Let k be a field of characteristic 6= 2, and let λ ∈ k with λ 6= 0, 1; let f, g ∈ k(t) be
rational functions such that

f2 = g(g − 1)(g − λ). (∗)
Then f, g ∈ k.

This is equivalent to saying that there does not exist any nonconstant map R1 99K C : (y2 =
x(x−1)(x−λ)) given by rational functions. This reflects a very strong ‘rigidity’ property of varieties.

The proof of the theorem is arithmetic in the field k(t) using the fact that k(t) is the field of
fractions of the UFD k[t]. It’s quite a long proof, so either be prepared to study it in detail, or
skip it for now (GOTO 2.4). In Ex. 2.12, there is a very similar example of a nonexistence proof
by arithmetic in Q.

Proof Using the fact that k[t] is a UFD, I write

f = r/s with r, s ∈ k[t] and coprime,
g = p/q with p, q ∈ k[t] and coprime.

Clearing denominators, (∗) becomes

r2q3 = s2p(p− q)(p− λq).

Then since r and s are coprime, the factor s2 on the right-hand side must divide q3, and in the
same way, since p and q are coprime, the left-hand factor q3 must divide s2. Therefore,

s2 | q3 and q3 | s2, so that s2 = aq3 with a ∈ k

(a is a unit of k[t], therefore in k).
Then

aq = (s/q)2 is a square in k[t].

Also,
r2 = ap(p− q)(p− λq),

so that by considering factorisation into primes, there exist nonzero constants b, c, d ∈ k such that

bp, c(p− q), d(p− λq)

are all squares in k[t]. If I can prove that p, q are constants, then it follows from what’s already
been said that r, s are also, proving the theorem. To prove that p, q are constants, set K for the
algebraic closure of k; then p, q ∈ K[t] satisfy the conditions of the next lemma.
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Lemma 2.3 Let K be an algebraically closed field, p, q ∈ K[t] coprime elements, and assume that
4 distinct linear combinations (that is, λp + µq for 4 distinct ratios (λ : µ) ∈ P1K) are squares in
K[t]; then p, q ∈ K.

Proof (Fermat’s method of ‘infinite descent’) Both the hypotheses and conclusion of the lemma
are not affected by replacing p, q by

p′ = ap+ bq, q′ = cp+ dq,

with a, b, c, d ∈ K and ad− bc 6= 0. Hence I can assume that the 4 given squares are

p, p− q, p− λq, q.

Then p = u2, q = v2, and u, v ∈ K[t] are coprime, with

max(deg u,deg v) < max(deg p,deg q).

Now by contradiction, suppose that max(deg p,deg q) > 0 and is minimal among all p, q satisfying
the condition of the lemma. Then both of

p− q = u2 − v2 = (u− v)(u+ v)

and
p− λq = u2 − λv2 = (u− µv)(u+ µv)

(where µ =
√
λ) are squares in K[t], so that by coprimeness of u, v, I conclude that each of u− v,

u+ v, u− µv, u+ µv are squares. This contradicts the minimality of max(deg p, deg q). Q.E.D.

2.4 Linear systems
Write Sd = {forms of degree d in (X,Y, Z)}; (recall that a form is just a homogeneous polynomial).
Any element F ∈ Sd can be written in a unique way as

F =
∑

aijkX
iY jZk

with aijk ∈ k, and the sum taken over all i, j, k ≥ 0 with i + j + k = d; this means of course that
Sd is a k-vector space with basis

Zd

XZd−1 Y Zd−1

. . . . . .

Xd−1Z Xd−2Y Z . . . XY d−2Z

Xd Xd−1Y Xd−2Y 2 . . . Y d

and in particular, dimSd =
(
d+2

2

)
. For P1, . . . , Pn ∈ P2, let

Sd(P1, . . . , Pn) =
{
F ∈ Sd

∣∣ F (Pi) = 0 for i = 1, . . . , n
}
⊂ Sd.

Each of the conditions F (Pi) = 0 (more precisely, F (Xi, Yi, Zi) = 0, where Pi = (Xi : Yi : Zi)) is
one linear condition on F , so that Sd(P1, . . . , Pn) is a vector space of dimension ≥

(
d+2

2

)
− n.



38 §2 Cubics and the group law

Lemma 2.5 Suppose that k is an infinite field, and let F ∈ Sd.

(i) Let L ⊂ P2
k be a line; if F ≡ 0 on L, then F is divisible in k[X,Y, Z] by the equation of L.

That is, F = H · F ′ where H is the equation of L and F ′ ∈ Sd−1.

(ii) Let C ⊂ P2
k be a nonempty nondegenerate conic; if F ≡ 0 on C, then F is divisible in k[X,Y, Z]

by the equation of C. That is, F = Q · F ′ where Q is the equation of C and F ′ ∈ Sd−2.

If you think this statement is obvious, congratulations on your intuition: you have just guessed
a particular case of the Nullstellensatz. Now find your own proof (GOTO 2.6).

Proof (i) By a change of coordinates, I can assume H = X. Then for any F ∈ Sd, there exists
a unique expression F = X · F ′d−1 + G(Y,Z): just gather together all the monomials involving X
into the first summand, and what’s left must be a polynomial in Y,Z only. Now

F ≡ 0 on L ⇐⇒ G ≡ 0 on L ⇐⇒ G(Y,Z) = 0.

The last step holds because of (1.8): if G(Y,Z) 6= 0 then it has at most d zeros on P1
k, whereas if k

is infinite, then so is P1
k.

(ii) By a change of coordinates, Q = XZ − Y 2. Now let me prove that for any F ∈ Sd, there
exists a unique expression

F = Q · F ′d−2 +A(X,Z) + Y B(X,Z) :

if I just substitute XZ −Q for Y 2 wherever it occurs in F , what’s left has degree ≤ 1 in Y , and is
therefore of the form A(X,Z) + Y B(X,Z). Now as in (1.7), C is the parametrised conic given by
X = U2, Y = UV,Z = V 2, so that

F ≡ 0 on C ⇐⇒ A(U2, V 2) + UV B(U2, V 2) ≡ 0 on C

⇐⇒ A(U2, V 2) + UV B(U2, V 2) = 0 ∈ k[U, V ]

⇐⇒ A(X,Z) = B(X,Z) = 0.

Here the last equality comes by considering separately the terms of even and odd degrees in the
form A(U2, V 2) + UV B(U2, V 2). Q.E.D.

Ex. 2.2 gives similar cases of ‘explicit’ Nullstellensatz.

Corollary Let L : (H = 0) ⊂ P2
k be a line (or C : (Q = 0) ⊂ P2

k a nondegenerate conic); suppose
that points P1, . . . , Pn ∈ P2

k are given, and consider Sd(P1, . . . , Pn) for some fixed d. Then

(i) If P1, . . . , Pa ∈ L,Pa+1, . . . , Pn /∈ L and a > d, then

Sd(P1, . . . , Pn) = H · Sd−1(Pa+1, . . . , Pn).

(ii) If P1, . . . , Pa ∈ C,Pa+1, . . . , Pn /∈ C and a > 2d, then

Sd(P1, . . . , Pn) = Q · Sd−2(Pa+1, . . . , Pn).
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Proof (i) If F is homogeneous of degree d, and the curve D : (F = 0) meets L in points P1, . . . , Pa
with a > d, then by (1.9), I must have L ⊂ D, so that by the lemma, F = H · F ′; now since
Pa+1, . . . , Pn /∈ L, obviously F ′ ∈ Sd−1(Pa+1, . . . , Pn). (ii) is exactly the same. Q.E.D.

Proposition 2.6 Let k be an infinite field, and P1, . . . , P8 ∈ P2
k distinct points; suppose that no 4

of P1, . . . , P8 are collinear, and no 7 of them lie on a nondegenerate conic; then

dimS3(P1, . . . , P8) = 2.

Proof For brevity, let me say that a set of points are conconic if they all lie on a nondegenerate
conic. The proof of (2.6) breaks up into several cases.

Main case No 3 points are collinear, no 6 conconic. This is the ‘general position’ case.
Suppose for a contradiction that dimS3(P1, . . . , P8) ≥ 3, and let P9, P10 be distinct points on

the line L = P1P2. Then

dimS3(P1, . . . , P10) ≥ dimS3(P1, . . . , P8)− 2 ≥ 1,

so that there exists 0 6= F ∈ S3(P1, . . . , P10). By Corollary 2.5, F = H ·Q, with Q ∈ S2(P3, . . . , P8).
Now I have a contradiction to the case assumption: ifQ is nondegenerate then the 6 points P3, . . . , P8

are conconic, whereas if Q is a line pair or a double line, then at least 3 of them are collinear.

Figure 2.2: 10 points on a reducible cubic

First degenerate case Suppose P1, P2, P3 ∈ L are collinear, and let L : (H = 0). Let P9 be a
4th point on the line L. Then by Corollary 2.5,

S3(P1, . . . , P9) = H · S2(P4, . . . , P8).

Also, since no 4 of P4, . . . , P8 are collinear, by Corollary 1.11,

dimS2(P4, . . . , P8) = 1, and then dimS3(P1, . . . , P9) = 1,

which implies dimS3(P1, . . . , P8) ≤ 2.
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Second degenerate case Suppose P1, . . . , P6 ∈ C are conconic, with C : (Q = 0) a nondegener-
ate conic. Then choose P9 ∈ Q distinct from P1, . . . , P6. By Corollary 2.5 again,

S3(P1, . . . , P9) = Q · S1(P7, P8);

the line L = P7P8 is unique, so that S3(P1, . . . , P9) is the 1-dimensional space spanned by QL, and
hence dimS3(P1, . . . , P8) ≤ 2. Q.E.D.

Corollary 2.7 Let C1, C2 be two cubic curves whose intersection consists of 9 distinct points,
C1 ∩ C2 = {P1, . . . , P9}. Then a cubic D through P1, . . . , P8 also passes through P9.

Proof If 4 of the points P1, . . . , P8 were on a line L, then each of C1 and C2 would meet L in ≥ 4
points, and thus contain L, which contradicts the assumption on C1 ∩ C2. For exactly the same
reason, no 7 of the points can be conconic. Therefore the assumptions of (2.6) are satisfied, so I
can conclude that

dimS3(P1, . . . , P8) = 2;

this means that the equations F1, F2 of the two cubics C1, C2 form a basis of S3(P1, . . . , P8), and
hence D : (G = 0), where G = λF1 + µF2. Now F1, F2 vanish at P9, hence so does G. Q.E.D.

2.8 Group law on a plane cubic

Suppose k ⊂ C is a subfield of C, and F ∈ k[X,Y, Z] a cubic form defining a (nonempty) plane
curve C : (F = 0) ⊂ P2

k. Assume that F satisfies the following two conditions:

(a) F is irreducible (so that C does not contain a line or conic);

(b) for every point P ∈ C, there exists a unique line L ⊂ P2
k such that P is a repeated zero of

F |L.

Note that geometrically, the condition in (b) is that C should be nonsingular, and the line L
referred to is the tangent line L = TPC (see Ex. 2.3). This will be motivation for the general
definition of nonsingularity and tangent spaces to a variety in §6.

Fix any point O ∈ C, and make the following construction:

Construction (i) For A ∈ C, let A = 3rd point of intersection of C with the line OA;

(ii) for A,B ∈ C, write R = 3rd point of intersection of AB with C, and define A + B by
A+B = R (see diagram below).

Theorem The above construction defines an Abelian group law on C, with O as zero (= neutral
element).
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Proof Associativity is the crunch here; I start the proof by first clearing up the easy bits.
(I) I have to prove that the addition and inverse operations are well defined. If P,Q ∈ C are any

two points, then either P 6= Q, and the line L = PQ ⊂ P2
k is uniquely determined, or P = Q, and

then by the assumption (b), there is a unique line L ⊂ P2
k such that P is a repeated zero of F |L; in

either case, F |L is a cubic form in two variables, having 2 given k-valued zeros. It therefore splits
as a product of 3 linear factors, and hence without exception, the 3rd residual point of intersection
R is defined and has coordinates in k. Note that any of P = Q, P = R, Q = R, or P = Q = R is
allowed; these correspond algebraically to F |L having multiple zeros, and geometrically to tangent
and inflexion points.

Figure 2.3: Cubic curve and its group law

(II) Verifying that the given point O is the neutral element is completely formal: since OAA
are collinear, the construction of O + A consists of taking the line L = OA to get the 3rd point of
intersection A, then the same line L = OA to get back to A.
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(III) I think I’ll leave A+B = B +A to the reader.
(IV) To find the inverse, first define the point O as in (i) of the construction: let L be the line

such that F |L has O as a repeated zero, and define O to be the 3rd point of intersection of L with
C; then it is easy to check that the 3rd point of intersection of OA with C is the inverse of A for
every A ∈ C.

2.9 Associativity “in general”
Now I give the proof of associativity for ‘sufficiently general’ points: suppose that A,B,C are 3
given points of C; then the construction of (A+B) + C = S uses 4 lines (see diagram above)

L1 : ABR, L2 : ROR, L3 : CRS and L4 : SOS.

The construction of (B + C) +A = T uses 4 lines

M1 : BCQ, M2 : QOQ, M3 : AQT and M4 : TOT .

I want to prove S = T , and clearly for this, it is enough to prove S = T ; to do this, consider the 2
cubics

D1 = L1 +M2 + L3 and D2 = M1 + L2 +M3.

Then by construction,

C ∩D1 = {A,B,C,O,R,R,Q,Q, S},
and C ∩D2 = {A,B,C,O,R,R,Q,Q, T}.

Now provided the 9 points A,B,C,O,R,R,Q,Q, S are all distinct, the two cubics C and D1 satisfy
the conditions of Corollary 2.7; therefore, D2 must pass through S, and the only way that this can
happen is if S = T .

There are several ways to complete the argument. The most thorough of these gives a genuine
treatment of the intersection of two curves taking into account multiple intersections (roughly, in
terms of ‘ideals of intersection’), and the statement corresponding to Corollary 2.7 is Max Noether’s
Lemma (see [Fulton, p. 120 and p. 124]).

2.10 Proof by continuity
I sketch one version of the argument ‘by continuity’, which uses the fact that k ⊂ C. Write CC ⊂ P2

C
for the complexified curve C, that is, the set of ratios (X : Y : Z) of complex numbers satisfying
the same equation F (X,Y, Z) = 0. If the associative law holds for all A,B,C ∈ CC, then obviously
also for all points in C. Therefore, I can assume that k = C.

The reader who cares about it will have no difficulty in finding proofs of the following two
statements (see Ex. 2.8):

Lemma (i) A+B is a continuous function of A and B;

(ii) for all A,B,C ∈ C there exist A′, B′, C ′ ∈ C arbitrarily near to A,B,C such that the 9 points
A′, B′, C ′, O,R,R,Q,Q, S constructed from them are all distinct.
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The addition law is a map ϕ : C × C → C given by (A,B) 7→ A + B. By (i), ϕ is continuous,
and hence so are the two maps (sorry!)

f = ϕ ◦ (ϕ× idC) and g = ϕ ◦ (idC × ϕ) : C × C × C → C

given by (A,B,C) 7→ (A + B) + C and A + (B + C). Also, by (ii), the subset U ⊂ C × C × C
consisting of triples (A,B,C) for which the 9 points of the construction are distinct is dense; by
the above argument, f and g thus coincide on U , and since they are continuous, they coincide
everywhere. Q.E.D.

Remark The continuity argument as it stands involves the topology of C, and is thus not purely
algebraic. In fact the addition map ϕ is a morphism of varieties ϕ : C × C → C, as will be
proved later (see (4.14)), and the remainder of the argument can also be reformulated in this purely
algebraic form: the subset of C × C × C for which the 9 points are distinct is a dense open set for
the Zariski topology, and two morphisms which coincide on a dense open set coincide everywhere.
(I hope that this remark can provide useful motivation for the rest of the course; if you find it
confusing, just ignore it for the moment.)

2.11 Pascal’s Theorem (the mystic hexagon)
The diagram consists of a hexagon ABCDEF in P2

k with pairs of opposite sides extended until

Figure 2.4: The mystic hexagon

they meet in points P,Q,R. Assume that the nine points and the six lines of the diagram are all
distinct; then

ABCDEF are conconic ⇐⇒ PQR are collinear.

This famous theorem is a rather similar application of (2.7), and is given just for fun; of course,
other proofs are possible, see any text on geometry, for example [Berger, 16.2.10 and 16.8.3–5].
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Proof In the diagram, consider the two triples of lines

L1 : PAF, L2 : QDE, L3 : RBC,

and
M1 : PCD, M2 : QAB, M3 : REF ;

let C1 = L1 + L2 + L3 and C2 = M1 + M2 + M3. Now I’m all set to apply (2.7), since clearly C1

and C2 are two cubics such that

C1 ∩ C2 =
{
A,B,C,D,E, F, P,Q,R

}
.

Suppose PQR are collinear, with L = PQR; let Γ be the conic through ABCDE (the existence
and unicity of which is provided by Proposition 1.11). Then by construction, L+Γ is a cubic passing
through the 8 points A,B,C,D,E, P,Q,R, and by (2.7), it must contain F ; by assumption, F /∈ L,
so that necessarily F ∈ Γ, proving that the six points are conconic.

Now conversely, suppose that ABCDEF are on a conic Γ, and let L = PQ; then L + Γ is a
cubic passing through A,B,C,D,E, F, P,Q, so by (2.7) it must pass through R. Now R can’t be on
the conic Γ (since otherwise Γ is a line pair, and some of the 6 lines of the diagram must coincide),
so R ∈ L, that is, PQR are collinear. Q.E.D.

2.12 Inflexion, normal form
Every cubic in P2

R or P2
C can be put in the normal form

C : Y 2Z = X3 + aXZ2 + bZ3, (∗∗)

or in the affine form
y2 = x3 + ax+ b.

Now consider the above curve C; where does it meet the line at infinity L : (Z = 0)? That’s easy,
just substitute Z = 0 in the defining polynomial F = −Y 2Z +X3 + aXZ2 + bZ3 to get F |L = X3;
this means that F |L has a triple zero at P = (0, 1, 0). To see what this means geometrically, set
Y = 1, to get the equation in affine coordinates (x, z) around (0, 1, 0):

z = x3 + axz2 + bz3.

This curve is approximated to a high degree of accuracy by z = x3: the behaviour is described by

Figure 2.5: Inflexion point

saying that C has an inflexion point at (0, 1, 0). More generally, an inflexion point P on a curve C is
defined by the condition that there is a line L ⊂ P2

k such that F |L has a zero of multiplicity ≥ 3 at
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P (see Ex. 2.9; in fact necessarily L = TPC by (2.8, b), and the multiplicity = 3 by (1.9)). It is not
hard to interpret this in terms of the derivatives and second derivatives of the defining equations:
for example, if the defining equation is y = f(x), then the condition for an inflexion point is simply
d2f
dx2 (P ) = 0; this corresponds in the diagram to the curve passing through a transition from being
‘concave downwards’ to being ‘concave upwards’. There is a general criterion for a plane curve to
have an inflexion point in terms of the Hessian, see for example [Fulton, p. 116] or Ex. 7.3, (iii).

It can be shown (see Ex. 2.10) that conversely, if a plane cubic C has an inflexion point, then
its equation can be put in normal form (∗∗) as above.

2.13 Simplified group law

The normal form (∗∗) is extremely convenient for the group law: take the inflexion pointO = (0, 1, 0)
as the neutral element. Under these conditions, the group law becomes particularly nice, for the
following reasons:

(a) C = {O}∪affine curve C0 : (y2 = x3 + ax+ b); so it is legitimate to treat C as an affine curve,
with occasional references to the single point O at infinity, the zero of the group law.

(b) The lines through O, which are the main ingredient in part (i) of the construction of the
group law in (2.8), are given projectively by X = λZ, and affinely by x = λ; any such line
meets C at points (λ,±

√
λ3 + aλ+ b), and at infinity. Hence if P = (x, y), then the point P

constructed in (2.8, i) is (x,−y); thus P 7→ P is the natural symmetry (x, y) 7→ (x,−y) of the
curve C0:

Figure 2.6: Minus as reflexion in the x-axis
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(c) The inverse of the group law (2.8, IV) is described in terms of O, the point constructed as
the 3rd point of intersection of the unique line L such that F |L has O as a repeated zero;
however, in our case, this line is the line at infinity L : (Z = 0), and L ∩ C = 3O, so that
O = O, and the inverse of the group law then simplifies to −P = P .

I can now restate the group law as a much simplified version of Theorem 2.8:

Theorem Let C be a cubic in the normal form (∗∗); then there is a unique group law on C
such that O = (0, 1, 0) is the neutral element, the inverse is given by (x, y) 7→ (x,−y), and for all
P,Q,R ∈ C,

P +Q+R = O ⇐⇒ P,Q,R are collinear.

Exercises to Chapter 2

2.1 Let C : (y2 = x3 + x2) ⊂ R2. Show that a variable line through (0, 0) meets C at one further
point, and hence deduce the parametrisation of C given in (2.1). Do the same for (y2 = x3)
and (x3 = y3 − y4).

2.2 Let ϕ : R1 → R2 be the map given by t 7→ (t2, t3); prove directly that any polynomial
f ∈ R[X,Y ] vanishing on the image C = ϕ(R1) is divisible by Y 2 − X3. [Hint: use the
method of Lemma 2.5.] Determine what property of a field k will ensure that the result holds
for ϕ : k → k2 given by the same formula.

Do the same for t 7→ (t2 − 1, t3 − t).

2.3 Let C : (f = 0) ⊂ k2, and let P = (a, b) ∈ C; assume that ∂f/∂x(P ) 6= 0. Prove that the line

L :
∂f

∂x
(P ) · (x− a) +

∂f

∂y
(P ) · (y − b) = 0)

is the tangent line to C at P , that is, the unique line L of k2 for which f |L has a multiple
root at P (this is worked out in detail in (6.1)).

2.4 Let C : (y2 = x3 + 4x), with the simplified group law (2.13). Show that the tangent line to C
at P = (2, 4) passes through (0, 0), and deduce that P is a point of order 4 in the group law.

2.5 Let C : (y2 = x3 + ax + b) ⊂ R2 be nonsingular; find all points of order 2 in the group law,
and understand what group they form (there are two cases to consider).

Now explain geometrically how you would set about finding all points of order 4 on C.

2.6 Let C : (y2 = x3 + ax + b) ⊂ R2; write a computer program to sketch part of C, and to
calculate the group law. That is, it prompts you for the coordinates of 2 points A and B,
then draws the lines and tells you the coordinates of A+B. (Use real variables.)

2.7 Let C : (y2 = x3 + ax + b) ⊂ k2; if A = (x1, y1) and B = (x2, y2), show how to give the
coordinates of A+B as rational functions of x1, y1, x2, y2. [Hint: if F (X) is a polynomial of
degree 3 and you know 2 of the roots, you can find the 3rd by looking at just one coefficient
of F . This is a question with a nonunique answer, since there are many correct expressions
for the rational functions. One solution is given in (4.14).]
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2.8 By writing down the equation of the tangent line to C at A, find a formula for 2A in the
group law on C, and verify that it is the limit of a suitable formula for A+B as B tends to
A. [Hint: use Ex. 2.7, and if necessary refer to (4.14).]

2.9 Let x, z be coordinates on k2, and let f ∈ k[x, z]; write f as

f = a+ bx+ cz + dx2 + exz + fz2 + · · · .

Write down the conditions in terms of a, b, c, . . . that must hold in order that

(i) P = (0, 0) ∈ C : (f = 0);
(ii) the tangent line to C at P is (z = 0);
(iii) P is an inflexion point of C with (z = 0) as the tangent line.

(Recall from (2.12) that P ∈ C is an inflexion point if the tangent line L is defined, and f |L
has at least a 3-fold zero at P .)

2.10 Let C ⊂ P2
k be a plane cubic, and suppose that P ∈ C is an inflexion point; prove that a

change of coordinates in P2
k can be used to bring C into the normal form

Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

[Hint: take coordinates such that P = (0, 1, 0) and the inflexion tangent is (Z = 0); then
using the previous question, in local coordinates (x, z), Y will appear in a quadratic term
Y 2Z, and otherwise only linearly. Show then that you can get rid of the linear term in Y by
completing the square.]

2.11 (Group law on a cuspidal cubic.) Consider the curve

C : (z = x3) ⊂ k2;

C is the image of the bijective map ϕ : k → C by t 7→ (t, t3), so it inherits a group law from
the additive group k. Prove that this is the unique group law on C such that (0, 0) is the
neutral element and

P +Q+R = 0 ⇐⇒ P,Q,R are collinear

for P,Q,R ∈ C. [Hint: you might find useful the identity

det

∣∣∣∣∣∣
1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣ = (a− b)(b− c)(c− a)(a+ b+ c).]

In projective terms, C is the curve (Y 2Z = X3), our old friend with a cusp at the origin
and an inflexion point at (0, 1, 0), and the point of the question is that the usual construction
gives a group law on the complement of the singular point.

2.12 (Due to Leonardo Pisano, known as Fibonacci, A.D.1220.) Prove that for u, v ∈ Z,

u2 + v2 and u2 − v2 both squares =⇒ v = 0.

Hints (due to Pierre de Fermat, see J.W.S.Cassels, Journal of London Math Soc. 41 (1966),
p. 207):
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Step 1 Reduce to solving
x2 = u2 + v2, y2 = u2 − v2 (∗)

with x, y, u, v ∈ Z pairwise coprime.

Step 2 Considerations mod 4 show that x, y, u are odd and v even.

Step 3 The 4 pairs of factors on the l.-h.s. of the factorisations

(x− u)(x+ u) = v2

(u− y)(u+ y) = v2

(x− y)(x+ y) = 2v2

(2u− x− y)(2u+ x+ y) = (x− y)2

(∗∗)

have no common factors other than powers of 2.

Step 4 Replacing y by −y if necessary, we can assume that 4 - x − y. Now by considering
the parity of factors on l.-h.s. of (∗∗), prove that

x− u = 2v2
1 , u− y = 2u2

1, x− y = 2x2
1

and 2u− x− y = 2y2
1

with u1, v1, x1, y1 ∈ Z.

Step 5 Show that u1, v1, x1, y1 is another solution of (∗) with v1 < v, and deduce a contra-
diction by ‘infinite descent’.

Compare this argument with the proof of (2.2), which was easier only in that I didn’t have to
mess about with 2s.



Appendix to Part I: Curves and their
genus

2.14 Topology of a nonsingular cubic
It is easy to see that a nonsingular plane cubic C : (y2 = x3 + ax + b) ⊂ P2

R has one of the two
shapes

Figure 2.7: Real cubics

That is, topologically, C is either one or two circles (including the single point at infinity, of
course). To look at the same question over C, take the alternative normal form

C : (y2 = x(x− 1)(x− λ)) ∪ {∞};

what is the topology of C ⊂ P2
C? The answer is a torus:

Figure 2.8: Torus

The idea of the proof is to consider the map

π : C → P1
C by (X,Y, Z) 7→ (X,Z) and ∞ 7→ (1, 0);

49
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in affine coordinates this is (x, y) 7→ x, so it’s the 2-to-1 map corresponding to the graph of
y = ±

√
x(x− 1)(x− λ). Everyone knows that P1

C is homeomorphic to S2, the Riemann sphere
(‘stereographic projection’); consider the ‘function’ y(x) = ±

√
x(x− 1)(x− λ) on P1

C. This is
2-valued outside {0, 1, λ,∞}:

Figure 2.9: Two paths 01 and λ∞

Now cut P1
C along two paths 01 and λ∞; the double cover falls apart as 2 pieces, so that the

function y is single valued on each sheet. So (the shading indicates how the two sheets match up

Figure 2.10: C as a union of two spheres with slits

under the glueing). To see what’s going on, open up the slits:

Figure 2.11: Union of two spheres with open slits
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2.15 Discussion of genus
A nonsingular projective curve C over C has got just one topological invariant, its genus g = g(C):

Figure 2.12: Surface of genus g

For example, the affine curve C : (y2 = f2g+1(x) =
∏
i(x−ai)) ⊂ C2, where f2g+1 is a polynomial

of degree 2g+ 1 in x with distinct roots ai, can be related to the Riemann surface of
√
f exactly as

in (2.13), and be viewed as a double cover of the Riemann sphere P1
C branched in the 2g+ 1 points

ai and in ∞, and by the same argument, can be seen to have genus g. As another example, the
genus of a nonsingular plane curve Cd ⊂ P2

C of degree d is given by g = g(Cd) =
(
d−1

2

)
.

2.16 Commercial break
Complex curves (= compact Riemann surfaces) appear across a whole spectrum of math problems,
from Diophantine arithmetic through complex function theory and low dimensional topology to
differential equations of math physics. So go out and buy a complex curve today.

To a quite extraordinary degree, the properties of a curve are determined by its genus, and more
particularly by the trichotomy g = 0, g = 1 or g ≥ 2. Some of the more striking aspects of this are
described in the table on the following page, and I give a brief discussion; this ought to be in the
background culture of every mathematician.

To give a partial answer to the Diophantine question mentioned in (1.1–2) and again in (2.1), it
is known that a curve can be parametrised by rational functions if and only if g = 0; if I’m working
over a fixed field, a curve of genus 0 may have no k-valued points at all (for example, the conic
in (1.2)), but if it has one point, it can be parametrised over k, so that its k-valued points are in
bijection with P1

k. Any curve of genus 1 is isomorphic to a cubic as in this section, and a group law
is defined on the k-valued points (provided of course that there exists at least one – there’s no such
thing as the empty group); if k is a number field (for example, k = Q), the k-valued points form an
Abelian group which is finitely generated (the Mordell–Weil Theorem). Whereas a curve of genus
g ≥ 2 is now known to have only a finite set of k-valued points; this is a famous theorem proved
by Faltings in 1983, and for which he received the Fields medal in 1986. Thus for example, for any
n ≥ 4, the Fermat curve xn + yn = 1 has at most a finite number of rational points.
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Over C, a curve C of genus 1 is topologically a torus, and has a group law, so that it is analytically
of the form C ∼= C/(Z⊕ Z · τ):

Figure 2.13: Genus 1 curve as C ∼= C/(Z⊕ Z · τ)

The isomorphism between this quotient and a plane curve C3 ⊂ P2
C is given by a holomorphic

map ϕ : C → C3, that is, a kind of ‘parametrisation’ of C3; but ϕ cannot be in terms of rational
functions (by (2.2)), and is infinity-to-one; this is the theory of doubly periodic functions of a
complex variable, which was one of the mainstays of 19th century analysis (Weierstrass ℘-function,
Riemann theta function).

Another important thing to notice is that different periods τ will usually lead to different curves;
they’re all homeomorphic to the standard torus S1×S1, but as algebraic curves, or complex analytic
curves, they’re not isomorphic. The period τ is a modulus, that is, a complex parameter which
governs variation of the complex structure C on the fixed topological object S1 × S1.

The student interested in more on curves should look at [D. Mumford, Curves and their Jaco-
bians], the first part of which is fairly colloquial, or [Clemens].
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Part II

The category of affine varieties
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Chapter 3

Affine varieties and the
Nullstellensatz

Much of the first half of this section is pure commutative algebra; note that throughout these notes,
ring means a commutative ring with a 1. Since this is not primarily a course in commutative
algebra, I will hurry over several points.

3.1 Definition of Noetherian ring

Proposition-Definition The following conditions on a ring A are equivalent.

(i) Every ideal I ⊂ A is finitely generated; that is, for every ideal I ⊂ A, there exist f1, . . . , fk ∈ I
such that I = (f1, . . . , fk).

(ii) Every ascending chain
I1 ⊂ · · · ⊂ Im ⊂ · · ·

of ideals of A terminates, that is the chain is eventually stationary, with IN = IN+1 = · · ·
(the ascending chain condition, or a.c.c.).

(iii) Every nonempty set of ideals of A has a maximal element.

If they hold, A is a Noetherian ring.

Proof (i) =⇒ (ii) Given I1 ⊂ · · · ⊂ Im ⊂ · · · , set I =
⋃
Im. Then clearly I is still an ideal. If

I = (f1, . . . , fk), then each fi is an element of some Imi
for some mi, so that taking m = max{mi}

gives I = Im, and the chain stops at Im.
(ii) =⇒ (iii) is clear. (Actually, it uses the axiom of choice.)
(iii) =⇒ (i) Let I be any ideal; write Σ =

{
J ⊂ I

∣∣ J is a f.g. ideal
}
. Then by (iii), Σ has a

maximal element, say J0. But then J0 = I, because otherwise any f ∈ I J0 gives an ideal J0 +Af
which is still finitely generated, but strictly bigger than J0. Q.E.D.

As a thought experiment, prove that Z and k[X] are Noetherian.

57
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Proposition 3.2 (i) Suppose that A is Noetherian, and I ⊂ A an ideal; then the quotient ring
B = A/I is Noetherian.

(ii) Let A be a Noetherian integral domain, and A ⊂ K its field of fractions; let 0 /∈ S ⊂ A be a
subset, and set

B = A[S−1] =

{
a

b
∈ K

∣∣∣∣ a ∈ A, and b = 1 or a
product of elements of S

}
.

Then B is again Noetherian.

Proof Exercise: in either case the ideals of B can be described in terms of certain ideals of A;
see Ex. 3.4 for hints.

Theorem 3.3 (Hilbert Basis Theorem) For a ring A,

A Noetherian =⇒ A[X] Noetherian.

Proof Let J ⊂ A[X] be any ideal; I prove that J is finitely generated. Define the ideal of leading
terms of degree n in J to be

Jn =
{
a ∈ A

∣∣ ∃f = aXn + bn−1X
n−1 + · · ·+ b0 ∈ J

}
.

Then Jn is an ideal of A and Jn ⊂ Jn+1 (please provide your own proofs). Hence, using the a.c.c.,
there exists N such that

JN = JN+1 = · · · .

Now build a set of generators of J as follows: for i ≤ N , let ai1 , . . . , aimi
be generators of Ji and,

as in the definition of Ji, for each of the aik, let fik = aikX
i + · · · ∈ J be an element of degree i

and leading term aik.
I claim that the set {

fik
∣∣ i = 0, . . . , N, k = 1, . . . ,mi

}
just constructed generates J : for given g ∈ J , suppose deg g = m. Then the leading term of g is
bXm with b ∈ Jm, so that by what I know about Jm, I can write b =

∑
cm′kam′k (here m′ = m

if m ≤ N , otherwise m′ = N). Then consider g1 = g −Xm−m′ ·
∑
cm′kfm′k: by construction the

term of degree m is zero, so that deg g1 ≤ deg g − 1; by induction, I can therefore write out g as a
combination of fik, so that these generate J . Q.E.D.

Corollary For k a field, a finitely generated k-algebra is Noetherian.

A finitely generated k-algebra is a ring of the form A = k[a1, . . . , an], so that A is generated as a
ring by k and a1, . . . , an; clearly, every such ring is isomorphic to a quotient of the polynomial ring,
A ∼= k[X1, . . . , Xn]/I. A field is Noetherian, and by induction on (3.3), k[X1, . . . , Xn] is Noetherian;
finally, passing to the quotient is OK by Proposition 3.2, (i). Q.E.D.
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3.4 The correspondence V
k is any field, and A = k[X1, . . . , Xn]. Following an almost universal idiosyncracy of algebraic ge-
ometers1, I write Ank = kn for the n-dimensional affine space over k; given a polynomial f(X1, . . . , Xn) ∈
A and a point P = (a1, . . . , an) ∈ Ank , the element f(a1, . . . , an) ∈ k is thought of as ‘evaluating the
function f at P ′. Define a correspondence{

ideals J ⊂ A
}
−→

{
subsets X ⊂ Ank

}
by

J 7−→ V (J) =
{
P ∈ Ank

∣∣ f(P ) = 0 ∀f ∈ J
}
.

Definition A subset X ⊂ Ank is an algebraic set if X = V (I) for some I. (This is the same thing
as a variety, but I want to reserve the word.) Notice that by Corollary 3.3, I is finitely generated.
If I = (f1, . . . , fr) then clearly

V (I) =
{
P ∈ Ank

∣∣ fi(P ) = 0 for i = 1, . . . , r
}
,

so that an algebraic set is just a locus of points satisfying a finite number of polynomial equations.
If I = (f) is a principal ideal, then I usually write V (f) for V (I); this is of course the same

thing as V : (f = 0) in the notation of §§1–2.

3.5 Definition: the Zariski topology
Proposition-Definition The correspondence V satisfies the following formal properties:

(i) V (0) = Ank ; V (A) = ∅;

(ii) I ⊂ J =⇒ V (I) ⊃ V (J);

(iii) V (I1 ∩ I2) = V (I1) ∪ V (I2);

(iv) V
(∑

λ∈Λ Iλ
)

=
⋂
λ∈Λ V (Iλ).

Hence the algebraic subsets of Ank form the closed sets of a topology on Ank , the Zariski topology.

The above properties are quite trivial, with the exception of the inclusion ⊂ in (iii). For this,
suppose P /∈ V (I1) ∪ V (I2); then there exist f ∈ I1, g ∈ I2 such that f(P ) 6= 0, g(P ) 6= 0. So
fg ∈ I1 ∩ I2, but fg(P ) 6= 0, and therefore P /∈ V (I1 ∩ I2). Q.E.D.

The Zariski topology on Ank induces a topology on any algebraic set X ⊂ Ank : the closed subsets
of X are the algebraic subsets.

It’s important to notice that the Zariski topology on a variety is very weak, and is quite different
from the familiar topology of metric spaces like Rn. As an example, a Zariski closed subset of A1

k

is either the whole of A1
k or is finite; see Ex. 3.12 for a description of the Zariski topology on A2

k.
If k = R or C then Zariski closed sets are also closed for the ordinary topology, since polynomial
functions are continuous. In fact they’re very special open or closed subsets: a nonempty Zariski
open subset of Rn is the complement of a subvariety, so automatically dense in Rn.

The Zariski topology may cause trouble to some students; since it is only being used as a
language, and has almost no content, the difficulty is likely to be psychological rather than technical.

1 An is thought of as a variety, whereas kn is just a point set. Think of this as pure pedantry if you like; compare
(4.6) below, as well as (8.3).
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3.6 The correspondence I

As a kind of inverse to V there is a correspondence{
ideals J ⊂ A

} I←−−
{
subsets X ⊂ Ank

}
by

I(X) =
{
f ∈ k[V ]

∣∣ f(P ) = 0 ∀P ∈ X
}
←−7 X.

That is, I takes a subset X to the ideal of functions vanishing on it.

Proposition (a) X ⊂ Y =⇒ I(X) ⊃ I(Y );

(b) for any subset X ⊂ Ank , I have X ⊂ V (I(X)), with equality if and only if X is an algebraic
set;

(c) for J ⊂ A, I have J ⊂ I(V (J)); the inclusion may well be strict.

Proof (a) is trivial. The two inclusion signs in (b) and (c) are tautologous: if I(X) is defined as
the set of functions vanishing at all points of X, then for any point of X, all the functions of I(X)
vanish at it. And indeed conversely, if not more so, just as I was about to say myself, Piglet.

The remaining part of (b) is easy: if X = V (I(X)) then X is certainly an algebraic set, since
it’s of the form V (ideal). Conversely, if X = V (I0) is an algebraic set, then I(X) contains at least
I0, so V (I(X)) ⊂ V (I0) = X.

There are two different ways in which the inclusion J ⊂ I(V (J)) in (c) may be strict. It’s most
important to understand these, since they lead directly to the correct statement of the Nullstellen-
satz.

Example 1 Suppose that the field k is not algebraically closed, and let f ∈ k[X] be a nonconstant
polynomial not having a root in k. Consider the ideal J = (f) ⊂ k[X]. Then J 6= k[X], since 1 /∈ J .
But

V (J) =
{
P ∈ A1

k

∣∣ f(P ) = 0
}

= ∅.

Therefore I(V (J)) = k[X] (since any function vanishes at all points of the empty set).
So if your field is not algebraically closed, you may not get enough zeros. A rather similar

example: in R2, the polynomial X2 +Y 2 defines the single point P = (0, 0), so V (X2 +Y 2) = {P}.
But then many more polynomials vanish on {P} than just the multiples of X2 + Y 2, and in fact
I(P ) = (X,Y ).

Example 2 For any f ∈ k[X1, . . . , Xn] and a ≥ 2, fa defines the same locus as f , that is fa(P ) =
0 ⇐⇒ f(P ) = 0. So V (fa) = V (f), and f ∈ I(V (fa)), but usually f /∈ (fa). The trouble here is
already present in R2: in §1, mention was made of the ‘double line’ defined by X2 = 0. The only
meaning that can be attached to this is the line (X = 0) deemed to have multiplicity 2; but the
point set itself doesn’t understand that it’s being deemed.
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3.7 Irreducible algebraic set
An algebraic set X ⊂ Ank is irreducible if there does not exist a decomposition

X = X1 ∪X2 with X1, X2 ( X

of X as a union of two strict algebraic subsets. For example, the algebraic subset V (xy) ⊂ A2
k is

the locus consisting of the two coordinate axes, and is obviously the union of V (x) and V (y), hence
reducible.

Proposition (a) Let X ⊂ Ank be an algebraic set and I(X) the corresponding ideal; then

X is irreducible ⇐⇒ I(X) is prime.

(b) Any algebraic set X has a (unique) expression

X = X1 ∪ · · · ∪Xr (∗)

with Xi irreducible and Xi 6⊂ Xj for i 6= j.
The Xi in (∗) are the irreducible components of X.

Proof (a) In fact I prove that X is reducible ⇐⇒ I(X) is not prime.
(=⇒) Suppose X = X1 ∪ X2 with X1, X2 ( X algebraic subsets. Then X1 ( X means that

there exists f1 ∈ I(X1) \ I(X), and similarly X2 ( X gives f2 ∈ I(X2) \ I(X). Now the product
f1f2 vanishes at all points of X, and so f1f2 ∈ I(X). Therefore I(X) is not prime.

(⇐=) Suppose that I(X) is not prime; then there exist f1, f2 /∈ I(X) such that f1f2 ∈ I(X).
Let I1 = (I(X), f1) and V (I1) = X1; then X1 ( X is an algebraic subset; similarly, setting
I2 = (I(X), f2) and V (I2) = X2 gives X2 ( X. But X ⊂ X1∪X2, since for all P ∈ X, f1f2(P ) = 0
implies that either f1(P ) = 0 or f2(P ) = 0.

(b) First of all, I establish the following proposition: the algebraic subsets of Ank satisfy the
descending chain condition, that is, every chain

X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · ·

eventually stops with XN = XN+1 = · · · . This is because

I(X1) ⊂ I(X2) ⊂ · · · ⊂ I(Xn) ⊂ · · ·

is an ascending chain of ideals of A, and this stops, giving XN = XN+1 = · · · . Thus just as in
(3.1),

any nonempty set Σ of algebraic
subsets of Ank has a minimal element.

(!)

Now to prove (b), let Σ be the set of algebraic subsets of Ank which do not have a decomposition
(∗). If Σ = ∅ then (b) is proved. On the other hand, if Σ 6= ∅ then by (!), there must be a minimal
element X ∈ Σ, and this leads speedily to one of two contradictions: if X is irreducible, then X /∈ Σ,
a contradiction; if X is reducible, then X = X1 ∪X2, with X1, X2 ( X, so that by minimality of
X ∈ Σ, I get X1, X2 /∈ Σ. So each of X1, X2 has a decomposition (∗) as a union of irreducibles, and
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putting them together gives a decomposition for (∗), so X /∈ Σ. This contradiction proves Σ = ∅.
This proves the existence part of (b). The uniqueness is an easy exercise, see Ex. 3.8. Q.E.D.

The proof of (b) is a typical algebraist’s proof: it’s logically very neat, but almost completely
hides the content: the real point is that if X is not irreducible, then it breaks up as X = X1 ∪X2,
and then you ask the same thing aboutX1 andX2, and so on; eventually, you must get to irreducible
algebraic sets, since otherwise you’d get an infinite descending chain.

3.8 Preparation for the Nullstellensatz

I now want to state and prove the Nullstellensatz. There is an intrinsic difficulty in any proof of
the Nullstellensatz, and I choose to break it up into two segments. Firstly I state without proof an
assertion in commutative algebra, which will be proved in (3.15) below (in fact parts of the proof
will have strong geometric content).

Hard Fact Let k be a (infinite) field, and A = k[a1, . . . , an] a finitely generated k-algebra. Then

A is a field =⇒ A is algebraic over k.

Just to give a rough idea why this is true, notice that if t ∈ A is transcendental over k, then k[t]
is a polynomial ring, so has infinitely many primes (by Euclid’s argument). Hence the extension
k ⊂ k(t) is not finitely generated as k-algebra: finitely many elements pi/qi ∈ k(t) can have only
finitely many primes among their denominators.

3.9 Definition: radical ideal

Definition If I is an ideal of A, the radical of I is

rad I =
√
I =

{
f ∈ A

∣∣ fn ∈ I for some n
}
.

rad I is an ideal, since f, g ∈ rad I =⇒ fn, gm ∈ I for suitable n,m, and therefore

(f + g)r =
∑(

r

a

)
fagr−a ∈ I if r ≥ n+m− 1.

An ideal I is radical if I = rad I.
Note that a prime ideal is radical. It’s not hard to see that in a UFD like k[X1, . . . , Xn], a

principal ideal I = (f) where f =
∏
fni
i (factorisation into distinct prime factors), has rad I =

(f red), where f red =
∏
fi.

Nullstellensatz 3.10 (Hilbert’s zeros theorem) Let k be an algebraically closed field.

(a) Every maximal ideal of the polynomial ring A = k[X1, . . . , Xn] is of the form mP = (X1 −
a1, . . . , Xn − an) for some point P = (a1, . . . , an) ∈ Ank ; that is, it’s the ideal I(P ) of all
functions vanishing at P .

(b) Let J ⊂ A be an ideal, J 6= (1); then V (J) 6= ∅.
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(c) For any J ⊂ A,
I(V (J)) = radJ.

The essential content of the theorem is (b), which says that if an ideal J is not the whole of
k[X1, . . . , Xn], then it will have zeros in Ank . Note that (b) is completely false if k is not algebraically
closed, since if f ∈ k[X] is a nonconstant polynomial then it will not generate the whole of k[X] as
an ideal, but V (f) = ∅ ⊂ A1

k is perfectly possible. The name of the theorem (Nullstelle = zero of
a polynomial+Satz = theorem) should help to remind you of the content (but stick to the German
if you don’t want to be considered an ignorant peasant).

Corollary The correspondences V and I{
ideals I ⊂ A

} V,I←−→
{
subsets X ⊂ Ank

}
induce bijections

⋃ ⋃{
radical ideals

}
←−→

{
algebraic subsets

}
and

⋃ ⋃{
prime ideals

}
←−→

{
irreducible alg. subsets

}
.

This holds because V (I(X)) = X for any algebraic set X by (3.6, b), and I(V (J)) = J for any
radical ideal J by (c) above.

Proof of NSS (assuming (3.8)) (a) Let m ⊂ k[X1, . . . , Xn] be a maximal ideal; write K =
k[X1, . . . , Xn]/m, and ϕ for the composite of natural maps ϕ : k → k[X1, . . . , Xn]→ K. Then K is
a field (since m is maximal), and it is finitely generated as k-algebra (since it is generated by the
images of the Xi). So by (3.8), ϕ : k → K is an algebraic field extension. But k is algebraically
closed, hence ϕ is an isomorphism.

Now for each i, Xi ∈ k[X1, . . . , Xn] maps to some element bi ∈ K; so taking ai = ϕ−1(bi)
gives Xi − ai ∈ ker{k[X1, . . . , Xn] → K} = m. Hence there exist a1, . . . , an ∈ k such that (X1 −
a1, . . . , Xn − an) ⊂ m. On the other hand, it’s clear that the left-hand side is a maximal ideal, so
(X1 − a1, . . . , Xn − an) = m. This proves (a).

(a) =⇒ (b) This is easy. If J 6= A = k[X1, . . . , Xn] then there exists a maximal ideal m of A
such that J ⊂ m (the existence of m is easy to check, using the a.c.c.). By (a), m is of the form

m = (X1 − a1, . . . , Xn − an);

then J ⊂ m just means that f(P ) = 0 for all f ∈ J , where P = (a1, . . . , an). Therefore P ∈ V (J).
(b) =⇒ (c) This requires a cunning trick. Let J ⊂ k[X1, . . . , Xn] be any ideal, and f ∈

k[X1, . . . , Xn]. Introduce another variable Y , and consider the new ideal

J1 = (J, fY − 1) ⊂ k[X1, . . . , Xn, Y ]

generated by J and fY − 1. Roughly speaking, V (J1) is the variety consisting of P ∈ V (J) such
that f(P ) 6= 0. More precisely, a point Q ∈ V (J1) ⊂ An+1

k is an (n + 1)-tuple Q = (a1, . . . , an, b)
such that

g(a1, . . . , an) = 0 for all g ∈ J, that is, P = (a1, . . . , an) ∈ V (J),
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and
f(P ) · b = 1, that is, f(P ) 6= 0 and b = f(P )−1.

Now suppose that f(P ) = 0 for all P ∈ V (J); then clearly, from what I’ve just said, V (J1) = ∅.
So I can use (b) to deduce that 1 ∈ J1, that is, there exists an expression

1 =
∑

gifi + g0(fY − 1) ∈ k[X1, . . . , Xn, Y ] (∗∗)

with fi ∈ J , and g0, gi ∈ k[X1, . . . , Xn, Y ].
Consider the way in which Y appears in the right-hand side of (∗∗): apart from its explicit

appearance in the second term, it can appear in each of the gi; suppose that Y N is the highest
power of Y appearing in any of g0, gi. If I then multiply through both sides of (∗∗) by fN , I get a
relation of the form

fN =
∑

Gi(X1, . . . , Xn, fY )fi +G0(X1, . . . , Xn, fY )(fY − 1); (∗∗∗)

here Gi is just fNgi written out as a polynomial in X1, . . . , Xn and fY .
(∗∗∗) is just an equality of polynomials in k[X1, . . . , Xn, Y ], so I can reduce it modulo (fY − 1)

to get
fN =

∑
hi(X1, . . . , Xn)fi ∈ k[X1, . . . , Xn, Y ]/(fY − 1);

both sides of the equation are elements of k[X1, . . . , Xn]. Since the natural homomorphism k[X1, . . . , Xn] ↪→
k[X1, . . . , Xn, Y ]/(fY−1) is injective (it is just the inclusion of k[X1, . . . , Xn] into k[X1, . . . , Xn][f−1],
as a subring of its field of fractions), it follows that

fN =
∑

hi(X1, . . . , Xn)fi ∈ k[X1, . . . , Xn];

that is, fN ∈ J for some N . Q.E.D.

Remark Several of the textbooks cut the argument short by just saying that (∗∗) is an identity,
so it remains true if we set Y = f−1. This is of course perfectly valid, but I have preferred to spell
it out in detail.

3.11 Worked examples
(a) Hypersurfaces. The simplest example of a variety is the hypersurface V (f) : (f = 0) ⊂ Ank . If k

is algebraically closed, there is just the obvious correspondence between irreducible elements
f ∈ k[X1, . . . , Xn] and irreducible hypersurfaces: it follows from the Nullstellensatz that
two distinct irreducible polynomials f1, f2 (not multiples of one another) define different
hypersurfaces V (f1) and V (f2). This is not at all obvious (for example, it’s false over R),
although it can be proved without using the Nullstellensatz by elimination theory, a much
more explicit method with a nice 19th century flavour; see Ex. 3.13.

(b) Once past the hypersurfaces, most varieties are given by “lots” of equations; contrary to
intuition, it is usually the case that the ideal I(X) needs many generators, that is, many more
than the codimension of X. I give an example of a curve C ⊂ A3

k for which I(C) needs 3
generators; assume that k is an infinite field.
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Consider first J = (uw − v2, u3 − vw). Then J is not prime, since

J 3 w(uw − v2)− v(u3 − vw) = u(w2 − u2v),

but u,w2 − u2v /∈ J . Therefore

V (J) = V (J, u) ∪ V (J,w2 − u2v);

obviously, V (J, u) is the w-axis (u = v = 0). I claim that the other component C = V (J,w2−
u2v) is an irreducible curve; indeed, C is given by

uw = v2, u3 = vw, w2 = u2v.

I claim that C ⊂ A3 is the image of the map ϕ : A1 → C ⊂ A3 given by t 7→ t3, t4, t5: to see
this, if u 6= 0 then v, w 6= 0. Set t = v/u, then t = w/v and t2 = (v/u)(w/v) = w/u. Hence
v = w2/u2 = t4, u = v/(v/u) = t4/t = t3, and w = tv = t5. Now C is irreducible, since if
C = X1 ∪ X2 with Xi ⊂ C, and fi(u, v, w) ∈ I(Xi), then for all t, one of fi(t3, t4, t5) must
vanish. Since a nonzero polynomial has at most a finite number of zeros, one of f1, f2 must
vanish identically, so fi ∈ I(C).

This example is of a nice ‘monomial’ kind; in general it might be quite tricky to guess the
irreducible components of a variety, and even more so to prove that they are irreducible. A similar
example is given in Ex. 3.11.

3.12 Finite algebras
I now start on the proof of (3.8). Let A ⊂ B be rings. As usual, B is said to be finitely generated over
A (or f.g. as A-algebra) if there exist finitely many elements b1, . . . , bn such that B = A[b1, . . . , bn],
so that B is generated as a ring by A and b1, . . . , bn.

Contrast with the following definition: B is a finite A-algebra if there exist finitely many elements
b1, . . . , bn such that B = Ab1 + · · ·+Abn, that is, B is finitely generated as A-module. The crucial
distinction here is between generation as ring (when you’re allowed any polynomial expressions in
the bi), and as module (the bi can only occur linearly). For example, k[X] is a finitely generated
k-algebra (it’s generated by one element X), but is not a finite k-algebra (since it has infinite
dimension as k-vector space).

Proposition (i) Let A ⊂ B ⊂ C be rings; then

B a finite A-algebra and C a finite B-algebra
=⇒ C a finite A-algebra.

(ii) If A ⊂ B is a finite A-algebra and x ∈ B then x satisfies a monic equation over A, that is,
there exists a relation

xn + an−1x
n−1 + · · ·+ a0 = 0 with ai ∈ A

(note that the leading coefficient is 1).

(iii) Conversely, if x satisfies a monic equation over A, then B = A[x] is a finite A-algebra.
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Proof (i) and (iii) are easy exercises (compare similar results for field extensions). For (ii), I use
a rather nonobvious ‘determinant trick’ (I didn’t think of it for myself): suppose B =

∑
Abi; for

each i, xbi ∈ B, so there exist constants aij ∈ A such that

xbi =
∑
j

aijbj .

This can be written ∑
j

(xδij − aij)bj = 0,

where δij is the identity matrix. Now let M be the matrix with

Mij = xδij − aij ,

and set ∆ = detM . Then by standard linear algebra, (writing b for the column vector with entries
(b1, . . . , bn) and Madj for the adjoint matrix of M),

Mb = 0, hence 0 = (Madj)Mb = ∆b,

and therefore ∆bi = 0 for all i. However, 1B ∈ B is a linear combination of the bi, so that
∆ = ∆ · 1B = 0, and I’ve won my relation:

det(xδij − aij) = 0.

This is obviously a monic relation for x with coefficients in A. Q.E.D.

3.13 Noether normalisation

Theorem (Noether normalisation lemma) Let k be an infinite field, and A = k[a1, . . . , an] a
finitely generated k-algebra. Then there exist m ≤ n and y1, . . . , ym ∈ A such that

(i) y1, . . . , ym are algebraically independent over k; and

(ii) A is a finite k[y1, . . . , ym]-algebra.

((i) means as usual that there are no nonzero polynomial relations holding between the yi; an
algebraist’s way of saying this is that the natural (surjective) map k[Y1, . . . , Ym]→ k[y1, . . . , ym] ⊂ A
is injective.)

It is being asserted that, as you might expect, the extension of rings can be built up by first
throwing in algebraically independent elements, then ‘making an algebraic extension’; however, the
statement (ii) is far more precise than this, since it says that every element of A is not just algebraic
over k[y1, . . . , ym], but satisfies a monic equation over it.
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Proof Let I be the kernel of the natural surjection,

I = ker
{
k[X1, . . . , Xn]→ k[a1, . . . , an] = A

}
.

Suppose that 0 6= f ∈ I; the idea of the proof is to replace X1, . . . , Xn−1 by certain X ′1, . . . , X ′n−1

so that f becomes a monic equation for an over A′ = k[a′1, . . . , a
′
n−1]. So write

a′1 = a1 − α1an

. . .

a′n−1 = an−1 − αn−1an

(where the αi ∈ k are elements to be specified later). Then

0 = f(a′1 + α1an, . . . , a
′
n−1 + αn−1an, an).

Claim For suitable choice of α1, . . . , αn−1 ∈ k, the polynomial

f(X ′1 + α1Xn, . . . , X
′
n−1 + αn−1Xn, Xn)

is monic in Xn.

Using the claim, the theorem is proved by induction on n: if I = 0 then there’s nothing
to prove, since a1, . . . , an are algebraically independent. Otherwise, pick 0 6= f ∈ I, and let
α1, . . . , αn−1 be as in the claim; then f gives a monic relation satisfied by an with coefficients in
A′ = k[a′1, . . . , a

′
n−1] ⊂ A. By the inductive assumption, there exist y1, . . . , ym ∈ A′ such that

(1) y1, . . . , ym are algebraically independent over k;

(2) A′ is a finite k[y1, . . . , ym]-algebra.

Then A = A′[an] is finite over A′ (by (3.12, iii)), so by (3.12, i), A is finite over k[y1, . . . , ym],
proving the theorem.

It only remains to prove the claim. Let d = deg f , and write

f = Fd +G,

with Fd homogeneous of degree d, and degG ≤ d− 1. Then

f(X1, . . . , Xn−1, Xn) = f(X ′1 + α1Xn, . . . , X
′
n−1 + αn−1Xn, Xn)

= Fd(α1, . . . , αn−1, 1) ·Xd
n

+ (stuff involving Xn to power ≤ d− 1);

I’m now home provided that Fd(α1, . . . , αn−1, 1) 6= 0. Since Fd is a nonzero polynomial, it’s not
hard to check that this is the case for ‘almost all’ values of α1, . . . , αn−1 (the proof of this is discussed
in Ex. 3.13). Q.E.D.
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3.14 Remarks
(I) In fact, the proof of (3.13) shows that y1, . . . , ym can be chosen to be m general linear forms

in a1, . . . , an. To understand the significance of (3.13), write I = ker{k[X1, . . . , Xn] →
k[a1, . . . , an] = A}, and assume for simplicity that I is prime. Consider V = V (I) ⊂ Ank ;
let π : Ank → Amk be the linear projection defined by y1, . . . , ym, and p = π|V : V → Amk . It
can be seen that the conclusions (i) and (ii) of (3.13) imply that above every P ∈ Amk , p−1(P )
is a finite nonempty set (see Ex. 3.16).

(II) The proof of (3.13) has also a simple geometric interpretation: choosing n − 1 linear forms
in the n variables X1, . . . , Xn corresponds to making a linear projection π : Ank → An−1

k ;
the fibres of π then form an (n − 1)-dimensional family of parallel lines. Having chosen the
polynomial f ∈ I, it is not hard to see that f gives rise to a monic relation in the finalXn if and
only if none of the parallel lines are asymptotes of the variety (f = 0); in terms of projective
geometry, this means that the point at infinity (0, α1, . . . , αn−1, 1) ∈ Pn−1

k specifying the
parallel projection does not belong to the projective closure of (f = 0).

(III) The above proof of (3.13) does not work for a finite field (see Ex. 3.14). However, the theorem
itself is true without any condition on k (see [Mumford, Introduction, p. 4] or [Atiyah and
Macdonald, (7.9)]).

3.15 Proof of (3.8)
Let A = k[a1, . . . , an] be a finitely generated k-algebra and suppose that y1, . . . , ym ∈ A are as in
(3.13). Write B = k[y1, . . . , ym]. Then A is a finite B-algebra, and it is given that A is a field. If
I knew that B is a field, it would follow at once that m = 0, so that A is a finite k-algebra, that
is, a finite field extension of k, and (3.8) would be proved. Therefore it remains only to prove the
following statement:

Lemma If A is a field, and B ⊂ A a subring such that A is a finite B-algebra, then B is a field.

Proof For any 0 6= b ∈ B, the inverse b−1 ∈ A exists in A. Now by (3.12, ii), the finiteness implies
that b−1 satisfies a monic equation over B, that is, there exists a relation

b−n + an−1b
−(n−1) + · · ·+ a1b

−1 + a0 = 0, with ai ∈ B;

then multiplying through by bn−1,

b−1 = −(an−1 + an−2b+ · · ·+ a0b
n−1) ∈ B.

Therefore B is a field. This proves (3.8) and completes the proof of NSS.

3.16 Separable addendum
For the purposes of arranging that everything goes through in characteristic p, it is useful to add a
tiny precision. I’m only going to use this in one place in the sequel, so if you can’t remember too
much about separability from Galois theory, don’t lose too much sleep over it (GOTO 3.17).
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Addendum Under the conditions of (3.13), if furthermore k is algebraically closed, and A is an
integral domain with field of fractions K then y1, . . . , ym ∈ A can be chosen as above so that (i) and
(ii) hold, and in addition

(iii) k(y1, . . . , ym) ⊂ K is a separable extension.

Proof If k is of characteristic 0, then every field extension is separable; suppose therefore that
k has characteristic p. Since A is an integral domain, I is prime; hence if I 6= 0, it contains
an irreducible element f . Now for each i, there is a dichotomy: either f is separable in Xi, or
f ∈ k[X1, . . . , X

p
i , . . . , Xn].

Claim If f is inseparable in each Xi, then f = gp for some g, contradicting the irreducibility of
f .

The assumption is that f is of the form:

f = F (Xp
1 , . . . , X

p
n), with F ∈ k[X1, . . . , Xn].

If this happens, let g ∈ k[X1, . . . , Xn] be the polynomial obtained by taking the pth root of each
coefficient of F ; then making repeated use of the standard identity (a+b)p = ap+bp in characteristic
p, it is easy to see that f = gp.

It follows that any irreducible f is separable in at least one of the Xi, say in Xn. Then arguing
exactly as above,

f(X ′1 + α1Xn, . . . , X
′
n−1 + αn−1Xn, Xn)

provides a monic, separable relation for an over A′ = k[a′1, . . . , a
′
n−1]. The result then follows by

the same induction argument, using this time the fact that a composite of separable field extensions
is separable. Q.E.D.

3.17 Reduction to a hypersurface
Recall the following result from Galois theory:

Theorem (Primitive element theorem) Let K be an infinite field, and K ⊂ L a finite sepa-
rable field extension; then there exists x ∈ L such that L = K(x). Moreover, if L is generated over
K by elements z1, . . . , zk, the element x can be chosen to be a linear combination

∑
i αizi.

(This follows at once from the Fundamental Theorem of Galois theory: if K ⊂M is the normal
closure of L over K then K ⊂ M is a finite Galois field extension, so that by the Fundamental
Theorem there only exist finitely many intermediate field extensions between K and M . The
intermediate subfields between K and L form a finite collection {Kj} of K-vector subspaces of L,
so that I can choose x ∈ L not belonging to any of these. If z1, . . . , zk are given, not all belonging
to any Ki, then x can be chosen as a K-linear combination of the zi. Then K(x) = L.)

Corollary Under the hypotheses of the Noether normalisation lemma (3.13), there exist y1, . . . , ym+1 ∈
A such that y1, . . . , ym satisfy the conclusion of (3.13), and in addition, the field of fractions K of
A is generated over k by y1, . . . , ym+1.
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Proof According to (3.16), I can arrange that K is a separable extension of k(y1, . . . , ym). If A =
k[x1, . . . , xn], then the xi certainly generateK as a field extension of k(y1, . . . , ym), so that a suitable
linear combination ym+1 of the xi with coefficients in k(y1, . . . , ym) generates the field extension;
clearing denominators, ym+1 can be taken as a linear combination of the xi with coefficients in
k[y1, . . . , ym], hence as an element of A. Q.E.D.

Algebraically, what I have proved is that the field extension k ⊂ K, while not necessarily
purely transcendental, can be generated as a composite of a purely transcendental extension k ⊂
k(y1, . . . , ym) = K0 followed by a primitive algebraic extension K0 ⊂ K = K0(ym+1). In other
words, K = k(y1, . . . , ym+1), with only one algebraic dependence relation between the generators.
The geometric significance of the result will become clear in (5.10).

Exercises to Chapter 3
3.1 An integral domain A is a principal ideal domain if every ideal I of A is principal, that is of

the form I = (a); show directly that the ideals in a PID satisfy the a.c.c.

3.2 Show that an integral domain A is a UFD if and only if every ascending chain of principal
ideals terminates, and every irreducible element of A is prime.

3.3 (i) Prove Gauss’s lemma: if A is a UFD and f, g ∈ A[X] are polynomials with coefficients in
A, then a prime element of A that is a common factor of the coefficients of the product
fg is a common factor of the coefficients of f or g.

(ii) It is proved in undergraduate algebra that if K is a field then K[X] is a UFD. Use
induction on n to prove that k[X1, . . . , Xn] is a UFD; for this you will need to compare
factorisations in k[X1, . . . , Xn] with factorisations in k(X1, . . . , Xn−1)[Xn], using Gauss’s
lemma to clear denominators.

3.4 Prove Proposition 3.2, (ii): ifA is an integral domain with field of fractionsK, and if 0 /∈ S ⊂ A
is a subset, define

B = A[S−1] =

{
a

b
∈ K

∣∣∣∣ a ∈ A, and b = 1 or a
product of elements of S

}
.

prove that an ideal I of B is completely determined by its intersection with A, and deduce
that A Noetherian =⇒ B Noetherian.

3.5 Let J = (XY,XZ, Y Z) ⊂ k[X,Y, Z]; find V (J) ⊂ A3; is it irreducible? Is it true that
J = I(V (J))? Prove that J cannot be generated by 2 elements. Now let J ′ = (XY, (X−Y )Z);
find V (J ′), and calculate rad J ′.

3.6 Let J = (X2 + Y 2 − 1, Y − 1); find f ∈ I(V (J)) \ J .

3.7 Let J = (X2 + Y 2 + Z2, XY +XZ + Y Z); identify V (J) and I(V (J)).

3.8 Prove that the irreducible components of an algebraic set are unique (this was stated without
proof in (3.7, b)). That is, given two decompositions V =

⋃
i∈I Vi =

⋃
j∈JWj of V as a union

of irreducibles, assumed to be irredundant (that is, Vi 6⊂ Vi′ for i 6= i′), prove that the Vi are
just a renumbering of the Wj .
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3.9 Let f = X2 − Y 2 and g = X3 +XY 2 − Y 3 −X2Y −X + Y ; find the irreducible components
of V (f, g) ⊂ A2

C.

3.10 If J = (uw − v2, w3 − u5), show that V (J) has two irreducible components, one of which is
the curve C of (3.11, b).

Prove that the same curve C can be defined by two equations, uw = v2 and u5−2u2vw+w3 =
0. The point here is that the second equation, restricted to the quadric cone (uw = v2), is
trying to be a square.

3.11 Let f = v2 − uw, g = u4 − vw, h = w2 − u3v. Identify the variety V (f, g, h) ⊂ A3 in the
spirit of (3.11, b). Find out whether V (f, g), V (f, h) and V (g, h) have any other interesting
components.

3.12 (i) Prove that for any field k, an algebraic set in A1
k is either finite or the whole of A1

k.
Deduce that the Zariski topology is the cofinite topology.

(ii) Let k be any field, and f, g ∈ k[X,Y ] irreducible elements, not multiples of one another.
Prove that V (f, g) is finite. [Hint: WriteK = k(X); prove first that f, g have no common
factors in the PID K[Y ]. Deduce that there exist p, q ∈ K[Y ] such that pf + qg = 1;
now by clearing denominators in p, q, show that there exists h ∈ k[X] and a, b ∈ k[X,Y ]
such that h = af + bg. Hence conclude that there are only finitely many possible values
of the X-coordinate of points of V (f, g).]

(iii) Prove that any algebraic set V ⊂ A2
k is a finite union of points and curves.

3.13 (a) Let k be an infinite field and f ∈ k[X1, . . . , Xn]; suppose that f is nonconstant, that
is, f /∈ k. Prove that V (f) 6= Ank . [Hint: suppose that f involves Xn, and consider
f =

∑
ai(X1, . . . , Xn−1)Xi

n; now use induction on n.]

(b) Now suppose that k is algebraically closed, and let f be as in (a). Suppose that f has
degree m in Xn, and that its leading term is am(X1, . . . , Xn−1)Xm

n ; show that wherever
am 6= 0, there is a finite nonempty set of points of V (f) corresponding to every value of
(X1, . . . , Xn−1). Deduce in particular that if n ≥ 2 then V (f) is infinite.

(c) Put together the results of (b) and of Ex. 3.12, (iii) to deduce that if the field k is
algebraically closed, then distinct irreducible polynomials f ∈ k[X,Y ] define distinct
hypersurfaces of A2

k (compare (3.11, a)).

(d) Generalise the result of (c) to Ank .

3.14 Give an example to show that the proof of Noether normalisation given in (3.13) fails over
a finite field k. [Hint: find a polynomial f(X,Y ) for which Fd(α, 1) = αq − α, so that
Fd(α, 1) = 0 for all α ∈ k.]

3.15 Let A be a ring and A ⊂ B a finite A-algebra. Prove that if m is a maximal ideal of A
then mB 6= B. [Hint: by contradiction, suppose B = mB; if B =

∑
Abi then for each i,

bi =
∑
aijbj with aij ∈ m. Now prove that

∆ = det(δij − aij) = 0,

and conclude that 1B ∈ m, a contradiction. See also [Atiyah and Macdonald, Prop. 2.4 and
Cor. 2.5].]



72 §3 Affine varieties and the Nullstellensatz

3.16 Let A = k[a1, . . . , an] be as in the statement of Noether normalisation (3.13), write I =
ker
{
k[X1, . . . , Xn]→ k[a1, . . . , an] = A

}
, and consider V = V (I) in Ank ; assume for simplicity

that I is prime.

Let Y1, . . . , Ym be general linear forms in X1, . . . , Xm, and write π : Ank → Amk for the linear
projection defined by Y1, . . . , Ym; set p = π|V : V → Amk . Prove that (i) and (ii) of (3.13) imply
that above every P ∈ Amk , p−1(P ) is a finite set, and nonempty if k is algebraically closed.
[Hint: I contains a monic relation for each Xi over k[Y1, . . . , Ym]; the finiteness comes easily
from this. For the nonemptiness, use Ex. 3.15 to show that for any P = (b1, . . . , bm) ∈ Amk ,
the ideal JP = I + (Y1 − b1, . . . , Ym − bm) 6= k[X1, . . . , Xm]. Then apply the nonemptiness
assertion of the Nullstellensatz.]



Chapter 4

Functions on varieties

In this section I work over a fixed field k; from (4.8, II) onwards, k will be assumed to be algebraically
closed. The reader who assumes throughout that k = C will not lose much, and may gain a
psychological crutch. I sometimes omit mention of the field k to simplify notation.

4.1 Polynomial functions

Let V ⊂ Ank be an algebraic set, and I(V ) its ideal. Then the quotient ring k[V ] = k[X1, . . . , Xn]/I(V )
is in a natural way a ring of functions on V . In more detail, define a polynomial function on V to
be a map f : V → k of the form P 7→ F (P ), with F ∈ k[X1, . . . , Xn]; this just means that f is
the restriction of a map F : An → k defined by a polynomial. By definition of I(V ), two elements
F,G ∈ k[X1, . . . , Xn] define the same function on V if and only if

F (P )−G(P ) = 0 for all P ∈ V,

that is, if and only if F −G ∈ I(V ). Thus I define the coordinate ring k[V ] by

k[V ] =
{
f : V → k

∣∣ f is a polynomial function
}

∼= k[X1, . . . , Xn]/I(V ).

This is the smallest ring of functions on V containing the coordinate functions Xi (together with
k), so for once the traditional terminology is not too obscure.

4.2 k[V ] and algebraic subsets of V

An algebraic set X ⊂ An is contained in V if and only if I(X) ⊃ I(V ). On the other hand, ideals of
k[X1, . . . , Xn] containing I(V ) are in obvious bijection with ideals of k[X1, . . . , Xn]/I(V ). (Think
about this if it’s not obvious to you: the ideal J with I(V ) ⊂ J ⊂ k[X1, . . . , Xn] corresponds
to J/I(V ); and conversely, an ideal J0 of k[X1, . . . , Xn]/I(V ) corresponds to its inverse image in
k[X1, . . . , Xn].)

73
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Hence the I and V correspondences

{ideals I ⊂ k[V ]} V−−→ {subsets X ⊂ V }
by

I 7−→ V (I) =
{
P ∈ V

∣∣ f(P ) = 0 ∀f ∈ I
}

and
{ideals J ⊂ k[V ]} I←−− {subsetsX ⊂ V }

by
I(X) =

{
f ∈ k[V ]

∣∣ f(P ) = 0 ∀P ∈ X
}
←−7 X

are defined as in §3, and have similar properties. In particular V has a Zariski topology, in which
the closed sets are the algebraic subsets (this is of course the subspace topology of the Zariski
topology of An).

Proposition Let V ⊂ An be an algebraic subset. The following conditions are equivalent:

(i) V is irreducible;

(ii) any two open subsets ∅ 6= U1, U2 ⊂ V have U1 ∩ U2 6= ∅;

(iii) any nonempty open subset U ⊂ V is dense.

This is all quite trivial: V is irreducible means that V is not a union of two proper closed
subsets; (ii) is just a restatement in terms of complements, since

U1 ∩ U2 = ∅ ⇐⇒ V = (V − U1) ∪ (V − U2).

A subset of a topological space is dense if and only if it meets every open, so that (iii) is just a
restatement of (ii).

4.3 Polynomial maps
Let V ⊂ An and W ⊂ Am be algebraic sets; write X1, . . . , Xn and Y1, . . . , Ym for the coordinates
on An and Am respectively.

Definition A map f : V → W is a polynomial map if there exist m polynomials F1, . . . , Fm ∈
k[X1, . . . , Xn] such that

f(P ) =
(
F1(P ), . . . , Fm(P )

)
∈ Amk for all P ∈ V .

This is an obvious generalisation of the above notion of a polynomial function.

Claim A map f : V → W is a polynomial map if and only if for all j, the composite map fj =
Yj ◦ f ∈ k[V ]:

V
f−−→ W ⊂ Amk

fj
HH

HHj

yYj

k

(jth coordinate function).
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This is clear: if f is given by F1, . . . , Fm, then the composite is just P 7→ Fj(P ), which is a
polynomial function. Conversely, if fj ∈ k[V ] for each j, then for any choice of Fj ∈ k[X1, . . . , Xn]
such that fj = Fj mod I(V ), I get a description of f as the polynomial map given by (F1, . . . , Fm).

In view of this claim, the map f can be written f = (f1, . . . , fm).
The composite of polynomial maps is defined in the obvious way: if V ⊂ An, W ⊂ Am and

U ⊂ A` are algebraic sets, and f : V → W , g : W → U are polynomial maps, then g ◦ f : V → U
is again a polynomial map; for if f is given by F1, . . . , Fm ∈ k[X1, . . . , Xn], and g by G1, . . . , G` ∈
k[Y1, . . . , Ym], then g ◦ f is given by

G1(F1, . . . , Fm), . . . , G`(F1, . . . , Fm) ∈ k[X1, . . . , Xn].

Definition A polynomial map f : V →W between algebraic sets is an isomorphism if there exists
a polynomial map g : W → V such that f ◦ g = g ◦ f = id.

Several examples of polynomial maps have already been given: the parametrisations R1 → C ⊂
R2 by t 7→ (t2, t3) or (t2 − 1, t3 − t) given in (2.1), and the map k → C ⊂ A3

k by t 7→ (t3, t4, t5)
discussed in (3.11, b) are clearly of this kind. Also, while discussing Noether normalisation, I had
an algebraic set V ⊂ Ank , and considered the general projection p : V → Amk defined by m ‘fairly
general’ linear forms Y1, . . . , Ym; since the Yi are linear forms in the coordinates Xi of Ank , this
projection is a polynomial map.

On the other hand the parametrisation of the circle given in (1.1) is given by rational functions
(there’s a term λ2 + 1 in the denominator); and the inverse map (X,Y ) 99K t = Y/X from either
of the singular cubics C ⊂ R2 back to R1 is also disqualified (or at least, doesn’t qualify as written)
for the same reason.

4.4 Polynomial maps and k[V ]

Theorem Let V ⊂ Ank and W ⊂ Amk be algebraic sets as above.

(1) A polynomial map f : V → W induces a ring homomorphism f∗ : k[W ] → k[V ], defined by
composition of functions; that is, if g ∈ k[W ] is a polynomial function then so is f∗(g) = g◦f ,
and g 7→ g ◦ f defines a ring homomorphism, in fact a k-algebra homomorphism f∗ : k[W ]→
k[V ]. (Note that it goes backwards.)

(2) Conversely, any k-algebra homomorphism Φ: k[W ] → k[V ] is of the form Φ = f∗ for a
uniquely defined polynomial map f : V →W .

Thus (I) and (II) show that{
polynomial
maps f : V →W

}
−→

{
k-algebra homs.
Φ: k[W ]→ k[V ]

}
by

f 7−→ f∗

is a bijection.

(3) If f : V →W and g : W → U are polynomial maps then the two ring homomorphisms (g◦f)∗ =
f∗ ◦ g∗ : k[U ]→ k[V ] coincide.
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Proof (I) By what I said in (4.3), f∗(g) is a polynomial map V → k, hence f∗(g) ∈ k[V ].
Obviously f∗(a) = a for all a ∈ k (since k is being considered as the constant functions on V,W ).
Finally the fact that f∗ is a ring homomorphism is formal, since both k[W ] and k[V ] are rings
of functions. (The ring structure is defined pointwise, so for example, for g1, g2 ∈ k[W ], the sum
g1 + g2 is defined as the function on W such that (g1 + g2)(P ) = g1(P ) + g2(P ) for all P ∈ W ;
therefore f∗(g1 + g2)(Q) = (g1 + g2)(f(Q)) = g1(f(Q)) + g2(f(Q)) = f∗g1(Q) + f∗g2(Q). No-one’s
going to read this rubbish, are they?)

(III) is just the fact that composition of maps is associative.
(II) is a little more tricky to get right, although it’s still content-free. For i = 1, . . . ,m, let

yi ∈ k[W ] be the ith coordinate function on W , so that

k[W ] = k[y1, . . . , ym] = k[Y1, . . . , Ym]/I(W ).

Now Φ: k[W ]→ k[V ] is given, so I can define fi ∈ k[V ] by fi = Φ(yi).
Consider the map f : V → Amk defined by f(P ) = f1(P ), . . . , fm(P ). This is a polynomial map

since fi ∈ k[V ]. Furthermore, I claim that f takes V into W , that is, f(V ) ⊂ W . Indeed, suppose
that G ∈ I(W ) ⊂ k[Y1, . . . , Ym]; then

G(y1, . . . , ym) = 0 ∈ k[W ],

where the left-hand side means that I substitute the ring elements yi into the polynomial expression
G. Therefore, Φ(G(y1, . . . , ym)) = 0 ∈ k[V ]; but Φ is a k-algebra homomorphism, so that

k[V ] 3 0 = Φ(G(y1, . . . , ym)) = G(Φ(y1), . . . ,Φ(ym)) = G(f1, . . . , fm).

The fi are functions on V , andG(f1, . . . , fm) ∈ k[V ] is by definition the function P 7→ G(f1(P ), . . . , fm(P )).
This proves that for P ∈ V , and for every G ∈ I(W ), the coordinates (f1(P ), . . . , fm(P )) of f(P )
satisfyG(f1(P ), . . . , fm(P )) = 0. SinceW is the subset of Amk defined by the vanishing ofG ∈ I(W ),
it follows that f(P ) ∈ W . This proves that f given above is a polynomial map f : V → W . To
check that the two k-algebra homomorphisms f∗, Φ: k[W ] → k[V ] coincide, it’s enough to check
that they agree on the generators, that is f∗(yi) = Φ(yi); a minute inspection of the construction of
f (at the start of the proof of (II) above) will reveal that this is in fact the case. An exactly similar
argument shows that the map f is uniquely determined by the condition f∗(yi) = Φ(yi). Q.E.D.

Corollary 4.5 A polynomial map f : V → W is an isomorphism if and only if f∗ : k[W ] → k[V ]
is an isomorphism.

Example Over an infinite field k, the polynomial map

ϕ : A1
k → C : (Y 2 = X3) ⊂ A2

k given by T 7→ (T 2, T 3)

is not an isomorphism. For in this case, the homomorphism

ϕ∗ : k[C] = k[X,Y ]/(Y 2 −X3)→ k[T ]

is given by X 7→ T 2, Y 7→ T 3. The image of ϕ∗ is the k-algebra generated by T 2, T 3, that is
k[T 2, T 3] ( k[T ]. (Please make sure you understand why T 2, T 3 don’t generate k[T ]; I can’t help
you on this.)

Notice that ϕ is bijective, and so has a perfectly good inverse map ψ : C → A1
k given by

(X,Y ) 7→ 0 if X = Y = 0 and Y/X otherwise. So why isn’t ϕ an isomorphism? The point is
that C has fewer polynomial functions on it than A1; in a sense you can see that for yourself, since
k[A1] = k[T ] has a polynomial function with nonzero derivative at 0. The gut feeling is that ϕ
‘squashes up the tangent vector at 0’.
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4.6 Affine variety
Let k be a field; I want an affine variety to be an irreducible algebraic subset V ⊂ Ank , defined up
to isomorphism.

Theorem 4.4 tells us that the coordinate ring k[V ] is an invariant of the isomorphism class of
V . This allows me to give a definition of a variety making less use of the ambient space Ank ; the
reason for wanting to do this is rather obscure, and for practical purposes you will not miss much
if you ignore it: subsequent references to an affine variety will always be taken in the sense given
above (GOTO 4.7).

Definition An affine variety over a field k is a set V , together with a ring k[V ] of k-valued
functions f : V → k such that

(i) k[V ] is a finitely generated k-algebra, and

(ii) for some choice x1, . . . , xn of generators of k[V ] over k, the map

V → Ank
by

P 7→ x1(P ), . . . , xn(P )

embeds V as an irreducible algebraic set.

4.7 Function field
Let V be an affine variety; then the coordinate ring k[V ] of V is an integral domain whose elements
are k-valued functions of V .

Definition The function field k(V ) of V is the field of fractions k(V ) = Quot(k[V ]) of k[V ]. An
element f ∈ k(V ) is a rational function on V ; note that f ∈ k(V ) is by definition a quotient f = g/h
with g, h ∈ k[V ] and h 6= 0.

A priori f is not a function on V , because of the zeros of h; however, f is well defined at P ∈ V
whenever h(P ) 6= 0, so is at least a ‘partially defined function’. I now introduce terminology to
shore up this notion.

Definition Let f ∈ k(V ) and P ∈ V ; I say that f is regular at P , or that P is in the domain of
definition of f if there exists an expression f = g/h with g, h ∈ k[V ] and h(P ) 6= 0.

An important point to bear in mind is that usually k[V ] will not be a UFD, so that f ∈ k(V )
may well have essentially different representations as f = g/h; see Ex. 4.9 for an example.

Write
dom f =

{
P ∈ V

∣∣ f is regular at P
}

for the domain of definition of f , and

OV,P =
{
f ∈ k(V )

∣∣ f is regular at P
}

= k[V ][{h−1|h(P ) 6= 0}].

Then OV,P ⊂ k(V ) is a subring, the local ring of V at P .
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Theorem 4.8 (I) dom f is open and dense in the Zariski topology.
Suppose that the field k is algebraically closed; then
(II)

dom f = V ⇐⇒ f ∈ k[V ];

(that is polynomial function = regular rational function). Furthermore, for any h ∈ k[V ], let

Vh = V \ V (h) =
{
P ∈ V

∣∣ h(P ) 6= 0
}

;

then
(III)

dom f ⊃ Vh ⇐⇒ f ∈ k[V ][h−1].

Proof Define the ideal of denominators of f ∈ k(V ) by

Df =
{
h ∈ k[V ]

∣∣ hf ∈ k[V ]
}
⊂ k[V ]

=
{
h ∈ k[V ]

∣∣ ∃ an expression f = g/h with g ∈ k[V ]
}
∪ {0}.

From the first line, Df is obviously an ideal of k[V ]. Then formally,

V \ dom f =
{
P ∈ V

∣∣ h(P ) = 0 for all h ∈ Df

}
= V (Df ),

so that V \ dom f is an algebraic set of V ; hence dom f = V \ V (Df ) is the complement of a
closed set, so open in the Zariski topology. It is obvious that dom f is nonempty, hence dense by
Proposition 4.2.

Now using (b) of the Nullstellensatz,

dom f = V ⇐⇒ V (Df ) = ∅ ⇐⇒ 1 ∈ Df , that is, f ∈ k[V ].

Finally,
dom f ⊃ Vh ⇐⇒ h vanishes on V (Df ),

and using (c) of the Nullstellensatz,

⇐⇒ hn ∈ Df for some n, that is, f = g/hn ∈ k[V ][h−1]. Q.E.D.

4.9 Rational maps
Let V be an affine variety.

Definition A rational map f : V 99K Ank is a partially defined map given by rational functions
f1, . . . , fn, that is,

f(P ) = f1(P ), . . . , fn(P ) for all P ∈
⋂

dom fi.

By definition, dom f =
⋂

dom fi; as before, F is said to be regular at P ∈ V if and only if P ∈ dom f .
A rational map V 99K W between two affine varieties V ⊂ An and W ⊂ Am is defined to be a
rational map f : V 99K Am such that f(dom f) ⊂W .

Two examples of rational maps were described at the end of (4.3).
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4.10 Composition of rational maps

The composite g ◦ f of rational maps f : V 99K W and g : W 99K U may not be defined. This is a
difficulty caused by the fact that a rational map is not a map: in a natural and obvious sense, the
composite is a map defined on dom f ∩ f−1(dom g); however, it can perfectly well happen that this
is empty (see Ex. 4.10).

Expressed algebraically, the same problem also occurs: suppose that f is given by f1, . . . , fm ∈
k(V ), so that

f : V 99K W ⊂ Am
by

P 7→ f1(P ), . . . , fm(P )

for P ∈
⋂

dom fi; any g ∈ k[W ] is of the form g = G mod I(W ) for some G ∈ k[Y1, . . . , Ym],
and g ◦ f = G(f1, . . . , fm) is well defined in k(V ). So exactly as in (4.4), there is a k-algebra
homomorphism

f∗ : k[W ]→ k(V )

corresponding to f . However, if h ∈ k[W ] is in the kernel of f∗, then no meaning can be attached
to f∗(g/h), so that f∗ cannot be extended to a field homomorphism k(W )→ k(V ).

Definition f : V 99KW is dominant if f(dom f) is dense in W for the Zariski topology.

Geometrically, this means that f−1(dom g) ⊂ dom f is a dense open set for any rational map
g : W 99K U , so that g ◦f is defined on a dense open set of V , so is a partially defined map V 99K U .

Algebraically,
f is dominant ⇐⇒ f∗ : k[W ]→ k(V ) is injective.

For given g ∈ k[W ],
g ∈ ker f∗ ⇐⇒ f(dom f) ⊂ V (g),

that is, f∗ is not injective if and only if f(dom f) is contained in a strict algebraic subset of W .
Clearly, the composite g ◦ f of rational maps f and g is defined provided that f is dominant:

g ◦ f is the rational map whose components are f∗(gi). Notice that the domain of g ◦ f certainly
contains f−1(dom g) ∩ dom f , but may very well be larger (see Ex. 4.6).

Theorem 4.11 (I) A dominant rational map f : V 99KW defines a field homomorphism f∗ : k(W )→
k(V ).

(II) Conversely, a k-homomorphism Φ: k(W )→ k(V ) comes from a uniquely defined dominant
rational map f : V 99KW .

(III) If f and g are dominant then (g ◦ f)∗ = f∗ ◦ g∗.

The proof requires only minor modifications to that of (4.4).

4.12 Morphisms from an open subset of an affine variety

Let V,W be affine varieties, and U ⊂ V an open subset.
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Definition A morphism f : U →W is a rational map f : V 99KW such that U ⊂ dom f , so that
f is regular at every P ∈ U .

If U1 ⊂ V and U2 ⊂W are opens, then a morphism f : U1 → U2 is just a morphism f : U1 →W
such that f(U1) ⊂ U2. An isomorphism is a morphism which has a two-sided inverse morphism.

Note that if V,W are affine varieties, then by Theorem 4.8, (II),{
morphisms f : V →W

}
=
{
polynomial maps f : V →W

}
;

the left-hand side of the equation consists of rational objects subject to regularity conditions,
whereas the right-hand side is more directly in terms of polynomials.

Example The parametrisation of the cuspidal cubic A1 → C : (Y 2 = X3) of (2.1) induces an
isomorphism A1 \ {0} ∼= C \ {(0, 0)}; see Ex. 4.5 for details.

4.13 Standard open subsets

Let V be an affine variety. For f ∈ k[V ], write Vf for the open set Vf = V \ V (f) =
{
P ∈ V

∣∣
f(P ) 6= 0

}
. The Vf are called standard open sets of V .

Proposition Vf is isomorphic to an affine variety, and

k[Vf ] = k[V ][f−1].

Proof The idea is to consider the graph of the function f−1; a similar trick was used for (b) =⇒
(c) in the proof of NSS (3.10).

Figure 4.1: Graph of 1/f

Let J = I(V ) ⊂ k[X1, . . . , Xn], and choose F ∈ k[X1, . . . , Xn] such that f = F mod I(V ). Now
define I = (J, Y F − 1) ⊂ k[X1, . . . , Xn, Y ], and let

V (I) = W ⊂ An+1.

It is easy to check that the maps indicated in the diagram are inverse morphisms between W and
Vf . The statement about the coordinate ring is contained in (4.8, III). Q.E.D.
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The standard open sets Vf are important because they form a basis for the Zariski topology of
V : every open set U ⊂ V is a union of Vf (since every closed subset is of the form V (I) =

⋂
f∈I V (f)

for some ideal). Thus the point of the result just proved is that every open set U ⊂ V is a union of
open sets Vf which are affine varieties.

4.14 Worked example

In §2 I discussed the addition law (A,B) 7→ A+B on a plane nonsingular (projective) cubic C ⊂ P2.
Let C0 : (y2 = x3 + ax+ b) be a nonsingular affine cubic:

Figure 4.2: Group law on cubic as a morphism

I show here that the addition law defines a rational map ϕ : C0 × C0 99K C0, and that ϕ is a
morphism wherever it should be. Although I will not labour the point, this argument can be used
to give another proof ‘by continuity’ of the associativity of the group law valid for any field (see the
discussion in (2.10)).

It is not difficult to see (compare Ex. 2.7) that if A = (x, y), B = (x′, y′), and x 6= x′ then
setting u = (y − y′)/(x− x′), the third point of intersection is P = (x′′, y′′), where

x′′ = f(x, y, x′, y′) = u2 − (x+ x′),

y′′ = g(x, y, x′, y′) = u3 + xu+ y′.
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Since x′′ and y′′ are rational functions in the coordinates (x, y), (x′, y′), this shows that ϕ : C0 ×
C0 99K C0 is a rational map. From the given formula, ϕ is a morphism wherever x 6= x′, since then
the denominator of u is nonzero. Now if x = x′ and y = −y′, then x′′ and y′′ should be infinity,
corresponding to the fact that the line AB meets the projective curve C at the point at infinity
O = (0, 1, 0). However, if x = x′ and y = y′ 6= 0 then the point P = (x′′, y′′) should be well defined.
I claim that f, g are regular functions on C0 × C0 at such points: to see this, note that

y2 = x3 + ax+ b and y′2 = x′3 + ax′ + b,

giving
y2 − y′2 = x3 − x′3 + a(x− x′);

therefore as rational functions on C0 × C0, there is an equality

u = (y − y′)/(x− x′) = (x2 + xx′ + x′2 + a)/(y + y′).

Looking at the denominator, it follows that u (hence also f and g) is regular whenever y 6= −y′.
The conclusion of the calculation is the following proposition: the addition law ϕ : C0×C0 99K C0

is a morphism at (A,B) ∈ C0 × C0 provided that A+B 6= O.

Exercises to Chapter 4
4.1 Check that the statements of §4 up to and including (4.8, I) are valid for any field k; discover

in particular what they mean for a finite field. Give a counterexample to (4.8, II) if k is not
algebraically closed.

4.2 ϕ : A1 → A3 is the polynomial map given by X 7→ (X,X2, X3); prove that the image of ϕ is
an algebraic subset C ⊂ A3 and that ϕ : A1 → C is an isomorphism. Try to generalise.

4.3 ϕn : A1 → A2 is the polynomial map given by X 7→ (X2, Xn); show that if n is even, the
image of ϕn is isomorphic to A1, and ϕn is two-to-one outside 0. And if n is odd, show that
ϕn is bijective, and give a rational inverse of ϕn.

4.4 Prove that a morphism ϕ : X → Y between two affine varieties is an isomorphism of X with
a subvariety ϕ(X) ⊂ Y if and only if the induced map Φ: k[Y ]→ k[X] is surjective.

4.5 Let C : (Y 2 = X3) ⊂ A2; then

(a) the parametrisation f : A1 → C given by (T 2, T 3) is a polynomial map;
(b) f has a rational inverse g : C 99K A1 defined by (X,Y ) 7→ Y/X;
(c) dom g = C \ {(0, 0)};
(d) f and g give inverse isomorphisms A1 \ {0} ∼= C \ {(0, 0)}.

4.6 (i) Show that the domain of g ◦ f may be strictly larger than dom f ∩ f−1(dom g). [Hint:
this may happen if g and f are inverse rational maps; try f and g as in Ex. 4.5.]

(ii) Most courses on calculus of several variables contain examples such as the function
f(x, y) = xy/(x2 + y2). Explain how come f is C∞ when restricted to any smooth curve
through (0, 0), but is not even continuous as a function of 2 variables.
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4.7 Let C : (Y 2 = X3 + X2) ⊂ A2; the familiar parametrisation ϕ : A1 → C given by (T 2 −
1, T 3−T ) is a polynomial map, but is not an isomorphism (why not?). Find out whether the
restriction ϕ′ : A1 \ {1} → C is an isomorphism:

Figure 4.3: Nodal curve with gap

4.8 Let C : (Y 3 = X4 +X3) ⊂ A2; show that (X,Y ) 7→ X/Y defines a rational map ψ : C 99K A1,
and that its inverse is a polynomial map ϕ : A1 → C parametrising C. Prove that ϕ restricts
to an isomorphism

A1 \ {3 pts.} ∼= C \ {(0, 0)}.

4.9 Let V : (XT = Y Z) ⊂ A4; explain why k[V ] is not a UFD. (It’s not hard to get the idea, but
rather harder to give a rigorous proof.) If f = X/Y ∈ k(V ), find dom f , and prove that it is
strictly bigger than the locus (Y = 0) ⊂ V .

4.10 Let f : A1 → A2 be given by X 7→ (X, 0), and let g : A2 99K A1 be the rational map given by
(X,Y ) 7→ X/Y ; show that the composite g ◦ f is not defined anywhere. Determine what is
the largest subset of the function field k(A1) on which g∗ is defined.

4.11 Define and study the notion of product of two algebraic sets. More precisely,

(i) if V ⊂ Ank and W ⊂ Amk are algebraic sets, prove that V ×W ⊂ An+m
k is also;

(ii) give examples to show that the Zariski topology on V ×W is not the product topology
of those on V and on W ;

(iii) prove that V,W irreducible =⇒ V ×W irreducible;

(iv) prove that if V ∼= V ′ and W ∼= W ′ then V ×W ∼= V ′ ×W ′.

4.12 (a) Prove that any f ∈ k(A2) which is not regular at the origin (0, 0) also fails to be regular
at points of a curve passing through (0, 0).

(b) Deduce that A2 \ (0, 0) is not affine. [Hints: For (a), use the fact that k(A2) = k(X,Y )
is the field of fractions of the UFD k[X,Y ], together with the result of Ex. 3.13, (b).
For (b), assume that A2 \ (0, 0) is affine, and determine its coordinate ring; then get a
contradiction using Corollary 4.5.]
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Chapter 5

Projective and birational geometry

The first part of §5 aims to generalise the content of §§3–4 to projective varieties; this is fairly me-
chanical, with just a few essential points. The remainder of the section is concerned with birational
geometry, taking up the function field k(V ) from the end of §4; this is material which fits equally
well into the projective or affine context.

5.0 Why projective varieties?
The cubic curve

C : (Y 2Z = X3 + aXZ2 + bZ3) ⊂ P2

is the union of two affine curves

C0 : (y2 = x3 + ax+ b) ⊂ A2 (the piece (Z = 1) of C) and

C1 : (z1 = x3
1 + axz2

1 + bz3
1) ⊂ A2 (the piece (Y = 1)),

glued together by the isomorphism

C0 \ (y = 0) −→ C1 \ (z1 = 0)
by

(x, y) 7−→ (x/y, 1/y).

As a much simpler example, P1 with homogeneous coordinates (X,Y ) is the union of 2 copies
of A1 with coordinates x0, y1 respectively, glued together by the isomorphism

A1 \ (x0 = 0) −→ A1 \ (y1 = 0)
by

x0 7−→ 1/x0.

87



88 §5 Projective and birational geometry

The usual picture is

Figure 5.1: P1 glued from two A1s

(the arrows ↔ denote glueing).
It’s important to understand that these varieties are strictly bigger than any affine variety. In

fact, with the natural notion of morphism (to be introduced shortly), it can be seen that there
are no nonconstant morphisms P1 → An or C → An for any n (see Ex. 5.1 and Ex. 5.12, and the
discussion in (8.10)).

One solution to this problem is to define the notion of ‘abstract variety’ V as a union V =
⋃
Vi

of affine varieties, modulo suitable glueing. By analogy with the definition of manifolds in topology,
this is an attractive idea, but it leads to many more technical difficulties. Using projective varieties
sidesteps these problems by working in the ready-made ambient space Pn, so that (apart from a
little messing about with homogeneous polynomials) they are not much harder to study than affine
varieties. In fact, although this may not be clear at an elementary level, projective varieties to a
quite remarkable extent provide a natural framework for studying varieties (this is briefly discussed
from a more advanced point of view in (8.11)).

5.1 Graded rings and homogeneous ideals

Definition A polynomial f ∈ k[X0, . . . , Xn] is homogeneous of degree d if

f =
∑

ai0...inX
i0
0 · · ·Xin

n with ai0...in 6= 0 only if i0 + · · ·+ in = d.

Any f ∈ k[X0, . . . , Xn] has a unique expression f = f0 + f1 + · · ·+ fN in which fd is homogeneous
of degree d for each d = 0, 1, . . . , N .

Proposition If f is homogeneous of degree d then

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ k;

if k is an infinite field then the converse also holds.
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Proof Try it and see.

Definition An ideal I ⊂ k[X0, . . . , Xn] is homogeneous if for all f ∈ I, the homogeneous decom-
position f = f0 + f1 + · · ·+ fN of f satisfies fi ∈ I for all i.

It is equivalent to say that I is generated by (finitely many) homogeneous polynomials.

5.2 The homogeneous V -I correspondences
Let Pnk be n-dimensional projective space over a field k, with X0, . . . , Xn as homogeneous coor-
dinates. Then f ∈ k[X0, . . . , Xn] is not a function on Pnk : by definition, Pnk = kn+1 \ {0}/∼,
where ∼ is the equivalence relation given by (X0, . . . , Xn)∼(λX0, . . . , λXn) for λ ∈ k \ {0}; f is
a function on kn+1. Nevertheless, for P ∈ Pn, the condition f(P ) = 0 is well defined provided
that f is homogeneous: suppose P = (X0 : · · · : Xn), so that (X0, . . . , Xn) is a representative
in kn+1 \ {0} of the equivalence class of P . Then since f(λX) = λdf(X), if f(X0, . . . , Xn) = 0
then also f(λX0, . . . , λXn) = 0, so that the condition f(P ) = 0 is independent of the choice of
representative. With this in mind, define as before correspondences{

homog. ideals J ⊂ k[X0, . . . , Xn]
} V -I←−−→

{
subsets X ⊂ Pnk

}
by

V (J) =
{
P ∈ Pnk

∣∣ f(P ) = 0 ∀ homogeneous f ∈ J
}

and
I(X) =

{
f ∈ k[X0, . . . , Xn]

∣∣ f(P ) = 0 for all P ∈ X
}
.

As an exercise, check that you understand why I(X) is a homogeneous ideal.
The correspondences V and I satisfy the same formal properties as the affine V and I corre-

spondences introduced in §3 (for example V (J1 + J2) = V (J1)∩V (J2)). A subset of the form V (I)
is an algebraic subset of Pnk , and as in the affine case, Pnk has a Zariski topology in which the closed
sets are the algebraic subsets.

5.3 Projective Nullstellensatz
As with the affine correspondences, it is purely formal that I(V (J)) ⊃ rad J for any ideal J , and
that for an algebraic set, V (I(X)) = X. There’s just one point where care is needed: the trivial
ideal (1) = k[X0, . . . , Xn] (the whole ring) defines the empty set in kn+1, hence also in Pnk , which
is as it should be; however, the ideal (X0, . . . , Xn) defines {0} in kn+1, which also corresponds to
the empty set in Pnk . The ideal (X0, . . . , Xn) is an awkward (empty-set theoretical) exception to
several statements in the theory, and is traditionally known as the ‘irrelevant ideal’.

The homogeneous version of the Nullstellensatz thus becomes:

Theorem Assume that k is an algebraically closed field. Then

(i) V (J) = ∅ ⇐⇒ rad J ⊃ (X0, . . . , Xn);

(ii) if V (J) 6= ∅ then I(V (J)) = rad J .
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Corollary I and V determine inverse bijections homogeneous radical
ideals J ⊂ k[x0, . . . , xn]
with J 6⊃ (x0, . . . , xn)

 ←−−→
{
algebraic subsets

X ⊂ Pn

}
⋃ ⋃

 homogeneous prime
ideals J ⊂ k[x0, . . . , xn]
with J 6⊃ (x0, . . . , xn)

 ←−−→
{
irreducible algebraic
subsets X ⊂ Pn

}

Proof Let π : An+1\{0} → Pn be the map defining Pn. For a homogeneous ideal J ⊂ k[X0, . . . , Xn],
write (in temporary notation) V a(J) ⊂ An+1 for the affine algebraic set defined by J . Then since
J is homogeneous, V a(J) has the property

(α0, . . . , αn) ∈ V a(J) ⇐⇒ (λα0, . . . , λαn) ∈ V a(J),

and V (J) = V a(J) \ {0}/∼ ⊂ Pn. Hence

V (J) = ∅ ⇐⇒ V a(J) ⊂ {0} ⇐⇒ rad J ⊃ (X0, . . . , Xn),

where the last implication uses the affine Nullstellensatz. Also, if V (J) 6= ∅ then

f ∈ I(V (J)) ⇐⇒ f ∈ I(V a(J)) ⇐⇒ f ∈ rad J. Q.E.D.

The affine subset V a(J) occurring above is called the affine cone over the projective algebraic
subset V (J).

5.4 Rational functions on V

Let V ⊂ Pnk be an irreducible algebraic set, and I(V ) ⊂ k[X0, . . . , Xn] its ideal; there is no direct
way of defining regular functions on V in terms of polynomials: an element F ∈ k[X0, . . . , Xn] gives
a function on the affine cone over V , but (by case d = 0 of Proposition 5.1) this will be constant
on equivalence classes only if F is homogeneous of degree 0, that is, a constant. So from the start,
I work with rational functions only:

Definition A rational function on V is a (partially defined) function f : V 99K k given by f(P ) =
g(P )/h(P ), where g, h ∈ k[X0, . . . , Xn] are homogeneous polynomials of the same degree d.

Note here that provided h(P ) 6= 0, the quotient g(P )/h(P ) is well defined, since

g(λX)/h(λX) = λdg(X)/λdh(X) = g(X)/h(X) for 0 6= λ ∈ k.

Now obviously g/h and g′/h′ define the same rational function on V if and only if h′g − g′h ∈
I(V ), so that the set of all rational functions is the field

k(V ) =

{
g

h

∣∣∣∣ g, h ∈ k[X0, . . . , Xn] homogeneous
of the same degree, and h /∈ I(V )

}
/∼,
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where ∼ is the equivalence relation

g

h
∼ g
′

h′
⇐⇒ h′g − g′h ∈ I(V ).

k(V ) is the (rational) function field of V .
The following definitions are just as in the affine case. For f ∈ k(V ) and P ∈ V , say that f is

regular at P if there exists an expression f = g/h, with g, h homogeneous polynomials of the same
degree, such that h(P ) 6= 0. Write

dom f =
{
P ∈ V

∣∣ f is regular at P
}

and
OV,P =

{
f ∈ k(V )

∣∣ f is regular at P
}
.

Clearly, dom f ⊂ V is a dense Zariski open set in V (the proof is as in (4.8, I), and OV,P ⊂ k(V ) is
a subring.

5.5 Affine covering of a projective variety
Let V ⊂ Pn be an irreducible algebraic set, and suppose for simplicity that V 6⊂ (Xi = 0) for any
i. We know that Pn is covered by n+ 1 affine pieces An(i), with affine (inhomogeneous) coordinates

X
(i)
0 , . . . , X

(i)
i−1, X

(i)
i+1, . . . , X

(i)
n , where X

(i)
j = Xj/Xi for j 6= i.

Write V(i) = V ∩ An(i). Then V(i) ⊂ An(i) is clearly an affine algebraic set, because

V(0) 3 P = (1, x
(0)
1 , . . . , x(0)

n )

⇐⇒ f(1, x
(0)
1 , . . . , x(0)

n ) = 0 for all homogeneous f ∈ I(V ),

which is a set of polynomial relations in the coordinates (x
(0)
1 , . . . , x

(0)
n ) of P . For clarity, I have

taken i = 0 in the argument, and will continue to do so whenever convenient. The reader should
remember that the same result applies to any of the other affine pieces V(i). The V(i) are called
standard affine pieces of V .

Proposition (i) The correspondence V 7→ V(0) = V ∩ An(0) gives a bijection{
irreducible alg.
subsets V ⊂ Pn

∣∣∣∣V 6⊂ (X0 = 0)

}
←−→

{
irreducible alg.
subsets V0 ⊂ An(0)

}
;

the inverse correspondence is given by taking the closure in the Zariski topology.

(ii) Write Ih(V ) ⊂ k[X0, . . . , Xn] for the homogeneous ideal of V ⊂ Pn introduced in this section
and Ia(V(0)) ⊂ k[X1, . . . , Xn] for the usual (as in §3) inhomogeneous ideal of V(0) ⊂ An(0);
then Ih(V ) and Ia(V(0)) are related as follows:

Ia =
{
f(1, X1, . . . , Xn)

∣∣ f ∈ Ih(V )
}
,

and
Ih(V )d =

{
Xd

0f
(
X1

X0
, . . . , Xn

X0

) ∣∣ f ∈ Ia(V(0)), with deg f ≤ d
}
,

where the subscript in Ih(V )d denotes the piece of degree d.
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(iii) k(V ) ∼= k(V(0)), and for f ∈ k(V ), the domain of f as a function on V(0) is V(0) ∩ dom f .

Proof (i) and (ii) are easy. (iii) If g, h ∈ k[X0, . . . , Xn] are homogeneous of degree d, and h /∈ I(V ),
then g/h ∈ k(V ) restricted to V(0) is the function

g(1, X1/X0, . . . , Xn/X0)

h(1, X1/X0, . . . , Xn/X0)
;

this defines a map k(V )→ k(V(0)), and it’s easy to see what its inverse is.

5.6 Rational maps and morphisms

Rational maps between projective (or affine) varieties are defined using k(V ): if V ⊂ Pn is an
irreducible algebraic set, a rational map V 99K Am is a (partially defined) map given by P 7→
(f1(P ), . . . , fm(P )), where f1, . . . , fm ∈ k(V ). A rational map V 99K Pm is defined by P 7→ (f0(P ) :
f1(P ) : · · · : fm(P )) where f0, f1, . . . , fm ∈ k(V ). Notice that if g ∈ k(V ) is a nonzero element,
then gf0, gf1, . . . , gfm defines the same rational map. Therefore (assuming that V does not map
into the smaller projective space (X0 = 0)), it would be possible to assume throughout that f0 = 1.

Clearly then, there is a bijection between the two sets{
rational maps f : V 99K Am ⊂ Pm

}
and {

rational maps f : V 99K Pm
∣∣ f(V ) 6⊂ (X0 = 0)

}
,

since either kind of maps is given by m elements fi ∈ k(V ).

Definition A rational map f : V 99K Pm is regular at P ∈ V if there exists an expression f =
(f0, f1, . . . , fm) such that

(i) each of f0, . . . , fm is regular at P ; and

(ii) at least one fi(P ) 6= 0.

The second condition is required here in order that the ratio between the fi is defined at P . If f
is regular at P (as before, this is also expressed P ∈ dom f) then f : U → Am(i) ⊂ Pm is a morphism
for a suitable open neighbourhood P ∈ U ⊂ V : just take U =

⋂
j dom(fj/fi) where fi(P ) 6= 0;

then f is the morphism given by
{
fj/fi

}
j=0,1,...,m

.
If U ⊂ V is an open subset of a projective variety V then a morphism f : U → W is a rational

map f : V 99K W such that dom f ⊃ U . So a morphism is just a rational map that is everywhere
regular on U .
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5.7 Examples

(I) Rational normal curve. This is a very easy example of an isomorphic embedding f : P1
∼=−→

C ⊂ Pm which generalises the parametrised conic of (1.7), and which occurs throughout
projective and algebraic geometry. Define

f : P1 → Pm by (U : V ) 7→ (Um : Um−1V : · · · : V m)

(writing down all monomials of degree m in U, V ). Arguing step by step:

(i) f is a rational map, since it’s given by

((U/V )m, (U/V )m−1, . . . , 1);

(ii) f is a morphism wherever V 6= 0 by the formula just written, and if V = 0 then U 6= 0,
so a similar trick with V/U works;

(iii) the image of f is the set of points (X0 : · · · : Xm) ∈ Pm such that

(X0 : X1) = (X1 : X2) = · · · = (Xm−1 : Xm),

that is,
X0X2 = X2

1 , X0X3 = X1X2, X0X4 = X1X3, etc.

The equations can be written all together in the extremely convenient determinantal
form

rank

(
X0 X1 X2 . . . Xm−1

X1 X2 X3 . . . Xm

)
≤ 1

(the rank condition means exactly that all 2×2 minors vanish). These are homogeneous
equations defining an algebraic set C ⊂ Pm;

(iv) the inverse morphism g : C → P1 is not hard to find: just take a point of C into the
common ratio (X0 : X1) = · · · = (Xm−1 : Xm) ∈ P1. As an exercise, find out for yourself
what has to be checked, then check it all.

(II) Linear projection, parametrising a quadric. The map π : P3 99K P2 given by (X0, X1, X2, X3) 7→
(X1, X2, X3) is a rational map, and a morphism outside the point P0 = (1, 0, 0, 0). Let Q ⊂ P3

be a quadric hypersurface with P ∈ Q. Then every point P of P2 corresponds to a line L of
P3 through P , and L should in general meet Q at P0 and a second point ϕ(P ): for example,
if Q : (X0X3 = X1X2), then π|Q : Q 99K P2 has the inverse map

ϕ : P2 99K Q given by (X1, X2, X3) 7→ (X1X2/X3, X1, X2, X3).

This is essentially the same idea as the parametrisation of the circle in (1.1).

It is a rewarding exercise (see Ex. 5.2) to find domπ and domϕ, and to give a geometric
interpretation of the singularities of π and ϕ.
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Figure 5.2: Projection of quadric surface

5.8 Birational maps

Definition Let V and W be (affine or projective) varieties; then a rational map f : V 99K W is
birational (or is a birational equivalence) if it has a rational inverse, that is, if there exists a rational
map g : W 99K V such that f ◦ g = idW and g ◦ f = idV .

Proposition The following three conditions on a rational map f : V 99KW are equivalent:

(i) f is a birational equivalence;

(ii) f is dominant (see (4.10)), and f∗ : k(W )→ k(V ) is an isomorphism;

(iii) there exist open sets V0 ⊂ V and W0 ⊂ W such that f restricted to V0 is an isomorphism
f : V0 →W0.

Proof f∗ is defined in the same way as for affine varieties, and (i) ⇐⇒ (ii) is as in (4.11).
(iii) =⇒ (i) is clear, since an isomorphism f : V0 → W0 and its inverse g = f−1 : W0 → V0 are by
definition rational maps between V and W .

The essential implication (i) =⇒ (iii) is tricky, although content-free (GOTO (5.9) if you want
to avoid a headache): by assumption (i), there are inverse rational maps f : V 99KW and g : W 99K
V ; now set V ′ = dom f ⊂ V and ϕ = f |V ′ : V ′ → W , and similarly W ′ = dom g ⊂ W and
ψ = g|W ′ : W ′ → V . In the diagram

ψ−1V ′
ψ−−→ V ′

ϕ−−→ W⋂
W

all the arrows are morphisms, and idW |ψ−1V ′ = ϕ ◦ψ (as morphisms) follows from idW = f ◦ g (as
rational maps). Hence

ϕ(ψ(P )) = P for all P ∈ ψ−1V ′.
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Now set V0 = ϕ−1ψ−1V ′, and W0 = ψ−1ϕ−1W ′; then ϕ : V0 → ψ−1V ′ is a morphism by con-
struction. However, ψ−1V ′ ⊂ W0, since P ∈ ψ−1V ′ implies that ϕ(ψ(P )) = P , so that P ∈
ψ−1ϕ−1W ′ = W0. Therefore, ϕ : V0 →W0 is a morphism, and similarly ψ : W0 → V0. Q.E.D.

5.9 Rational varieties
The notion of birational equivalence discussed in (5.8) is of key importance in algebraic geometry.
Condition (iii) in the proposition says that the ‘meat’ of the varieties V andW is the same, although
they may differ a bit around the edges; an example of the use of birational transformations is blowing
up a singular variety to obtain a nonsingular one, see (6.12) below. An important particular case
of Proposition 5.8 is the following result.

Corollary Given a variety V , the following two conditions are equivalent:

(a) the function field k(V ) is a purely transcendental extension of k, that is k(V ) ∼= k(t1, . . . , tn)
for some n;

(b) there exists a dense open set V0 ⊂ V which is isomorphic to a dense open subset U0 ⊂ An.

A variety satisfying these conditions is said to be rational. Condition (b) is a precise version
of the statement that V can be parametrised by n independent variables. This notion has already
appeared implicitly several times in these notes (for example, (1.1), (2.1), (3.11, b), (5.7, II)). A
large proportion of the elementary applications of algebraic geometry to other branches of math
are related one way or another to rational varieties.

5.10 Reduction to a hypersurface
An easy consequence of the discussion of Noether normalisation at the end of §3 is that every
variety is birational to a hypersurface: firstly, since birational questions only depend on a dense
open set, and any open set contains a dense open subset isomorphic to an affine variety (by (4.13)),
I only need to consider an affine variety V ⊂ An. It was proved in (3.18) that there exist elements
y1, . . . , ym+1 ∈ k[V ] which generate the field extension k ⊂ k(V ), and such that y1, . . . , ym are
algebraically independent, and ym+1 is algebraic over k(y1, . . . , ym). These elements thus define a
morphism V → Am+1 which is a birational equivalence of V with a hypersurface V ′ ⊂ Am+1.

5.11 Products
If V and W are two affine varieties then there is a natural sense in which V ×W is again a variety:
if V ⊂ An and W ⊂ Am then V ×W is the subset of An+m given by{

((α1, . . . , αn); (β1, . . . , βm))

∣∣∣∣ f(α) = 0 for all f ∈ I(V )

g(β) = 0 for all g ∈ I(W )

}
It’s easy to check that V ×W remains irreducible. Note however that the Zariski topology of the
product is not the product of the Zariski topologies (see Ex. 5.10).
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The case of projective varieties is not so obvious; to be able to define products, we need to know
that Pn × Pm is itself a projective variety. Notice that it is definitely not isomorphic to Pn+m (see
Ex. 5.2, ii). To do this, I use a construction rather similar in spirit to that of (5.7, I): make an
embedding (the ‘Segre embedding’)

ϕ : Pn × Pm → Sn,m ⊂ PN ,

where N = (n+ 1)(m+ 1)− 1 as follows: PN is the projective space with homogeneous coordinates

(Uij) i=0,...,n
j=0,...,m

.

It’s useful to think of the Uij as being set out in a matrix
U00 . . . U0m

U10 . . . . . .

. . . . . . Unm


Then define ϕ by ((X0, . . . , Xn), (Y0, . . . , Ym)) 7→ (XiYj) i=0,...,n

j=0,...,m
. This is obviously a well defined

morphism, and the image Sn,m is easily seen to be the projective subvariety given by

rank


U00 . . . U0m

U10 . . . . . .

. . . . . . Unm

 ≤ 1, that is, det

∣∣∣∣∣Uik Ui`

Ujk Uj`

∣∣∣∣∣ = 0

for all i, j = 0, . . . , n and k, ` = 0, . . . ,m.
We get an inverse map Sn,m → Pn × Pm as follows. For P ∈ Sn,m there exists at least one pair

(i, j) such that Uij(P ) 6= 0; fixing this (i, j), send

Sn,m 3 P 7→ ((U0j , . . . , Unj), (Ui0, . . . , Uim)) ∈ Pn × Pm.

Note that the choice of (i, j) doesn’t matter, since the matrix Uij(P ) has rank 1, and hence all its
rows and all its columns are proportional.

From this it is not hard to see that if V ⊂ Pn and W ⊂ Pm are projective varieties, then
V ×W ⊂ Pn × Pm ∼= Sn,m ⊂ PN is again a projective variety (see Ex. 5.11).

Exercises to Chapter 5

5.1 Prove that a regular function on P1 is a constant. [Hint: use the notation of (5.0); suppose
that f ∈ k(P1) is regular at every point of P1. Apply (4.8, II) to the affine piece A1

(0), to show
that f = p(x0) ∈ k[x0]; on the other affine piece A1

(∞), f = p(1/y1) ∈ k[y1]. Now, how can
it happen that p(1/y1) is a polynomial?] Deduce that there are no nonconstant morphisms
P1 → Am for any m.

5.2 The quadric surface in P3.
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(i) Show that the Segre embedding of P1×P1 (as in (5.10)) gives an isomorphism of P1×P1

with the quadric
S1,1 = Q : (X0X3 = X1X2) ⊂ P3.

(ii) What are the images in Q of the two families of lines {p}× P1 and P1 ×{p} in P1 × P1?
Use this to find some disjoint lines in P1×P1, and conclude from this that P1×P1 6∼= P2.
(The fact that a quadric surface has two rulings by straight lines has applications in civil
engineering: if you’re trying to build a curved surface out of concrete, it’s an obvious
advantage to be able to determine the shape of the surface by imposing linear constraints.
See [M. Berger, 14.4.6–7 and 15.3.3] for a discussion and pictures.)

Figure 5.3: Quadrics surface as cooling tower

(iii) Show that there are two lines of Q passing through the point P = (1, 0, 0, 0), and that
the complement U of these two lines is the image of A1×A1 under the Segre embedding.

(iv) Show that under the projection π|Q : Q 99K P2 (in the notation of (5.7, II)), U maps
isomorphically to a copy of A2, and the two lines through P are mapped to two points
of P2.

(v) In the notation of (5.7, II), find domπ and domϕ, and give a geometric interpretation
of the singularities of π and ϕ.

5.3 Which of the following expressions define rational maps ϕ : Pn 99K Pm (with n,m = 1 or 2)
between projective spaces of the appropriate dimensions? In each case, determine domϕ, say
if ϕ is birational, and if so describe the inverse map.

(a) (x, y, z) 7→ (x, y);

(b) (x, y) 7→ (x, y, 1);

(c) (x, y) 7→ (x, y, 0);

(d) (x, y, z) 7→ (1/x, 1/y, 1/z);

(e) (x, y, z) 7→ ((x3 + y3)/z3, y2/z2, 1);

(f) (x, y, z) 7→ (x2 + y2, y2, y2).
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5.4 The rational normal curve (see (5.7, I)) of degree 3 is the curve C ⊂ P3 defined by the 3
quadrics C = Q1 ∩Q2 ∩Q3, where

Q1 : (XZ = Y 2), Q2 : (XT = Y Z), Q3 : (Y T = Z2);

this curve is also well known as the twisted cubic, where ‘twisted’ refers to the fact that
it is not a plane curve. Check that for any two of the quadrics Qi, Qj , the intersection
Qi ∩Qj = C ∪ `ij , where `ij is a certain line. So this curve in 3-space is not the intersection
of any 2 of the quadrics.

5.5 Let Q1 : (XZ = Y 2) and F : (XT 2 − 2Y ZT +Z3 = 0); prove that C = Q1 ∩F is the twisted
cubic curve of Ex. 5.4. [Hint: start by multiplying F by X; subtracting a suitable multiple of
Q1, this becomes a perfect square)]

5.6 Let C ⊂ P3 be an irreducible curve defined by C = Q1 ∩ Q2, where Q1 : (TX = q1),
Q2 : (TY = q2), with q1, q2 quadratic forms in X,Y, Z. Show that the projection π : P3 99K P2

defined by (X,Y, Z, T ) 7→ (X,Y, Z) restricts to an isomorphism of C with the plane curve
D ⊂ P2 given by Xq2 = Y q1.

5.7 Let ϕ : P1 → P1 be an isomorphism; identify the graph of ϕ as a subvariety of P1×P1 ∼= Q ⊂
P3. Now do the same if ϕ : P1 → P1 is the two-to-one map given by (X,Y ) 7→ (X2, Y 2).

5.8 Prove that any irreducible quadric Q ⊂ Pn+1 is rational; that is, as in the picture of (5.7, II),
show that if P ∈ Q is a nonsingular point, then the linear projection of Pn+1 to Pn induces a
birational map Q 99K Pn.

5.9 For each of the following plane curves, write down the 3 standard affine pieces, and determine
the intersection of the curve with the 3 coordinate axes:

(a) y2z = x3 + axz2 + bz3;

(b) x2y2 + x2z2 + y2z2 = 2xyz(x+ y + z);

(c) xz3 = (x2 + z2)y2.

5.10 (i) Prove that the product of two irreducible algebraic sets is again irreducible [Hint: the
subsets V × {w} are irreducible for w ∈ W ; given an expression V × W = U1 ∪ U2,
consider the subsets

Wi =
{
w ∈W

∣∣ V × {w} ⊂ Ui}
for i = 1, 2].

(ii) Describe the closed sets of the topology on A2 = A1 × A1 which is the product of the
Zariski topologies on the two factors; now find a closed subset of the Zariski topology of
A2 not of this form.

5.11 (a) If An(0) and Am(0) are standard affine pieces of Pn and Pm respectively, verify that the
Segre embedding of (5.11) maps An(0) × Am(0) isomorphically to an affine piece of the
variety Sn,m ⊂ PN , say S(0) ⊂ AN , and that the N coordinates of AN restrict to
X1, . . . , Xn, Y1, . . . , Ym and the nm terms XiYj .
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(b) If V ⊂ Pn and W ⊂ Pm, prove that the product V ×W is a projective subvariety of
Pn × Pm = Sn,m ⊂ PN . [Hint: the product of the affine pieces V(0) ×W(0) ⊂ An+m is a
subvariety defined by polynomials as explained in (5.11); show that each of these is the
restriction to An+m ∼= S(0) of a homogeneous polynomial in the Uij .]

5.12 Let C be the cubic curve of (5.0); prove that any regular function f on C is constant. Proceed
in the following steps:

Step 1 Applying (4.8, II) to the affine piece C(0), write f = p(x, y) ∈ k[x, y].

Step 2 Subtracting a suitable multiple of the relation y2−x3−ax−b, assume that p(x, y) =
q(x) + yr(x), with q, r ∈ k[x].

Step 3 Applying (4.8, II) to the affine piece C(∞) gives

f = q(x1/z1) + (1/z1)r(x1/z1) ∈ k[C(∞)],

and hence there exists a polynomial S(x1, z1) such that

q(x1/z1) + (1/z1)r(x1/z1) = S(x1, z1);

Step 4 Clear the denominator, and use the fact that k[C(∞)] = k[x1, z1]/g, where g =
z1 − x3

1 − ax1z
2
1 − bz3

1 , to deduce a polynomial identity

Qm(x1, z1) +Rm−1(x1, z1) ≡ S(x1, z1)zm1 +A(x1, z1)g

in k[x1, z1], with Qm and Rm−1 homogeneous of the indicated degrees.

Step 5 Now if we write S = S+ + S− and A = A+ +A− for the decomposition into terms
of even and odd degree, and note that g has only terms of odd degree, this identity splits into
two:

Qm ≡ S+zm1 +A−g and Rm−1 ≡ S−zm1 +A+g

if m is even, and an analogous expression if m is odd.

Step 6 Qm is homogeneous of degree m, and hence A−g has degree ≥ m; by considering
the term of least degree in A−g, prove that Qm is divisible by z1. Similarly for Rm−1. By
taking the minimum value of m in the identity of Step 4, deduce that q(x) has degree 0 and
r(x) = 0.

5.13 Veronese surface Study the embedding ϕ : P2 → P5 given by (X,Y, Z) 7→ (X2, XY,XZ, Y 2, Y Z, Z2);
write down the equations defining the image S = ϕ(P2), and prove that ϕ is an isomorphism
(by writing down the equations of the inverse morphism). Prove that the lines of P2 go over
into conics of P5, and that conics of P2 go over into twisted quartics of P5 (see (5.7)).

For any line ` ⊂ P2, write π(`) ⊂ P5 for the projective plane spanned by the conic ϕ(`). Prove
that the union of π(`) taken over all ` ⊂ P2 is a cubic hypersurface Σ ⊂ P5. [Hint: as in (5.7)



100 §5 Projective and birational geometry

and (5.11), you can write the equations defining S in the form rankM ≤ 1, where M is a
symmetric 3× 3 matrix with entries the 6 coordinates of P5; then show that Σ : (detM = 0).
See [Semple and Roth, p. 128] for more details.]



Chapter 6

Tangent space and nonsingularity,
dimension

6.1 Nonsingular points of a hypersurface

Suppose f ∈ k[X1, . . . , Xn] is irreducible, f /∈ k, and set V = V (f) ⊂ An; let P = (a1, . . . , an) ∈ V ,
and ` be a line through P . Since P ∈ V , obviously P is a root of f |`.

Question: When is P a multiple root of f |`?

Answer: If and only if ` is contained in the affine linear subspace

TPV :
(∑

i

∂f

∂Xi
(P ) · (Xi − ai) = 0

)
⊂ An,

called the tangent space to V at P .

Figure 6.1: Tangent space

To prove this, parametrise ` as
` : Xi = ai + biT,

101
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where P = (a1, . . . , an) and (b1, . . . , bn) is the slope or direction vector of `. Then f |` = f(, . . . , ai+
biT, . . . , ) = g(T ) is a polynomial in T , and we know that (T = 0) is one root of g. Hence

0 is a multiple root of g ⇐⇒ ∂g

∂T
(0) = 0,

that is,

⇐⇒
∑
i

bi
∂f

∂Xi
(P ) = 0 ⇐⇒ ` ⊂ TPV.

Definition P ∈ V ⊂ An is a nonsingular point of V if ∂f/∂Xi(P ) 6= 0 for some i; otherwise P is
a singular point, or a singularity of V .

Obviously TPV is an (n−1)-dimensional affine subspace of An if P is nonsingular, and TPV = An
if P ∈ V is singular.

6.2 Remarks
(a) The derivatives ∂f/∂Xi(P ) appearing above are formal algebraic operations (that is, ∂/∂Xi

takes Xn
i into nXn−1

i ); no calculus is involved.

(b) Suppose k = R or C, and that ∂f/∂Xi(P ) 6= 0; for clarity let me take i = 1. Then the
map p : An → An defined by (X1, . . . , Xn) 7→ (f,X2, . . . , Xn) has nonvanishing Jacobian
determinant at P , so that by the inverse function theorem, there exists a neighbourhood
P ∈ U ⊂ An such that p|U : U → p(U) ⊂ An is a diffeomorphism of the neighbourhood U
with an open set p(U) of An (in the usual topology of Rn or Cn); that is, p|U is bijective,
and both p and p−1 are differentiable functions of real or complex variables. In other words,
(f,X2, . . . , Xn) form a new differentiable coordinate system on An near P ; this implies that a
neighbourhood of P in V : (f = 0) is diffeomorphic to an open set in An−1 with coordinates
(X2, . . . , Xn). Thus near a nonsingular point P , V is a manifold with (X2, . . . , Xn) as local
parameters.

Proposition 6.3 V nonsing =
{
P ∈ V

∣∣ P is nonsingular
}
is a dense open set of V for the Zariski

topology.

Proof The complement of V nonsing is the set V sing of singular points, which is defined by ∂f/∂Xi(P ) =
0 for all i, that is

V sing = V
(
f,

∂f

∂X1
, . . . ,

∂f

∂Xn

)
⊂ An,

which is closed by definition of the Zariski topology. Since V is irreducible (by (3.11, a), to show
that the open V nonsing is dense, I only have to show it’s nonempty (by Proposition 4.2); arguing
by contradiction, suppose that it’s empty, that is, suppose V = V (f) = V sing. Then each of the
polynomials ∂f/∂Xi must vanish on V , therefore (by (3.11) once more) they must be divisible by f
in k[X1, . . . , Xn]; but viewed as a polynomial in Xi, ∂f/∂Xi has degree strictly smaller than f , so
that f divides ∂f/∂Xi implies that in fact ∂f/∂Xi = 0 as a polynomial. Over C, this is obviously
only possible if Xi does not appear in f , and if this happens for all i then f = const. ∈ C, which is
excluded. Over a general field k, ∂f/∂Xi = 0 is only possible if f is an inseparable polynomial in
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Xi, that is, char k = p, and Xi only appears in f as the pth power Xp
i . If this happens for each i,

then by the argument given in (3.16), f is a pth power in k[X1, . . . , Xn]; this contradicts the fact
that f is irreducible. Q.E.D.

6.4 Tangent space
Definition Let V ⊂ An be a subvariety, with V 3 P = (a1, . . . , an). For any f ∈ k[X1, . . . , Xn],
write

f
(1)
P =

∑
i

∂f

∂Xi
(P ) · (Xi − ai).

This is an affine linear polynomial (that is, linear plus constant), the ‘first order part’ of f at P .
Now define the tangent space to V at P by

TPV =
⋂(

f
(1)
P = 0

)
⊂ An,

where the intersection takes place over all f ∈ I(V ).

Proposition 6.5 The function V → N defined by P 7→ dimTPV is an upper semicontinuous
function (in the Zariski topology of V ). In other words, for any integer r, the subset

S(r) =
{
P ∈ V

∣∣ dimTPV ≥ r
}
⊂ V

is closed.

Proof Let (f1, . . . , fm) be a set of generators of I(V ); it is easy to see that for any g ∈ I(V ),
the linear part g(1)

P of g is a linear combination of those of the fi, so that the definition of TPV
simplifies to

TPV =

m⋂
i=1

(
f

(1)
i,P = 0

)
⊂ An.

Then by elementary linear algebra,

P ∈ S(r) ⇐⇒ the matrix
(
∂f

∂Xi
(P )

)
i=1,...,m
j=1,...,n

has rank ≤ n− r

⇐⇒ every (n− r + 1)× (n− r + 1) minor vanishes.

Now each entry ∂fi/∂Xj(P ) of the matrix is a polynomial function of P ; thus each minor is a
determinant of a matrix of polynomials, and so is itself a polynomial. Hence S(r) ⊂ V ⊂ An is an
algebraic subset. Q.E.D.

Corollary-Definition 6.6 There exists an integer r and a dense open subset V0 ⊂ V such that

dimTPV = r for P ∈ V0, and dimTPV ≥ r for all P ∈ V.

Define r to be the dimension of V , and write dimV = r; and say that P ∈ V is nonsingular if
dimTPV = r, and singular if dimTPV > r. A variety V is nonsingular if it is nonsingular at each
point P ∈ V .
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Proof Let r = min
{

dimTPV
}
, taken over all points P ∈ V . Then clearly

S(r − 1) = ∅, S(r) = V, and S(r + 1) ( V ;

therefore S(r) \ S(r + 1) =
{
P ∈ V

∣∣ dimTPV = r
}
is open and nonempty. Q.E.D.

6.7 dimV = tr deg k(V ) – the hypersurface case

It follows from Proposition 6.3 that if V = V (f) ⊂ An is a hypersurface defined by some nonconstant
polynomial f , then dimV = n−1. On the other hand, for a hypersurface, k[V ] = k[X1, . . . , Xn]/(f),
so that, assuming that f involves X1 in a nontrivial way, the function field of V is of the form

k(V ) = k(X2, . . . , Xn)[X1]/(f),

that is, it is built up from k by adjoining n− 1 algebraically independent elements, then making a
primitive algebraic extension.

Definition If k ⊂ K is a field extension, the transcendence degree of K over k is the maximum
number of elements of K algebraically independent over k. It is denoted tr degkK.

The elementary theory of transcendence degree of a field extension K/k is formally quite similar
to that of the dimension of a vector space: given α1, . . . , αm ∈ K, we know what it means for
them to be algebraically independent over k (see (3.13)); they span the transcendental part of
the extension if K/k(α1, . . . , αm) is algebraic; and they form a transcendence basis if they are
algebraically independent and span. Then it is an easy theorem that a transcendence basis is a
maximal algebraically independent set, and a minimal spanning set, and that any two transcendence
bases of K/k have the same number of elements (see Ex. 6.1).

Thus for a hypersurface V ⊂ An, dimV = n − 1 = tr degk k(V ). The rest of this section is
concerned with proving that the equality dimV = tr degk k(V ) holds for all varieties, by reducing
to the case of a hypersurface. The first thing to show is that for a point P ∈ V of a variety, the
tangent space TPV , which so far has been discussed in terms of a particular coordinate system in
the ambient space An, is in fact an intrinsic property of a neighbourhood of P ∈ V .

6.8 Intrinsic nature of TPV

From now on, given P = (a1, . . . , an) ∈ V ⊂ An, I take new coordinates X ′i = Xi − ai to bring P
to the origin, and thus assume that P = (0, . . . , 0). Then TPV ⊂ An is a vector subspace of kn.

Notation Write mP = ideal of P in k[V ], and

MP = the ideal (X1, . . . , Xn) ⊂ k[X1, . . . , Xn].

Then of course mP = MP /I(V ) ⊂ k[V ].

Theorem In the above notation,
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(a) there is a natural isomorphism of vector spaces

(TPV )∗ = mP /m
2
P ,

where ( )∗ denotes the dual of a vector space.

(b) If f ∈ k[V ] is such that f(P ) 6= 0, and Vf ⊂ V is the standard affine open as in (4.13), then
the natural map

TP (Vf )→ TPV

is an isomorphism.

Proof of (a) Write (kn)∗ for the vector space of linear forms on kn; this is the vector space with
basis X1, . . . , Xn. Since P = (0, . . . , 0), for any f ∈ k[X1, . . . , Xn], the linear part f (1)

P is naturally
an element of (kn)∗; define a map d : MP → (kn)∗ by taking f ∈MP into df = f

(1)
P .

Now d is surjective, since the Xi ∈MP go into the natural basis of (kn)∗; also ker d = M2
P , since

f
(1)
P = 0 ⇐⇒ f starts with quadratic terms in X1, . . . , Xn

⇐⇒ f ∈M2
P .

Hence MP /M
2
P
∼= (kn)∗. This is statement (a) for the special case V = An. In the general case,

dual to the inclusion TPV ⊂ kn, there is a restriction map (kn)∗ → (TPV )∗, taking a linear form λ
on kn into its restriction to TPV ; composing then defines a map

D : MP → (kn)∗ → (TPV )∗.

The composite D is surjective since each factor is. I claim that the kernel of D is just M2
P + I(V ),

so that
mP /m

2
P = MP /(M

2
P + I(V )) ∼= (TPV )∗,

as required. To prove the claim,

f ∈ kerD ⇐⇒ f
(1)
P |TPV = 0

⇐⇒ f
(1)
P =

∑
i

aig
(1)
i,P for some gi ∈ I(V )

(since TPV ⊂ kn is the vector subspace defined by (g
(1)
P = 0) for g ∈ I(V ))

⇐⇒ f −
∑
i

aigi ∈M2
P for some gi ∈ I(V ) ⇐⇒ f ∈M2

P + I(V ).

The proof of (b) of Theorem 6.8 is left to the reader (see Ex. 6.2). Q.E.D.

Corollary 6.9 TPV only depends on a neighbourhood of P ∈ V up to isomorphism. More precisely,
if P ∈ V0 ⊂ V and Q ∈ W0 ⊂ W are open subsets of affine varieties, and ϕ : V0 → W0 an
isomorphism taking P into Q, there is a natural isomorphism TPV0 → TQW0; hence dimTPV0 =
dimTQW0.

In particular, if V and W are birationally equivalent varieties then dimV = dimW .
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Proof By passing to a smaller neighbourhood of P in V , I can assume V0 is isomorphic to an affine
variety (Proposition 4.13). Then so is W0, and ϕ induces an isomorphism k[V0] ∼= k[W0] taking mP

into mQ. The final sentence holds because by (5.8), V and W contain dense open subsets which
are isomorphic.

Theorem 6.10 For any variety V , dimV = tr deg k(V ).

Proof This is known if V is a hypersurface. On the other hand, every variety is birational to
a hypersurface (by (5.10)), and both sides of the required relation are the same for birationally
equivalent varieties. Q.E.D.

6.11 Nonsingularity and projective varieties
Although the above results were discussed in terms of affine varieties, the idea of nonsingularity and
of dimension applies directly to any variety V : a point P ∈ V is nonsingular if it is a nonsingular
point of an affine open V0 ⊂ V containing it; by Corollary 6.9, this notion does not depend on
the choice of V0. On the other hand, for a projective variety V ⊂ Pn, it is sometimes useful to
consider the tangent space to V at P as a projective subspace of Pn. I give the definition for a
hypersurface only: if V = V (f) is a hypersurface defined by a form (= homogeneous polynomial)
f ∈ k[X0, . . . , Xn] of degree d, and V 3 P = (a0, . . . , an), then

∑
∂f/∂Xi(P ) · Xi = 0 is the

equation of a hyperplane in Pn which plays the role of the tangent plane to V at P . If P ∈ An(0),
then this projective hyperplane is the projective closure of the affine tangent hyperplane to V(0) at
P , as can be checked easily using Euler’s formula:∑

Xi ·
∂f

∂Xi
= df for f ∈ k[X0, . . . , Xn] homogeneous of degree d.

Because of this formula, to find out whether a point P ∈ Pn is a singular point of V , we only have
to check (n+ 1) out of the (n+ 2) conditions

f(P ) = 0,
∂f

∂Xi
(P ) = 0 for i = 0, . . . , n,

so that for example, if the degree of f is not divisible by char k,

∂f

∂Xi
(P ) = 0 for i = 0, . . . , n =⇒ f(P ) = 0,

and P ∈ V is a singularity.

6.12 Worked example: blowup
Let B = A2 with coordinates (u, v), and σ : B → A2 the map (u, v) 7→ (x = u, y = uv); clearly, σ
is a birational morphism: it contracts the v-axis ` : (u = 0) to the origin 0 and is an isomorphism
outside this exceptional set. Let’s find out what happens under σ to a curve C : (f = 0) ⊂ A2; the
question will only be of interest if C passes through 0.
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Clearly σ−1(C) ⊂ B is the algebraic subset defined by (f ◦ σ)(u, v) = f(u, uv) = 0; since 0 ∈ C
by assumption, it follows that ` : (u = 0) is contained in σ−1(C), or equivalently, that u | f(u, uv).
It’s easy to see that the highest power um of u dividing f(u, uv) is equal to the smallest degree
m = a + b of the monomials xayb occurring in f , that is, the multiplicity of f at 0; so σ−1(C)
decomposes as the union of the exceptional curve σ−1(0) = ` (with multiplicity m), together with
a new curve C1 defined by f1(u, v) = f(u, uv)/um. Consider the examples

(a) f = αx− y + · · · ;

(b) f = y2 − x2 + · · · ;

(c) f = y2 − x3,

where . . . denotes terms of higher degree. Clearly in (a) f has multiplicity 1, and f1 = α− v + · · ·
(where · · · consists of terms divisible by u), so C1 is again nonsingular, and meets ` transversally
at (0, α); thus σ replaces 0 ∈ A2 with the line ` whose points correspond to tangent directions at
0 (excluding (x = 0)). In (b) f1 = v2 − 1 + · · · , so C1 has two nonsingular points (0,±1) above
0 ∈ C; thus the blowup σ ‘separates the two branches’ of the singular curve C. In (c) f1 = v2 − u,
so that C1 is nonsingular, but above 0 it is tangent to the contracted curve `.

In either case (b) or (c), σ replaces a singular curve C by a nonsingular one C1 birational to
C (by introducing ‘new coordinates’ u = x, v = y/x). This is what is meant by a resolution of
singularities. In the case of plane curves, a resolution can always be obtained by a chain of blowups
(see Ex. 6.6 for examples, and [Fulton, pp. 162–171] for more details), and the process of resolution
gives detailed information about the singularities. A famous theorem of H. Hironaka guarantees
the possibility of resolving singularities by blowups (in any dimension, over a field of characteristic
zero). This is a crucial theoretical result that reduces the birational study of varieties to nonsingular
ones; however, the actual process of resolution by blowups is in general extremely complicated, and
does not necessarily contribute very much to the understanding of the singularities or varieties
concerned.

Exercises to Chapter 6

6.1 Let k ⊂ K be a field extension, and (u1, . . . , ur), (v1, . . . , vs) two sets of elements ofK; suppose
that (u1, . . . , ur) are algebraically independent, and that (v1, . . . , vs) span the extension k ⊂
K algebraically. Prove that r ≤ s. [Hint: the inductive step consists of assuming that
(u1, . . . , ui, vi+1, . . . , vs) span K/k algebraically, and considering ui+1.] Deduce that any two
transcendence bases of K/k have the same number of elements.

6.2 Prove Theorem 6.8, (b). [Hint:

I(Vf ) = (I(V ), Y f − 1) ⊂ k[X1, . . . , Xn, Y ],

so that if Q = (a1, . . . , an, b) ∈ Vf , then TQVf ⊂ An+1 is defined by the equations for
TPV ⊂ An, together with one equation involving Y .]

6.3 Determine all the singular points of the following curves in A2.

(a) y2 = x3 − x;
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(b) y2 = x3 − 6x2 + 9x;

(c) x2y2 + x2 + y2 + 2xy(x+ y + 1) = 0;

(d) x2 = x4 + y4;

(e) xy = x6 + y6;

(f) x3 = y2 + x4 + y4;

(g) x2y + xy2 = x4 + y4.

6.4 Find all the singular points of the surfaces in A3 given by

(a) xy2 = z2;

(b) x2 + y2 = z2;

(c) xy + x3 + y3 = 0.

(You will find it useful to sketch the real parts of the surfaces, to the limits of your ability;
algebraic geometers usually can’t draw.)

6.5 Show that the hypersurface Vd ⊂ Pn defined by

Xd
0 +Xd

1 + · · ·+Xd
n = 0

is nonsingular (if char k does not divide d).

6.6 (a) Let Cn ⊂ A2 be the curve given by fn : y2 − x2n+1 and σ : B → A2 be as in (6.12),
with ` = σ−1(0); show that σ−1(Cn) decomposes as the union of ` together with a curve
isomorphic to Cn−1. Deduce that Cn can be resolved by a chain of n blowups.

(b) Show how to resolve the following curve singularities by making one or more blowups:

(i) y3 = x4;
(ii) y3 = x5;
(iii) (y2 − x2)(y2 − x5) = x8.

6.7 Prove that the intersection of a hypersurface V ⊂ An (not a hyperplane) with the tangent
hyperplane TPV is singular at P .



Chapter 7

The 27 lines on a cubic surface

In this section S ⊂ P3 will be a nonsingular cubic surface, given by a homogeneous cubic f =
f(X,Y, Z, T ). Consider the lines ` of P3 lying on S.

7.1 Consequences of nonsingularity

Proposition (a) There exists at most 3 lines of S through any point P ∈ S; if there are 2 or 3,
they must be coplanar. The picture is:

Figure 7.1: 3 concurrent lines or triangle

(b) Every plane Π ⊂ P3 intersects S in one of the following:

(i) an irreducible cubic; or

(ii) a conic plus a line; or

(iii) 3 distinct lines.

Proof (a) If ` ⊂ S then ` = TP ` ⊂ TPS, so that all lines of S through P are contained in the
plane TPS; there are at most 3 of them by (b).

(b) I have to prove that a multiple line is impossible: if Π : (T = 0) and ` : (Z = 0) ⊂ Π, then
to say that ` is a multiple line of S ∩Π means that f is of the form

f = Z2 ·A(X,Y, Z, T ) + T ·B(X,Y, Z, T ),

109
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with A a linear form, B a quadratic form. Then S : (f = 0) is singular at a point where Z = T =
B = 0; this is a nonempty set, since it is the set of roots of B on the line ` : (Z = T = 0).

Proposition 7.2 There exists at least one line ` on S.

There are several approaches to proving this. A standard argument is by a dimension count:
lines of P3 are parametrised by a 4-dimensional variety, and for a line ` to lie on S imposes 4
conditions on ` (because the restriction of f to ` is a cubic form, the 4 coefficients of which must
vanish). A little work is needed to turn this into a rigorous proof, since a priori it shows only that
the set of lines has dimension ≥ 0, and not that it is nonempty (see the highbrow notes (8.15) for
a discussion of the traditional proof and the difficulties involved in it).

It is also perfectly logical to assume the proposition (restrict attention only to cubic surfaces
containing lines). I now explain how (7.2) can be proved by direct coordinate geometry and elim-
ination. The proof occupies the next 3 pages, and divides up into 4 steps; you can skip it if you
prefer (GOTO 7.3).

Step 1 (Preliminary construction) For any point P ∈ S, the intersection of S with the tangent
plane TPS is a plane cubic C = S ∩ TPS, which by Ex. 6.7 is singular at P . I assume that C is
irreducible, since otherwise P is on a line of S, and I’m home; then C is a nodal or cuspidal cubic,
and the coordinates (X,Y, Z, T ) of P3 can be chosen such that TPS : (T = 0), P = (0, 0, 1, 0), and

C : (XY Z = X3 + Y 3) or (X2Z = Y 3).

Whether C is nodal or cuspidal for given P ∈ S depends on the matrix of second derivatives (or
Hessian matrix) of f at P ; this is discussed in more detail in Ex. 7.3, which proves (in characteristic
6= 2) that the cuspidal case must occur for some point P ∈ S. For simplicity, I prove (7.2) in the
cuspidal case; in principle, the proof goes through in exactly the same way in the nodal case, but
the elimination calculation gets much nastier (see Ex. 7.10). Thus assume that

f = X2Z − Y 3 + gT,

where g = g2(X,Y, Z, T ) is a quadratic form; g(0, 0, 1, 0) 6= 0 by nonsingularity of S at P , so I can
assume that g(0, 0, 1, 0) = 1.

Step 2 (Statement of main claim) Consider the variable point Pα = (1, α, α3, 0) of C ⊂ S.
Any line of P3 through Pα meets the complementary plane Π : (X = 0) in a point Q = (0, Y, Z, T ).
I write out the equations for the line PαQ to be contained in S in terms of α and Q; expanding
f(λPα + µQ) in powers of λ and µ gives

PαQ ⊂ S ⇐⇒ A(Y,Z, T ) = B(Y, Z, T ) = C(Y, Z, T ) = 0,

where A,B and C are forms of degree 1, 2 and 3 in (Y,Z, T ), whose coefficients involve α.

Main Claim There exists a ‘resultant’ polynomial R27(α), which is monic of degree 27 in α, such
that

R(α) = 0 ⇐⇒ A = B = C = 0 have a common zero (η : ζ : τ) in P2.

This statement proves (7.2), since it implies that for every root α of R, there exists a point
Q = (0 : η : ζ : τ) in Π for which the line PαQ is contained in S. The idea here is a standard
elimination calculation based on Ex. 1.10; the rest of the proof is concerned with writing out A, B
and C explicitly to prove the claim.
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Step 3 (Polar form) Define the polar of f to be the form in two sets of variables (X,Y, Z, T )
and (X ′, Y ′, Z ′, T ′) given by

f1(X,Y, Z, T ;X ′, Y ′, Z ′, T ′) =
∂f

∂X
·X ′ + ∂f

∂Y
· Y ′ + ∂f

∂Z
· Z ′ + ∂f

∂T
· T ′.

It’s clear from the definition of tangent space (see (6.4) and (6.10)) that for P = (X,Y, Z, T ) ∈ S
and P 6= Q = (X ′, Y ′, Z ′, T ′) ∈ P3,

f1(P ;Q) = 0 ⇐⇒ the line PQ is tangent to S at P .

Clearly
f(λP + µQ) = λ3f(P ) + λ2µf1(P ;Q) + λµ2f1(Q;P ) + µ3f(Q),

so that for P 6= Q ∈ P3, the 4 conditions

f(P ) = f1(P ;Q) = f1(Q;P ) = f(Q)

are the equations for the line ` = PQ to be contained in S : (f = 0). More geometrically, these
say that ` is tangent to S at both P and Q, so that f |` has double roots at both points, and then
` ⊂ S follows from Proposition 1.8.

The polar of f = X2Z − Y 3 + gT is

f1 = 2XZ ·X ′ − 3Y 2 · Y ′ +X2 · Z ′ + g(X,Y, Z, T ) · T ′ + Tg1.

Here g1 = g1(X,Y, Z, T ;X ′, Y ′, Z ′, T ′) is the polar form of g defined in the same way as above;
since g is quadratic, g1 is a symmetric bilinear form such that g1(P, P ) = 2g(P ).

Substituting Pα = (1, α, α3, 0) and Q = (0, Y, Z, T ) gives the equations for PαQ ⊂ S as A =
B = C = 0, where

A = Z − 3α2Y + g(1, α, α3, 0)T,

B = −3αY 2 + g1(1, α, α3, 0; 0, Y, Z, T )T,

C = −Y 3 + g(0, Y, Z, T )T.

Step 4 (Elimination calculation) I now eliminate Y,Z, T from the above 3 equations, paying
attention to the highest powers of α occurring. Note that since g(0, 0, 1, 0) = 1, it follows that

g(1, α, α3, 0) = α6 + · · · = a(6),

where . . . denotes terms of lower degree in α; thus a(6) is monic of degree 6. Then A = 0 gives Z
as a linear form in Y and T ,

Z = 3α2Y − a(6)T.

Substituting in B, and using the bilinearity of g1 gives

B = −3αY 2 + g1(1, α, α3, 0; 0, Y, 3α2Y − a(6)T, T )T

= b0Y
2 + b1Y T + b2T

2,
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where

b0 = −3α, b1 = g1(1, α, α3, 0; 0, 1, 3α2, 0) = 6α5 + · · · ,
b2 = g1(1, α, α3, 0; 0, 0,−a(6), 1) = −2α9 + · · · .

Similarly, substituting for Z in C, and expanding the quadratic form g gives

C = −Y 3 + g(0, Y, 3α2Y − a(6)T, T )T = c0Y
3 + c1Y

2T + c2Y T
2 + c3T

3,

where

c0 = −1, c1 = g(0, 1, 3α2, 0) = 9α4 + · · · ,
c2 = g1(0, 1, 3α2, 0; 0, 0,−a(6), 1) = −6α8 + · · · ,
c3 = g(0, 0,−a(6), 1) = α12 + · · · .

Now by the result of Ex. 1.10, B′ and C ′ have a common zero (η : τ) if and only if

det

∣∣∣∣∣∣∣∣∣∣
−3α 6α5 −2α9

−3α 6α5 −2α9

−3α 6α5 −2α9

−1 9α4 −6α8 α12

−1 9α4 −6α8 α12

∣∣∣∣∣∣∣∣∣∣
= 0.

The determinant is a polynomial in α, and it’s not hard to see that its leading term comes from
taking the leading term in each entry of the determinant:

det

∣∣∣∣∣∣∣∣∣∣
−3α 6α5 −2α9

−3α 6α5 −2α9

−3α 6α5 −2α9

−1 9α4 −6α8 α12

−1 9α4 −6α8 α12

∣∣∣∣∣∣∣∣∣∣
= α27 · det

∣∣∣∣∣∣∣∣∣∣
−3 6 2

−3 6 2
−3 6 2

−1 9 −6 1
−1 9 −6 1

∣∣∣∣∣∣∣∣∣∣
= α27.

This completes the proof of the main claim. Q.E.D.

Proposition 7.3 Given a line ` ⊂ S, there exist exactly 5 pairs (`i, `
′
i) of lines of S meeting `, in

such a way that

(i) for i = 1, . . . , 5, ` ∪ `i ∪ `′i is coplanar, and

(ii) for i 6= j, (`i ∪ `′i) ∩ (`j ∪ `′j) = ∅.
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Proof (taken from [Beauville, p. 51]) If Π is a plane of P3 containing ` then Π ∩ S = ` + conic
(since f |Π is divisible by the equation of `). This conic can either be singular or nonsingular:

Figure 7.2: Line plus conic

I have to prove that there are exactly 5 distinct planes Πi ⊃ ` for which the singular case occurs.
The fact stated as property (ii) that lines in different planes are disjoint will then follow from (7.1,
a).

Suppose that ` : (Z = T = 0); then I can expand f out as

f = AX2 +BXY + CY 2 +DX + EY + F, (∗)

where A,B,C,D,E, F ∈ k[Z, T ], with A, B and C linear forms, D and E quadratic forms, and F
a cubic form. If I consider this equation as a variable conic in X and Y , it is singular if and only if

∆(Z, T ) = det

∣∣∣∣∣∣
A B D
B C E
D E F

∣∣∣∣∣∣ = 4ACF +BDE −AE2 −B2F − CD2 = 0.

(Here ∆ is 4 times the usual determinant if char 6= 2; in characteristic 2 the statement is an easy
exercise.)

To be more precise, any plane through ` is given by Π : (µZ = λT ); if µ 6= 0, I can assume µ = 1,
so that Z = λT . Then in terms of the homogeneous coordinates (X,Y, T ) on Π, f |Π = T ·Q(X,Y, T ),
where

Q = A(λ, 1)X2 +B(λ, 1)XY + C(λ, 1)Y 2

+D(λ, 1)TX + E(λ, 1)TY + F (λ, 1)T 2.

Now ∆(Z, T ) is a homogeneous quintic, so by (1.8), it has 5 roots counted with multiplicities. To
prove the proposition, I have to show that it doesn’t have multiple roots; this also is a consequence
of the nonsingularity of S.

Claim ∆(Z, T ) has only simple roots.

Suppose Z = 0 is a root of ∆, and let Π : (Z = 0) be the corresponding plane; I have to prove
that ∆ is not divisible by Z2. By the above picture, Π ∩ S is a set of 3 lines, and according to
whether they are concurrent, I can arrange the coordinates so that

either (i) ` : (T = 0), `1 : (X = 0), `′1 : (Y = 0),

or (ii) ` : (T = 0), `1 : (X = 0), `′1 : (X = T ).
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Hence, in case (i), f = XY T +Zg, with g quadratic, and in terms of the expression (∗), this means
that B = T + aZ, and Z | A,C,D,E, F . Therefore, modulo terms divisible by Z2,

∆ ≡ −T 2F mod Z2.

In addition, the point P = (0, 0, 0, 1) ∈ S, and nonsingularity at P means that F must contain the
term ZT 2 with nonzero coefficient. In particular, Z2 does not divide F . Therefore (Z = 0) is a
simple root of ∆.

Case (ii) is a similar calculation (see Ex. 7.1).

Corollary 7.4 1. There exist two disjoint lines `,m ⊂ S.

2. S is rational (that is, birational to P2, see (5.9)).

Proof (a) By (7.3, ii), just take `1 and `2.
(b) Consider two disjoint lines `,m ⊂ S, and define rational maps

ϕ : S 99K `×m and ψ : `×m 99K S

as follows. If P ∈ P3 \ (` ∪m) then there exists a unique line n through P which meets both ` and
m:

P ∈ n, and ` ∩ n 6= ∅, m ∩ n 6= ∅.
Set Φ(P ) = (` ∩ n,m ∩ n) ∈ `×m. This defines a morphism

Φ: P3 \ (` ∪m)→ `×m,

whose fibre above (Q,R) ∈ `×m is the line QR of P3. Define ϕ : S 99K `×m as the restriction to
S of Φ.

Conversely, for (Q,R) ∈ ` × m, let n be the line n = QR in P3. By (7.3), there are only
finitely many lines of S meeting `, so that for almost all values of (Q,R), n intersects S in 3 points
{P,Q,R}, of which Q and R are the given points on ` and m. Thus define ψ : ` × m 99K S by
(Q,R) 7→ P ; then ψ is a rational map, since the ratios of coordinates of P are rational functions of
those of Q,R.

Obviously ϕ and ψ are mutual inverses. Q.E.D.

7.5 Finding all the lines of S
I want to find all the lines of S in terms of the configuration given by Proposition 7.3 of a line ` and
5 disjoint pairs (`i, `

′
i). Any other line n ⊂ S must meet exactly one of `i and `′i for i = 1, . . . , 5:

this is because in P3, n meets the plane Πi, and Πi∩S = `∪ `i∪ `′i; also, n cannot meet both `i and
`′i, since this would contradict (7.1, a). The key to sorting out the remaining lines is the following
lemma, which tells us that n is uniquely determined by which of the `i and `′i it meets. Let me say
that a line n is a transversal of a line ` if ` ∩ n 6= ∅.

Lemma If `1, . . . , `4 ⊂ P3 are disjoint lines then
either all 4 lines `i lie on a smooth quadric `1, . . . , `4 ⊂ Q ⊂ P3; and then they have an infinite

number of common transversals;
or the 4 lines `i do not lie on any quadric `1, . . . , `4 6⊂ Q; and then they have either 1 or 2

common transversals.
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Proof There exists a smooth quadric Q ⊃ `1, . . . , `3: several proofs of this are possible (see
Ex. 7.2).

Figure 7.3: Quadric surface through 3 lines

Then in some choice of coordinates, Q : (XT − Y Z), and Q has two families of lines, or
generators: any transversal of `1, . . . , `3 must lie in Q, since it has 3 points in Q. Now if `4 6⊂ Q,
then `4 ∩Q = {1 or 2 points}, and the generators of the other family through these points are all
the common transversals of `1, . . . , `4. Q.E.D.

7.6 The 27 lines

Let ` and m be two disjoint lines of S; as already observed, m meets exactly one out of each of the 5
pairs (`i, `

′
i) of lines meeting `. By renumbering the pairs, I assume that m meets `i for i = 1, . . . , 5.

Introduce the following notation for the lines meeting ` or m:

Figure 7.4: Configuration of lines on S3 ⊂ P3

thus the 5 pairs of lines meeting m are (`i, `
′′
i ) for i = 1, . . . , 5. By (7.3, ii) applied to m, for

i 6= j, the line `′′i does not meet `j . On the other hand, every line of S must meet one of `, `j or `′j ,
hence `′′i meets `′j for i 6= j.

Claim (I) If n ⊂ S is any line other than these 17, then n meets exactly 3 out of the 5 lines
`1, . . . , `5.
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(II) Conversely, given any choice {i, j, k} of 3 elements of the set {1, 2, 3, 4, 5}, there is a unique
line `ijk ⊂ S meeting `i, `j , `k.

Proof (I) Given four disjoint lines of S, it is clear that they do not all lie on a quadric Q, since
otherwise Q ⊂ S, contradicting the irreducibility of S.

If n meets ≥ 4 of the `i then by Lemma 7.5, n = ` or m, which is a contradiction. If n meets
≤ 2 of the `i then it meets ≥ 3 of the `′i, and so meets say either `′2, `′3, `′4, `′5 or `1, `′3, `′4, `′5; but
by what was said above, ` and `′′1 are two common transversals of the 5 disjoint lines `′2, `′3, `′4, `′5
and `1, so that by Lemma 7.5 again, if n meets ≥ 4 of these then n = ` or `′′1 . This is the same
contradiction.

(II) There are 10 lines meeting `1 by (7.3), of which so far only 4 have been accounted for
(namely, `, `′1,m and `′′1). The six other lines must meet exactly 2 out of the 4 remaining lines
`2, . . . , `5, and there are exactly 6 =

(
4
2

)
possible choices; so they must all occur. Q.E.D.

This gives the lines of S as being

{`,m, `i, `′i, `′′i , `ijk},

and the number of them is
1 + 1 + 5 + 5 + 5 + 10 = 27.

7.7 The configuration of lines

An alternative statement is that the lines of S are `, `1, . . . , `5, `′1, . . . , `′5, and 16 other lines which
meet an odd number of `1, . . . , `5:

`′′i meets `i only
`ijk meets `i, `j , `k only
m meets all of `1, . . . , `5.

In the notation I have introduced, it is easy to see that the incidence relation between the 27 lines
of S is as follows:

` meets `1, . . . , `5, `′1, . . . , `′5;

`1 meets `,m, `′1, `′′1 , and `1jk for 6 choices of {j, k} ⊂ {2, 3, 4, 5};

`′1 meets `, `1, `′′j (for 4 choices of j 6= 1), and `ijk (for 4 choices of {i, j, k} ⊂ {2, 3, 4, 5});

`′′1 meets m, `1, `′j (for 4 choices of j 6= 1), and `ijk (for 4 choices of {i, j, k} ⊂ {2, 3, 4, 5});

`123 meets `1, `2, `3, `145, `245, `345, `
′
4, `
′
5, `
′′
4 , `
′′
5 .

This combinatorial configuration has many different representations, some of them much more
symmetric than that given here; see for example [Semple and Roth, pp. 122–128 and 151–152].
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Exercises to Chapter 7
7.1 Prove case (ii) of the claim in Proposition 7.3. [Hint: as in the given proof of case (i),

f = X(X − T )T + Zg, so that A = T + aZ, D = −T 2 + Z · `, where ` is linear, so that
Z | B,C,E, F , and Z does not divide D; also, the nonsingularity of S at (0, 1, 0, 0) implies
that C = cZ, with c 6= 0. Now calculate ∆(Z, T ) modulo Z2.]

7.2 Prove that given 3 disjoint lines `1, . . . , `3 ⊂ P3, there exists a nonsingular quadric Q ⊃
`1, . . . , `3. [Hint: on each line `i, take 3 points Pi, P ′i , P ′′i ∈ `i, and show as in (1.11) or (2.4)
that there is at least one quadric Q through them; it follows that each `i ⊂ Q. Now show
that Q can’t be singular: for example, what happens if Q is a pair of planes?]

7.3 The Hessian. Let f = fd(x0, . . . , xn) be a form of degree d in x0, . . . , xn, defining a hypersur-
face V : (f = 0) ⊂ Pn; suppose for simplicity that the characteristic 6= 2 and does not divide
(d − 1). Write fxi

= ∂f/∂xi and fxixj
= ∂2f/∂xi∂xj for the first and second derivatives of

f . The Taylor expansion of f about a point P ∈ Pn is

f = f(P ) + f (1)(x) + f (2)(x) + · · · ,

where f (1) and f (2) are linear and quadratic forms:

f (1) =
∑

fxi
(P ) · xi and f (2) = (1/2)

∑
fxixj

(P ) · xixj .

If P ∈ V is singular then f(P ) and f (1) vanish at P , and the nature of V or of f near P
is determined to second order by the quadratic form f (2). Similarly if P ∈ V is nonsingular
then the nature of f restricted to the hyperplane TPV (or of the singular hyperplane section
V ∩TPV ) is determined by f (2). Define the Hessian matrix of f (w.r.t. coordinates x0, . . . , xn)
by H(f) = H(f, x) = {fxixj

}i,j , and the Hessian h(f) = h(f, x) to be the determinant
h(f) = detH(f).

(i) Let x′i =
∑
aijxj be a projective coordinate change with A = (aij) a nonsingular (n +

1)× (n+ 1) matrix. If g(x′) = f(Ax), prove that the Hessian matrix transforms as

H(g, x′) = (tA)H(f, x)A

where tA is the transpose matrix; deduce that h(g, x′) = (detA)2h(f, x).
(ii) Consider an affine piece V(i) ⊂ An(i) of V : (f = 0) as in (5.5). Let P ∈ V(i) be a

nonsingular point, and Π = TPV(i) the affine tangent plane; write ϕ for the restriction
to Π of the defining equation f/xid of V(i). Prove that the Taylor expansion of ϕ at
P starts with a nondegenerate quadratic form ϕ(2) (in n − 1 variables) if and only if
h(f)(P ) 6= 0.
[Hint: Reduce to P = (1, 0, . . . , 0) and TPV : (x1 = 0) using (i). Then ϕ(2) is the bottom
right (n− 1)× (n− 1) block of the projective Hessian matrix H(f). Use fxi(P ) = 0 for
i 6= 1 and Euler’s formula

∑
j fxixj

· xj = (d− 1)fxi to show that the matrix H(f) has
exactly one nonzero entry in the zeroth row and column. Compare [Fulton, p. 116].]

(iii) Let C : (f = 0) ⊂ P2 be a nonsingular plane cubic curve; deduce from (ii) that P ∈ C
is an inflexion point if and only if H(f)(P ) = 0. Bézout’s theorem implies that (f =
H(f) = 0) ⊂ P2 is nonempty (see (1.9) and [Fulton, p. 112]).
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(iv) Let S : (f = 0) ⊂ P3 be a nonsingular cubic surface; for P ∈ S prove that if P is not on
a line of S then the intersection S ∩ TPS is a cuspidal cubic if and only if H(f)(P ) = 0.
Deduce that cuspidal cubic sections exist, as required in Step 1 of the proof of (7.2).

7.4 (i) Prove that if P ∈ S is a singular point of a cubic surface then there is at least one line
` ⊂ S through P (and ‘in general’ 6).

(ii) If X ⊂ P4 is a nonsingular cubic hypersurface (a cubic 3-fold) and P ∈ X then there is
at least one line ` ⊂ X through P (and ‘in general’ 6). [Hint: write down the equation
of X in coordinates with P = (1, 0, . . . , 0).]

7.5 Prove that the rational map ϕ : S 99K `×m of Corollary 7.4, (b) is in fact a morphism; prove
that it contracts 5 lines of S to points.

7.6 Find all 27 lines of the diagonal (or ‘Fermat’) cubic surface

S : (X3 + Y 3 + Z3 + T 3 = 0) ⊂ P3

in terms of planes such as (X = ρY ), where ρ3 = 1.

7.7 Let S ⊂ P3 be the cubic surface given by S : (f = 0), where

f(X,Y, Z, T ) = ZX2 + TY 2 + (Z − d2T )(Z − e2T )(Z − f2T ),

with d, e, f distinct nonzero elements of k, and ` ⊂ S the line given by Z = T = 0. By
considering as in (7.3) the variable plane through `, write down the equations of the 10 lines
of S meeting `.

7.8 suggested by R. Casdagli. Consider the cubic surface S(0) ⊂ R3 given in affine coordinates by

x2 + y2 + z2 − 2xyz = 1 + λ2, (∗)

where λ ∈ R, λ > 0 is a constant. (i) By rewriting (∗) as

(x− yz)2 = (y2 − 1)(z2 − 1) + λ2,

show that S(0) has 4 tubes going off to infinity. On the other hand, the corresponding
projective surface S ⊂ P3

R meets infinity in 3 lines XY Z = 0. Use this to describe the
topology of S.

(ii) By considering (∗) as the equation of a variable conic in the (x, y)-plane with parameter
z, show that the four pairs of lines of S(0) which meet (Z = 0) asymptotically are given by

z = µ, x = (µ± λ)y;

z = −µ, x = (−µ± λ)y;

z = 1, x− y = ±λ;

and z = −1, x+ y = ±λ,

where µ2 = 1 + λ2.

Represent the surface S(0) in R3 and its 24 lines by computer graphics, or by making a plaster
model.
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7.9 A case when all the lines are rational. Suppose char k 6= 2 and let S : (f = 0) be a nonsingular
cubic surface, with

f = A(X,Y ) · T −B(X,Y ) · Z + (terms of degree ≥ 2 in Z and T ).

Then S : (f = 0) contains ` : (Z = T = 0), and the tangent plane at P = (1, λ, 0, 0) is
TPS : A(1, λ)T = B(1, λ)Z.

(i) Use linear coordinate changes in (X,Y ) and (Z, T ) to reduce A,B to A = X2 + ∆Y 2,
B = XY (with ∆ ∈ k), and if ∆ is a perfect square to A = X2, B = Y 2.

(ii) Suppose that S also contains the line m : (X = Y = 0), and for ease of notation that
A = X2, B = Y 2. Let `i for i = 1, . . . , 5 be the 5 common transversals of ` and n, and
write Pi = (1, λi, 0, 0) = `i ∩ ` for the points of intersection of ` and `i. Prove that

`i : (Y = λiX,T = λ2
iZ) for i = 1, . . . , 5,

and that

f = X2T − Y 2Z +X(σ5Z
2 + σ3ZT + σ1T

2)

− Y (σ4Z
2 + σ2ZT + T 2)

where σ1, . . . , σ5 are the elementary symmetric functions in λ1, . . . , λ5.

(iii) Find the remaining lines on S. [Hint: `′i and `′′i are contained in planes you already
know. Arguing as in (7.6), it’s not hard to show that every line meeting all 3 of `1, `2, `3
is given by (τ2Z+T ) : X = (τ3Z+ τ1T ) : Y = α : β for some α : β ∈ P1, where τ1, . . . , τ3
are the elementary symmetric functions in λ1, . . . , λ3.]

7.10 This exercise is for the reader who likes big calculations, or has access to a computer algebra
system. If a nonsingular cubic surface S has a nodal cubic curve C as a section, its equation
can be written as

f = XY Z −X3 − Y 3 + Tg.

Let Pα = (α, α2, 1+α3, 0) with α 6= 0,∞ be a variable point of C, and Q = (0, Y, Z, T ). Then
expanding out f(λPα + µQ) in terms of the polar of f as in (7.2), Step 3, show that the line
PαQ ⊂ S if and only if A = B = C = 0, where

A = (−2α4 + α)Y + α3Z + g(α, α2, 1 + α3, 0)T ;

B = αY Z − 3α2Y 2 + g1(α, α2, 1 + α3, 0; 0, Y, Z, T )T ;

C = −Y 3 + g(0, Y, Z, T )T.

Prove that there is a ‘resultant’ polynomial R27(α), which is monic in α of degree 27 and with
constant term 1, such that for α 6= 0,

R(α) = 0 ⇐⇒ A = B = C = 0 have a
common zero (η : ζ : τ) ∈ P2.



120 §7 The 27 lines on a cubic surface

[Hint: solve A = 0 for Z (this introduces a term α3 in the denominator), substitute for Z
in B and C to get a binary quadratic and cubic in Y, T , then use the Sylvester determinant
to eliminate Y and T . What makes this case hard is that the determinant formed by the
leading term in each entry vanishes. The reason for this is that A,B,C do have the trivial
common solution Q = Pα = (0, 0, 1, 0) when α = 0 or∞. A priori, the determinant has terms
in α18, . . . , α−15, and you have to calculate the first and last 4 coefficients to prove that in
fact it is −1 · α15 + · · · − 1 · α−12.]



Chapter 8

Final comments

This final section is not for examination, but some of the topics may nevertheless be of interest to
the student.

History and sociology of the modern subject

8.1 Introduction

Algebraic geometry has over the last thirty years or so enjoyed a position in math similar to that of
math in the world at large, being respected and feared much more than understood. At the same
time, the ‘service’ questions I am regularly asked by British colleagues or by Warwick graduate
students are generally of an elementary kind: as a rule, they are either covered in this book or
in [Atiyah and Macdonald]. What follows is a view of the recent development of the subject,
attempting to explain this paradox. I make no pretence at objectivity.

8.2 Prehistory

Algebraic geometry developed in the 19th century from several different sources. Firstly, the ge-
ometric tradition itself: projective geometry (and descriptive geometry, of great interest to the
military at the time of Napoleon), the study of curves and surfaces for their own sake, configuration
geometry; then complex function theory, the view of a compact Riemann surface as an algebraic
curve, and the purely algebraic reconstruction of it from its function field. On top of this, the
deep analogy between algebraic curves and the ring of integers of a number field, and the need for
a language in algebra and geometry for invariant theory, which played an important role in the
development of abstract algebra at the start of the 20th century.

The first decades of the 20th century saw a deep division. On the one hand, the geometric tradi-
tion of studying curves and surfaces, as pursued notably by the brilliant Italian school; alongside its
own quite considerable achievements, this played a substantial motivating role in the development
of topology and differential geometry, but became increasingly dependent on arguments ‘by geo-
metric intuition’ that even the Maestri were unable to sustain rigorously. On the other hand, the
newly emerging forces of commutative algebra were laying foundations and providing techniques of

121
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proof. An example of the difference between the two approaches was the argument between Chow
and van der Waerden, who established rigorously the existence of an algebraic variety parametris-
ing space curves of given degree and genus, and Severi, who had been making creative use of such
parameter spaces all his working life, and who in his declining years bitterly resented the intrusion
of algebraists (nonItalians at that!) into his field, and most especially the implicit suggestion that
the work of his own school lacked rigour.

8.3 Rigour, the first wave

Following the introduction of abstract algebra by Hilbert and Emmy Noether, rigorous foundations
for algebraic geometry were laid in the 1920s and 1930s by van der Waerden, Zariski and Weil (van
der Waerden’s contribution is often suppressed, apparently because a number of mathematicians of
the immediate postwar period, including some of the leading algebraic geometers, considered him
a Nazi collaborator).

A central plank of their program was to make algebraic geometry work over an arbitrary field.
In this connection, a key foundational difficulty is that you can’t just define a variety to be a point
set: if you start life with a variety V ⊂ Ank over a given field k then V is not just a subset of kn;
you must also allow K-valued points of V for field extensions k ⊂ K (see (8.13, c) for a discussion).
This is one reason for the notation Ank , to mean the k-valued points of a variety An that one would
like to think of as existing independently of the specified field k.

The necessity of allowing the ground field to change throughout the argument added enormously
to the technical and conceptual difficulties (to say nothing of the notation). However, by around
1950, Weil’s system of foundations was accepted as the norm, to the extent that traditional geome-
ters (such as Hodge and Pedoe) felt compelled to base their books on it, much to the detriment, I
believe, of their readability.

8.4 The Grothendieck era

From around 1955 to 1970, algebraic geometry was dominated by Paris mathematicians, first Serre
then more especially Grothendieck and his school. It is important not to underestimate the influence
of Grothendieck’s approach, especially now that it has to some extent gone out of fashion. This
was a period in which tremendous conceptual and technical advances were made, and thanks to
the systematic use of the notion of scheme (more general than a variety, see (8.12–14) below),
algebraic geometry was able to absorb practically all the advances made in topology, homological
algebra, number theory, etc., and even to play a dominant role in their development. Grothendieck
himself retired from the scene around 1970 in his early forties, which must be counted a tragic
waste (he initially left the IHES in a protest over military funding of science). As a practising
algebraic geometer, one is keenly aware of the large blocks of powerful machinery developed during
this period, many of which still remain to be written up in an approachable way.

On the other hand, the Grothendieck personality cult had serious side effects: many people
who had devoted a large part of their lives to mastering Weil foundations suffered rejection and
humiliation, and to my knowledge only one or two have adapted to the new language; a whole
generation of students (mainly French) got themselves brainwashed into the foolish belief that a
problem that can’t be dressed up in high powered abstract formalism is unworthy of study, and were
thus excluded from the mathematician’s natural development of starting with a small problem he
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or she can handle and exploring outwards from there. (I actually know of a thesis on the arithmetic
of cubic surfaces that was initially not considered because ‘the natural context for the construction
is over a general locally Noetherian ringed topos’. This is not a joke.) Many students of the time
could apparently not think of any higher ambition than Étudier les EGAs. The study of category
theory for its own sake (surely one of the most sterile of all intellectual pursuits) also dates from
this time; Grothendieck himself can’t necessarily be blamed for this, since his own use of categories
was very successful in solving problems.

The fashion has since swung the other way. At a recent conference in France I commented on the
change in attitude, and got back the sarcastic answer ‘but the twisted cubic is a very good example
of a prorepresentable functor’. I understand that some of the mathematicians now involved in
administering French research money are individuals who suffered during this period of intellectual
terrorism, and that applications for CNRS research projects are in consequence regularly dressed
up to minimise their connection with algebraic geometry.

Apart from a very small number of his own students who were able to take the pace and survive,
the people who got most lasting benefit from Grothendieck’s ideas, and who have propagated them
most usefully, were influenced at a distance: the Harvard school (through Zariski, Mumford and
M. Artin), the Moscow school of Shafarevich, perhaps also the Japanese school of commutative
algebraists.

8.5 The big bang

History did not end in the early 1970s, nor has algebraic geometry been less subject to swings of
fashion since then. During the 1970s, although a few big schools had their own special interests
(Mumford and compactification of moduli spaces, Griffiths’ schools of Hodge theory and algebraic
curves, Deligne and ‘weights’ in the cohomology of varieties, Shafarevich and K3 surfaces, Iitaka
and his followers in the classification of higher dimensional varieties, and so on), it seems to me we
all basically believed we were studying the same subject, and that algebraic geometry remained a
monolithic block (and was in fact colonising adjacent areas of math). Perhaps the presence of just
one or two experts who could handle the whole range of the subject made this possible.

By the mid-1980s, this had changed, and algebraic geometry seems at present to be split up into
a dozen or more schools having quite limited interaction: curves and Abelian varieties, algebraic
surfaces and Donaldson theory, 3-folds and classification in higher dimensions, K theory and al-
gebraic cycles, intersection theory and enumerative geometry, general cohomology theories, Hodge
theory, characteristic p, arithmetic algebraic geometry, singularity theory, differential equations of
math physics, string theory, applications of computer algebra, etc.

Additional footnotes and highbrow comments

This section mixes elementary and advanced topics; since it is partly a ‘word to the wise’ for
university teachers using this as a textbook, or to guide advanced students into the pitfalls of the
subject, some of the material may seem obscure.
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8.6 Choice of topics

The topics and examples treated in this book have been chosen partly pragmatically on the basis
of small degree and ease of computation. However, they also hint at the ‘classification of varieties’:
the material on conics applies in a sense to every rational curve, and cubic surfaces are the most
essential examples of del Pezzo rational surfaces. Cubic curves with their group law are examples
of Abelian varieties; the fact (2.2) that a nonsingular cubic is not rational is the very first step in
classification. The intersection of two plane conics in (1.12–14) and the intersection of two quadrics
of P3

k referred to in Ex. 5.6 could also be fitted into a similar pattern, with the intersection of
two quadrics in P4

k providing another class of del Pezzo surfaces, and the family of lines on the
intersection of two quadrics in P5

k providing 2-dimensional Abelian varieties.
The genus of a curve, and the division into 3 cases tabulated on p. 46 is classification in a

nutshell. I would have liked to include more material on the genus of a curve, in particular how
to calculate it in terms of topological Euler characteristic or of intersection numbers in algebraic
geometry, essential five finger exercises for young geometers. However, this would comfortably
occupy a separate undergraduate lecture course, as would the complex analytic theory of elliptic
curves.

8.7 Computation versus theory

Another point to make concerning the approach in these notes is that quite a lot of emphasis is given
to cases that can be handled by explicit calculations. When general theory proves the existence of
some construction, then doing it in terms of explicit coordinate expressions is a useful exercise that
helps one to keep a grip on reality, and this is appropriate for an undergraduate textbook. This
should not however be allowed to obscure the fact that the theory is really designed to handle the
complicated cases, when explicit computations will often not tell us anything.

8.8 R versus C
The reader with real interests may be disappointed that the treatment over R in §§1–2 gave way in
§3 to considerations over an arbitrary field k, promptly assumed to be algebraically closed. I advise
this class of reader to persevere; there are plenty of relations between real and complex geometry,
including some that will come as a surprise. Asking about the real points of a real variety is a very
hard question, and something of a minority interest in algebraic geometry; in any case, knowing all
about its complex points will usually be an essential prerequisite. Another direct relation between
geometry over R and C is that an n-dimensional nonsingular complex variety is a 2n-dimensional
real manifold – for example, algebraic surfaces are a principal source of constructions of smooth
4-manifolds.

As well as these fairly obvious relations, there are more subtle ones, for example: (a) singularities
of plane curves C ⊂ C2 give rise to knots in S3 by intersecting with the boundary of a small ball;
and (b) the Penrose twistor construction views a 4-manifold (with a special kind of Riemannian
metric) as the set of real valued points of a 4-dimensional complex variety that parametrises rational
curves on a complex 3-dimensional variety (thus the real 4-sphere S4 we live in can be identified as
the real locus in the complex Grassmannian Gr(2, 4) of lines in P3

C).
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8.9 Regular functions and sheaves

The reader who has properly grasped the notion of rational function f ∈ k(X) on a variety X and
of regularity of f at P ∈ X ((4.7) and (5.4)) already has a pretty good intuitive idea of the structure
sheaf OX . For an open set U ⊂ X, the set of regular functions U → k

OX(U) =
{
f ∈ k(X)

∣∣ f is regular ∀P ∈ U
}

=
⋂
P∈U
OX,P

is a subring of the field k(X). The sheaf OX is just the family of rings OX(U) as U runs through
the opens of X. Clearly, any element of the local ring OX,P (see (4.7) and (5.4) for the definition)
is regular in some neighbourhood U of P , so that OX,P =

⋃
U3P OX(U). There’s no more to it

than that; there’s a fixed pool of rational sections k(X), and sections of the sheaf over an open U
are just rational sections with a regularity condition at every P ∈ U .

This language is adequate to describe any torsion free sheaf on an irreducible variety with the
Zariski topology. Of course, you need the full definition of sheaves if X is reducible, or if you want
to handle more complicated sheaves, or to use the complex topology.

8.10 Globally defined regular functions

If X is a projective variety then the only rational functions f ∈ k(X) that are regular at every
P ∈ X are the constants. This is a general property of projective varieties, analogous to Liouville’s
theorem in functions of one complex variable; for a variety over C it comes from compactness and
the maximum modulus principle (X ⊂ PnC is compact in the complex topology, so the modulus
of a global holomorphic function on X must take a maximum), but in algebraic geometry it is
surprisingly hard to prove from scratch (see for example [Hartshorne, I.3.4]; it is essentially a
finiteness result, related to the finite dimensionality of coherent cohomology groups).

8.11 The surprising sufficiency of projective
algebraic geometry

Weil’s abstract definition of a variety (affine algebraic sets glued together along isomorphic open
sets) was referred to briefly in (0.4), and is quite easy to handle in terms of sheaves. Given this,
the idea of working only with varieties embedded in a fixed ambient space PNk seems at first sight
unduly restrictive. I want to describe briefly the modern point of view on this question.

(a) Polarisation and positivity

Firstly, varieties are usually considered up to isomorphism, so saying a variety X is projective means
that X can be embedded in some PN , that is, is isomorphic to a closed subvariety X ⊂ PN as in
(5.1–7). Quasiprojective means isomorphic to a locally closed subvariety of PN , so an open dense
subset of a projective variety; projectivity includes the property of completeness, that X cannot be
embedded as a dense open set of any bigger variety.

The choice of an actual embedding X ↪→ PN (or of a very ample line bundle OX(1) whose
sections will be the homogeneous coordinates of PN ) is often called a polarisation, and we write
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(X,OX(1)) to indicate that the choice has been made. In addition to completeness, a projective
variety X ⊂ PN satisfies a key condition of ‘positive degree’: if V ⊂ X is a k-dimensional subvariety
then V intersects a general linear subspace PN−k in a positive finite number of points. Conversely,
the Kleiman criterion says that some multiple of a line bundle on a complete variety X can be used
to provide a projective embedding of X if its degree on every curve C ⊂ X is consistently greater
than zero (that is, ≥ ε · (any reasonable measure of C)). This kind of positivity relates closely to
the choice of a Kähler metric on a complex manifold (a Riemannian metric with the right kind
of compatibility with the complex structure). So we understand projectivity as a kind of ‘positive
definiteness’.

(b) Sufficiency

The surprising thing is the many problems of algebraic geometry having answers within the frame-
work of projective varieties. The construction of Chow varieties mentioned in (8.2) is one such
example; another is Mumford’s work of the 1960s, in which he constructed Picard varieties and
many moduli spaces as quasiprojective varieties (schemes). Mori theory (responsible for important
conceptual advances in classification of varieties related to rationality, see [Kollár]) is the most
recent example; here the ideas and techniques are inescapably projective in nature.

(c) Insufficiency of abstract varieties

Curves and nonsingular surfaces are automatically quasiprojective; but abstract varieties that are
not quasiprojective do exist (singular surfaces, or nonsingular varieties of dimension ≥ 3). However,
if you feel the need for these constructions, you will almost certainly also want Moishezon varieties
(M. Artin’s algebraic spaces), objects of algebraic geometry more general than abstract varieties,
obtained by a somewhat more liberal interpretation of ‘glueing local pieces’.

Theorems on abstract varieties are often proved by a reduction to the quasiprojective case, so
whether the quasiprojective proof or the detail of the reduction process is more useful, interesting,
essential or likely-to-lead-to-cheap-publishable-work will depend on the particular problem and
the individual student’s interests and employment situation. It has recently been proved that a
nonsingular abstract variety or Moishezon variety that is not quasiprojective necessarily contains
a rational curve; however, the proof (due to J. Kollár) is Mori theoretic, so hardcore projective
algebraic geometry.

8.12 Affine varieties and schemes
The coordinate ring k[V ] of an affine algebraic variety V over an algebraically closed field k (Defi-
nition 4.1) satisfies two conditions: (i) it is a finitely generated k-algebra; and (ii) it is an integral
domain. A ring satisfying these two conditions is obviously of the form k[V ] for some variety V ,
and is called a geometric ring (or geometric k-algebra).

There are two key theoretical results in Part II; one of these is Theorem 4.4, which states
precisely that V 7→ k[V ] = A is an equivalence of categories between affine algebraic varieties
and the opposite of the category of geometric k-algebras (although I censored out all mention of
categories as unsuitable for younger readers). The other is the Nullstellensatz (3.10), that prime
ideals of k[V ] are in bijection with irreducible subvarieties of V ; the points of V are in bijection
with maximal ideals.
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Taken together, these results identify affine varieties V with the affine schemes corresponding
to geometric rings (compare also Definition 4.6).

The prime spectrum SpecA is defined for an arbitrary ring (commutative with a 1) as the set
of prime ideals of A. It has a Zariski topology and a structure sheaf; this is the affine scheme
corresponding to A (for details see [Mumford, Introduction, or Hartshorne, Ch. II]). There are
several quite distinct ways in which affine schemes are more general than affine varieties; each of
these is important, and I run through them briefly in (8.14).

It’s important to understand that for a geometric ring A = k[V ], the prime spectrum SpecA
contains exactly the same information as the variety V , and no more. The NSS tells us there’s
a plentiful supply of maximal ideals (mv for points v ∈ V ), and every other prime P of A is the
intersection of maximal ideals over the points of an irreducible subvariety Y ⊂ V :

P = I(Y ) =
⋂
v∈Y

mv;

It’s useful and (roughly speaking, at least) permissible to ignore the distinction between varieties
and schemes, writing V = SpecA, v for mv, and imagining the prime P = I(Y ) (‘generic point’)
as a kind of laundry mark stitched everywhere dense into the fabric of the subvariety Y .

8.13 What’s the point?

Amajority of students will never need to know any more about scheme theory than what is contained
in (8.9) and (8.12), beyond the warning that the expression generic point is used in several technical
senses, often meaning something quite different from sufficiently general point.

This section is intended for the reader who faces the task of working with the modern literature,
and offers some comments on the various notions of point in scheme theory, potentially a major
stumbling block for beginners.

(a) Scheme theoretic points of a variety

Suppose that k is a field (possibly not algebraically closed), and A = k[X1, . . . , Xn]/I with I ⊂
k[X1, . . . , Xn] an ideal; write V = V (I) ⊂ Kn where k ⊂ K is a chosen algebraic closure. The
points of SpecA are only a bit more complicated than for a geometric ring in (8.12). By an obvious
extension of the NSS, a maximal ideal of A is determined by a point v = (a1, . . . , an) ∈ V ⊂ Kn,
that is, it’s of the form

mv =
{
f ∈ A

∣∣ f(P ) = 0
}

= (x1 − a1, . . . , xn − an) ∩A.

It’s easy to see that different points v ∈ V ⊂ Kn give rise to the same maximal ideal mv of A if and
only if they are conjugate over k in the sense of Galois theory (since A consists of polynomials with
coefficients in k). So the maximal spectrum SpecmA is just V ‘up to conjugacy’ (the orbit space
of GalK/k on V ). Every other prime P of A corresponds as in (8.12) to an irreducible subvariety
Y = V (P ) ⊂ V (up to conjugacy over k); P ∈ SpecA is the scheme theoretic generic point of Y ,
and is again to be thought of as a laundry mark on Y . The Zariski topology of SpecA is fixed up
so that P is everywhere dense in Y . The maximal ideals of A are called closed points to distinguish
them. If C : (f = 0) ⊂ A2

C is an irreducible curve, it has just one scheme theoretic generic point,
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corresponding to the ideal (0) of C[X,Y ]/(f), whereas a surface S will have one generic point in
each irreducible curve C ⊂ S as well as its own generic point dense in S.

Scheme theoretic points are crucial in writing down the definition of SpecA as a set with a
topology and a sheaf of rings (and are also important in commutative algebra, and in the treat-
ment in algebraic geometry of notions like the neighbourhood of a generic point of an irreducible
subvariety, see (8.14, i)); however, points of V ⊂ Kn with values in the algebraic closure k ⊂ K
correspond more to the geometric idea of a point, and are called geometric points. This is similar
to the way that the Zariski topology of a variety V serves more as a vehicle for the structure sheaf
OV than as a geometric object in its own right.

(b) Field-valued points in scheme theory

If P is a prime ideal of A (so P ∈ SpecA a point) the residue field at P is the field of fractions
of the integral domain A/P , written k(P ); it is an algebraic extension of the ground field k if
and only if P is maximal. A point of V with coefficients in a field extension k ⊂ L (a point
(a1, . . . , an) ∈ V (I) ⊂ Ln) clearly corresponds to a homomorphism A → L (given by Xi 7→ ai),
with kernel a prime ideal P of A, or equivalently, to an embedding k(P ) ↪→ L. If P = mv

is a maximal ideal, and L = K is the algebraic closure of k, it is the choice of the embedding
A/mv = k(v) ↪→ K that determines the coordinates of the corresponding point of V ⊂ Kn, or in
other words, distinguishes this point from its Galois conjugates. These are the geometric points of
V .

For any extension k ⊂ L, the k-algebra homomorphism A → L corresponding to an L-valued
point of V can be dressed up to seem more reasonable. Recall first that a variety is more than a
point set; even if it’s only a single point, you have to say what field it’s defined over. So

SpecL =
L

·
= ptL

is the variety consisting of a single point defined over L. By the equivalence of categories (4.4),
a morphism SpecL → V (the inclusion of a point defined over L) should be the same thing as a
k-algebra homomorphism A = k[V ]→ L = k[ptL].

To summarise the relation between scheme theoretic points and field-valued points: a point
P ∈ SpecA = V is a prime ideal of A, so corresponds to the quotient homomorphism A→ A/P ⊂
Quot(A/P ) = k(P ) to a field. If L is any field, an L-valued point of V is a homomorphism A→ L;
a scheme theoretic point P corresponds in a tautological way to a field-valued point, but with the
field k(P ) varying with P . If K is the algebraic closure of k then K-valued points of V ⊂ Kn

are just geometric points; a K-valued point v sits at a closed scheme theoretic point mv, with a
specified inclusion A/mv = k(v) ↪→ K.

(c) Generic points in Weil foundations

I mentioned in (8.3) the peculiarity of points in Weil foundations: a variety V defined over a field k
is allowed to have L-valued points for any field extension k ⊂ L. This clearly derives from number
theory, but it also has consequences in geometry. For example, if C is the circle x2 + y2 = 1 defined
over k = Q, then

Pπ =

(
2π

π2 + 1
,
π2 − 1

π2 + 1)

)
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is allowed as a C-valued point of C. Since π is transcendental over Q, any polynomial f ∈ Q[x, y]
vanishing at Pπ is a multiple of x2 +y2−1; so Pπ is a Q-generic point of C – it’s not in any smaller
subvariety of C defined over Q. In other words, the conjugates of Pπ under AutC (“= Gal(C/Q)”)
are dense in C. Since Pπ is Q-generic, if you prove a statement only involving polynomials over Q
about Pπ, the same statement will be true for every point of C.

In fact this idea is already covered by the notion of an L-valued point described in (b), and the
geometric content of generic points can be seen most clearly in this language. For example, the field
Q(π) is just the purely transcendental extension, so Q(π) ∼= Q(λ) and the morphism SpecQ(λ)→ C
is the rational parametrisation of C discussed in (1.1): roughly, you’re allowed to substitute any
‘sufficiently general’ value for the transcendental or unknown π. More generally, a finitely generated
extension k ⊂ L is the function field of a variety W over k; suppose that ϕ : SpecL→ V = SpecA
is a point corresponding to a k-algebra homomorphism A → L, having kernel P . Then ϕ extends
to a rational map f : W 99K V whose image is dense in the subvariety Y = V (P ) ⊂ V , so ϕ or
ϕ(SpecL) is a field-valued generic point of Y .

(d) Points as morphisms in scheme theory

The discussion in (c) shows that an L-valued point of a variety V contains implicitly a rational map
W 99K V , where W is a variety birational to SpecL (that is, L = k(W )); a geometer could think
of this as a family of points parametrised by W .

More generally, for X a variety (or scheme) we are interested in, an S-valued point of X (where
S is any scheme) can just be defined as a morphism S → X. If X = V (I) ⊂ Ank is affine with
coordinate ring k[X] and S = SpecA, then an S-valued point corresponds under (4.4) to a k-algebra
homomorphism k[X] → A, that is, to an n-tuple (a1, . . . , an) of elements of A satisfying f(a) = 0
for all f ∈ I.

In a highbrow sense, this is the final apotheosis of the notion of a variety: if a point of a variety
X is just a morphism, then X itself is just the functor

S 7→ X(S) =
{
morphisms S → X

}
on the category of schemes. (The fuss I made about the notation Ank in the footnote on p. 59 already
reflect this.) Unlikely as it may seem, these metaphysical incantations are technically very useful,
and varieties defined as functors are basic in the modern view of moduli spaces. Given a geometric
construction that can ‘depend algebraically on parameters’ (such as space curves of fixed degree
and genus), you can ask to endow the set of all possible constructions with the structure of an
algebraic variety. Even better, you could ask for a family of constructions over a parameter space
that is ‘universal’, or ‘contains all possible constructions’; the parameter variety of this universal
family can usually be defined most directly as a functor (you still have to prove that the variety
exists). For example the Chow variety referred to in (8.2) represents the functor

S 7→
{
families of curves parametrised by S

}
.

8.14 How schemes are more general than varieties

I now discuss in isolation 3 ways in which affine schemes are more general than affine varieties;
in cases of severe affliction, these complications may occur in combination with each other, with
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the global problems discussed in (8.11), or even in combination with new phenomena such as p-
adic convergence or Arakelov Hermitian metrics. Considerations of space fortunately save me from
having to say more on these fascinating topics.

(i) Not restricted to finitely generated algebras

Suppose C ⊂ S is a curve on a nonsingular affine surface (over C, if you must). The ring

OS,C =
{
f ∈ k(S)

∣∣ f = g/h with h /∈ IC
}
⊂ k(S)

is the local ring of S at C; elements f ∈ OS,C are regular on an open set of S containing a dense
open subset of C. Divisibility theory in this ring is very splendid, and relates to the geometric idea
of zeros and poles of a meromorphic function: C is locally defined by a single equation (y = 0)
with y ∈ IC a local generator, and every nonzero element f ∈ OS , C is of the form f = yn · f0,
where n ∈ Z and f0 is an invertible element of OS,C . A ring with this property is called a discrete
valuation ring (d.v.r.), in honour of the discrete valuation f 7→ n, which counts the order of zero of
f along C (n < 0 corresponds to poles); the element y is called a local parameter of OS,C .

Now scheme theory allows us boldly to consider SpecOS,C as a geometric object, the topological
space (·−) with only two points: a closed point, the maximal ideal (y) (= the generic point of C)
and a nonclosed point, the zero ideal 0 (= the generic point of S). The advantage here is not
so much technical: the easy commutative algebra of discrete valuation rings was of course used
to prove results in algebraic geometry and complex function theory (for example, about ideals of
functions, or about the local behaviour above C of a branched cover T → S in terms of the field
extension k(S) ⊂ k(T )) long before schemes were invented. More important, it gives us a precise
geometric language, and a simple picture of the local algebra.

The above is just one example, related to localisation, or the idea of ‘neighbourhood of a generic
point of a subvariety’, of benefits to ordinary geometry from taking Spec of a ring more general
than a finitely generated algebra over a field; a similar example is thinking of the generic point
Spec k(W ) of a variety W as the variety obtained as the intersection of all nonempty open sets of
W (compare (8.13, c)), like the grin remaining after the Cheshire cat’s face has disappeared.

(ii) Nilpotents

The ring A can have nilpotent elements; for example A = k[x, y]/(y2 = 0) corresponds to the
‘double line’ 2` ⊂ A2

k, to be thought of as an infinitesimal strip neighbourhood of the line. An
element of A is of the form f(x) + εf1(x) (with ε2 = 0), so it looks like a Taylor series expansion of
a polynomial about ` truncated to first order. If you practise hard several times a day, you should
be able to visualise this as a function on the double line 2`.

Nilpotents allow scheme theory to deal in Taylor series truncated to any order, so for example
to deal with points of a variety by power series methods. They are crucial in the context of the
moduli problems discussed at the end of (8.14, d): for example, they provide a precise language for
handling first order infinitesimal deformations of a geometric construction (as a construction over
the parameter space Spec(k[ε]/(ε2 = 0))), and viewing these as tangent vectors to the universal
parameter variety. They also open up a whole range of phenomena for which there was no classical
analogue, for example relations between inseparable field extensions and Lie algebras of vector fields
on varieties in characteristic p.
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(iii) No base field
Let p be a prime number, and Z(p) ⊂ Q the subring of rationals with no p in the denominator; Z(p)

is another discrete valuation ring, with parameter p. It has a unique maximal ideal 0 6= pZ(p), with
residue field Z(p)/pZ(p)

∼= Fp = Z(p)/(p). If F ∈ Z(p)[X,Y ], then it makes sense to consider the
curve CC : (F = 0) ⊂ A2

C, or alternatively to take the reduction f of F mod p, and to consider the
curve Cp : (f = 0) ⊂ A2Fp. What kind of geometric object is it that contains both a curve over
the complexes and a curve over a finite field? Whether you consider it to be truly geometric is a
matter of opinion, but the scheme SpecZ(p)[X,Y ]/(F ) does exactly this.

Again, this is technically not a new idea: reducing a curve mod p has been practised since the
18th century, and Weil foundations contained a whole theory of ‘specialisation’ to deal with it. The
advantage is a better conceptual picture of the curve SpecZ(p)[X,Y ]/(F ) over the d.v.r. Z(p) as
a geometric object fibred over Spec(Z(p)) (‘= (·-)’), with the two curve CC and Cp as generic and
special fibres.

In the same way, for F ∈ Z[X,Y ], the scheme SpecZ[X,Y ]/(F ) is a geometric object containing
for every prime p the curve Cp : (fp = 0) ⊂ A2

Fp
over Fp, where fp is the reduction of F mod p,

and at the same time the curve CC : (F = 0) ⊂ A2
C, and is called an arithmetic surface; it contains

quite a lot besides: in particular, for every point c ∈ CC with algebraic numbers as coordinates, it
contains a copy of SpecQ[c], hence essentially all the information about the ring of integers of the
number field Q(c) of definition of c.

However grotesquely implausible this object may seem at first sight (you can again get used to
it if you practise), it is a key ingredient in modern number theory, and is the basic foundation on
which the work of Arakelov and Faltings rests.

8.15 Proof of the existence of lines on a cubic surface
Every adult algebraic geometer knows the traditional proof of (7.2) by dimension counting (see
for example [Beauville, Complex algebraic surfaces, p. 50], or [Mumford, Algebraic geometry I,
Complex projective varieties, p. 174]). I run through this before commenting on the difficulties.

The set of lines of P3 is parametrised by the 4-dimensional Grassmannian Gr = Gr(2, 4), and
cubic surfaces by the projective space S = PN of cubic forms in (X,Y, Z, T ) (in fact N = 19). Write
Z ⊂ Gr×S for the incidence subvariety

Z =
{

(`,X)
∣∣ ` ∈ Gr, X ∈ S s.t. ` ⊂ X

}
.

Since cubic forms vanishing on a given line ` form a PN−4, it is easy to deduce from the first
projection Z → Gr that Z is a rational N -dimensional variety. So the second projection p : Z → S
is a morphism between two N -dimensional varieties, and therefore

(i) either the image p(Z) is an N -dimensional variety in S, and so contains a dense open of S,

or every fibre of p has dimension ≥ 1.

(ii) Z is a projective variety, so that the image p(Z) is closed in S.

Since cubic surfaces containing only finitely many lines do exist, the second possibility in (i)
doesn’t occur, so every sufficiently general cubic surface contains lines. Then (ii) ensures that
p(Z) = S, and every cubic surface contains lines.
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This argument seems to me to be unsuitable for an undergraduate course for two reasons:
statement (i) assumes results about the dimension of fibres, which however intuitively acceptable
(especially to students in the last week of a course) are hard to do rigorously; whereas (ii) is the
theorem that a projective variety is complete, that again requires proof (by elimination theory,
compactness, or a full-scale treatment of the valuative criterion for properness).

To the best of my knowledge, my proof in (7.2) is new; the knowledgeable reader will of course
see its relation to the other traditional argument by vector bundles: the Grassmannian Gr(2, 4) has
a tautological rank 2 vector bundle E (consisting of linear forms on the lines of P3); restricting the
equation f of a cubic surface to every line ` ⊂ P3 defines a section s(f) ∈ S3E of the 3rd symmetric
power of E. Finally, every section of S3E must have a zero, either by ampleness of E or by a Chern
class argument (that also gives the magic number 27).

Substitute for preface
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Old Index
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coordinate ring k[V ] 66–72, 73, 74, 75, 120, 123
V -I correspondence 50–51, 52, 53, 54, 55, 60, 63–64, 66–67, 81–82, 84, 120, 121
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D denominator of a rational function 4, 68, 72, 76–77, 78
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discrete valuation ring (d.v.r.) 124, 125
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domain of definition dom f 71–73, 77, 78, 83–84, 85, 87, 91
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E elimination theory 25–26, 57, 64, 104, 105–106, 113
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irreducible algebraic set 33, 52–53, 55, 57, 63, 67, 71, 78, 82, 84, 92, 95
irreducible hypersurface 56–57, 64
isomorphism 4, 68, 70, 74–75, 77, 78, 79, 85, 87, 90, 92, 93, 99

J Jacobson ring 121
jokes (not for exam) 51, 55, 69, 91, 116

L linear system of plane curves 18–20, 30–33
linear projection 10, 60, 65, 68, 86, 92, 107–108
local ring OV,P 71, 83, 118, 124
localisation A[S −−1] 49, 56, 63, 72, 124

M maximal ideal mP 54, 55, 64, 120, 121, 122
military funding 13, 114, 115
moduli 46, 47, 116, 123, 125
monomial curve 27, 57, 64
morphism (= regular map) 4, 36, 74, 76, 77, 80, 85, 90, 93, 108, 112, 123
multiple roots, multiplicities 16–17, 34, 35, 38, 40, 52, 94, 102, 107
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N nodal cubic 27, 40, 68, 78, 103, 113
Noether normalisation 59–63, 64
Noetherian property of Zariski topology 53
Noetherian ring 48–49, 63
nonsingular 2, 33, 92, 94–95, 97, 99, 101, 102, 107, 111, 112, 113, 118, 124
nonsingular cubic, see cubic curve
normal form of cubic 38–40, 41
Nullstellensatz 4, 30, 54, 72, 81–82, 120–121
number theory, see Diophantine problems

O open set, see dense open set or standard open set

P parallelism 11, 12, 14, 15, 25, 60
parametrised curve 9–10, 15–16, 17–18, 24, 27–28, 31, 40, 45, 47, 68, 74, 77–78, 85, 86, 88, 123
Pascal’s mystic hexagon 36–37
pencil of conics 20, 21–25
point at infinity 9, 12, 13, 14, 16, 17, 38, 39, 40, 43, 60, 76, 112
polar 104, 113
polynomial function 2, 3, 4, 51, 66–70, 72, 96
polynomial map 2, 67–70, 74, 77, 78
prime ideal 52, 55, 60, 61, 120, 122
prime spectrum SpecA 120, 121, 124
primitive element theorem 62
principal ideal domain (PID) 63
product of varieties 78, 89, 92
projective algebraic geometry 119–120
projective change of coordinates 13, 41
projective curve 13, 24, 44, 75
projective equivalence 13, 15, 18
projective geometry 9, 11, 79
projective line P1 16, 43, 79, 80, 85, 90
projective plane P2 9, 11–20, 17, 25, 30–33, 38, 47, 79, 86, 107
projective space P3, Pn 4, 6, 60, 80, 81, 85, 86, 89, 91, 99–100, 102, 108
projective variety 4, 13, 79–90, 119
projective variety and nonsingularity 99–100

Q quadric surface 64, 86, 90–91, 91, 108, 109, 111, 113
quasiprojective variety 4, 119

R radical rad I =
√
I 54–55, 63, 81–82

rational curve 45, 85, 91, 117, 120
rational function 3, 4, 28, 45, 68, 71–72, 76, 78, 82–83, 118
rational map 4, 28, 72–74, 76–78, 84–88, 91, 107–108, 112, 123
rational normal curve 85, 91
rational variety 45, 88, 107, 115, 126
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real geometry 6–7, 117
regular function 2, 4, 71–72, 77, 78, 118, 124
regular function on a projective variety 80, 82, 83, 90, 92, 118–119
regular map (= morphism) 2, 4, 6, 71–72, 74, 77, 78, 85, 90, 92, 112
resultant 25, 64, 103–106, 113
Riemann sphere 43
Riemann surface 43, 45, 112
roots of a form in two variables, see zero

S Segre embedding 89
separability 61–62, 95, 125
singular 2, 94, 95, 97, 100, 101, 102, 111, 112
singular conic 21–22, 25, 106, 112
singular cubic, see nodal or cuspidal cubic
singular cubic surface 112
singularity 2, 7, 28, 91, 94, 100–101, 111, 118
singularity theory 2, 6, 100–101, 117
standard affine pieces V(i) 13, 38, 79, 83–84, 92
standard open set Vf 55, 72, 74–75, 98

T tangent space TPV 2, 33, 34, 40, 41, 94–101, 102, 111, 125
topology of a curve 43–45, 46
topology, see Zariski topology
transcendence degree tr degkK 63, 88, 89, 97, 101
transversal of lines 108, 110, 113
twisted cubic 85, 91, 116

U unique factorisation domain (UFD) 28, 54, 63, 71, 78

V variety 50, 57, 70–71, 80, 88, 89, 97, 99, 102, 115, 118, 119–124
Veronese surface 93

Z Zariski topology 36, 50–51, 64, 67, 71, 73, 75, 78, 81, 83, 84, 89, 92, 95, 118, 120, 121–122
zero of a form 16–17, 22, 23, 25, 31, 34, 38, 41, 103, 107, 113


