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Numerical curves and their applications to algebraic curves
by

H GEVORGIAN, H. HAKOPIAN and A. SAHAKIAN (Yerevan)

Abstract. Hermite interpolation by bivariate algebraic polynomials and its applica-
tions to some problems of the theory of algebraic curves, such as the existence of algebraic
curves with given singularities, is considered. The scheme N = {n1,...,ns;n}, Le., the
sequence of multiplicities of nodes associated with the degree of interpolating polynomials,
is considered, We continue the investigation of canonical decomposition of schemes and
define so called maximal schemes. Some numerical results concerning the factorization of
schemes are established. This leads to determination of irreducibility or to finding the
(exact) number of components of algebraic curves as well as to the characterization of all
singular points of a wide family of algebraic curves. Also, the Hilbert function of schemes
is discussed. At the end, the prohlem of regularity of schemes depending on the number
of interpolation conditions is considered.

1. Introduction. We define a scheme N = {nq,...,ns;n} as a col-
lection of nonnegative integers, where nq,...,n, are the members, n is the
degree and s is the length of N. We denote by S the set of all schemes. We
agree that

{n1,...,ngn}={ny,...,ns0,...,0;n}

with an arbitrary (finite) number of zeros. So dealing with a finite number
of schemes from &, we may assume that they have the same length or, if
necessary, that the length of a given scheme is great enough.

We need some notation. For N = {nq,...,ng;n}, M = {mq,...,mem}
€ & and A € Z; we define
N M= {ng+ma, ..., ne+mein+m}, AN ={Ang, ..., IngAn},
N'={ny,...,ns}, suppN :={r:n, #0, 1<v s}

The inequality N’ < M means that n < mand n, <my, v=1,...,s.
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We call N € S an interpolation scheme if the following equality holds:

(11) S omo=n+],
L]

where m=0+...4+m.

We denote the by I8 set of all interpolation schemes.

Interpolation schemes with s = 1, i.e., the schemes {n + 1;n}, are called
Taylor schemes. Let m,(R?) be the space of bivariate polynomials of total
degree < n.

DEFINITION 1.1. For an interpolation scheme N = {nj,...,ngn} €
I8 and a node set 2 = {2, = (z,,5)} =, C R? the (reguler) Hermite
interpolation problem (N, Z) is to find a unique polynomial P € m,{R?)
satisfying

Jitip o
(1.2) Bm”_ﬁyf =Aigor Ati<m, v=1...9,
2y
for a given collection of values A = {A;j, i+ j<ny, v=1,...,8).

In what follows, we briefly express equalities of the form (1.2) by writing
D¥'Pig = A,
We assume that there is no interpolation condition at nodes z, with 1, = 0.

Remark 1.2. The following statements are equivalent for any N € ZS:

(i) (N, Z) is singular, i.e. not regular.
(ii) There exists a polynomial P such that

(1.3) Pem(R®), P#0, DV'P|z=0.

Since the determinant of the system (1.2) of linear equations (with re-
spect to the unknown coefficients of P) is a pelynomial in variables T1, Yy
-+ 3 &5, Ys, the regularity of the problem (A, Z) for some Z implies that it

iszregular for almost all Z € R*® (with respect to the Lebesgue meagure in
R4,

Remark 1.3. The following staterents are equivalent for any N =
{n1,...,n3n} € S:
D n.<nforv=1,..., s

(if) There exists a node set 2 ¢ R2* and a polynomial P such that (1.3)
holds.

This, in particular, implies that the Taylor schemes are the only interpo-
lation schemes which are regular for every node set (see [LL84] and [J591]
for more general results).

icm

Numerical curves and their applications to aigebraic curves 2561

In view of Remark 1.2 the regularity and singularity of (N, Z) can be
defined in the following more general way which enables us to remove the
restriction that the scheme A is an interpolation scheme:

We call the problem (N, £) singular if there exists a polynomial P sat-
isfying (1.3); otherwise it is called regular.

Geometrically, the singularity of (A, Z) means that there exists an al-
gebraic curve of degree < n passing through Z with multiplicity A7 (i.e.
passing through z, with multiplicity n,, v =1,...,s).

In what follows we will consider the singularity and regularity in this
wider sense. Note that for interpolation schemes the two definitions of reg-
ularity and singularity coincide.

DEFINITION 1.4, We say that a scheme A is

(1) regular if (N, Z) is regular for some node set Z,
(1) singular if (N, 2Z) is singular for any node set Z.

The problem of the full description of regular and singular schemes re-
mains open.
Let us define the following “less conditions” class of schemes:

LC .= {M:{ml,...,ms;m} ES:XS:W,<W}.

p=1

DEFINITION 1.5, A scheme A is called a numerical curve if there is a
set M C LC such that

(1.4) N = Z M.
MeM
We denote the set of numerical curves by NC.

It is not hard to see that numerical curves are singular schemes. Indeed,
for N = M & LC and for every node set Z, finding a polynomial P = Py
such that (1.3) holds reduces to solving a system of 3, _,; 7, homogeneous
linear equations in m + 1 unknowns. If A is a numerical curve with (1.4),
then for every node set £ the polynomial

P = H P
MeM
satisfles (1.3), which means that A is singular.
CoNIEcTURE 1.6 ([GHS90], [P92)). Bach singular scheme is a numerical
curve.

‘We have proved in [GHS92b] that this conjecture is true under the re-
striction that there are at most 9 knots with multiplicities > 2.
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DEFmITION 1.7. Let N = {n1,...,ns;n} €S,

() If ny +n2 > n+1,n1 <nand ny < n, then the reduction of N with
respect to the first two members is the scheme

N =N ={n—nzn—ni,ns...,%;2n-m —na}.
(i) If
(1.5) ni+n;<n, 1<i<j<3,
then the quadratic transformation of N with respect to the first three mem-
bers is the scheme (cf. [W50], Chapter 3, Theorem 7.2)
N*=Nfyg={n—ng—ng,n—ny—ngn—n—Nz,N4..., 0N
2n —ny —ng — N3},
It is not hard to check that
N¥ =M ={n1—nmny~rng,...,ngn~r1},
N*=Nfga={ni —t,;mp—t,n3g —t,nyg,...,ngin ~ 1},
withr=ny+ne—~nand t =n; +np+nz —n.

We define a reduction or quadratic transformation with respect to other
members in a similar way. We write

supp @ = {4, 7, k}
if @ is a quadratic transformation with respect to the members in the places
" J{N]; say that a quadratic transformation Q is positive (for ) if deg Q(N)
< deg N, i.e. £ > 0. Note that the positivity of Q {for A") implies that
(1.6) supp @ C supp V.
We have the following
THEOREM 1.8 (see [(GHS92]). Let N = {ny,...,n;n} € 8.

@ Fritne=n+r>n+1 n £n and ny < n, then the schemes N
and N are simultaneously singular or not.

(i) Ifns+n; <nforl <i<j<3, then the schemes N and N™ are
simultaneously singular or not.

This theorem reduces the mvestigation of an arbitrary scheme to the
following two cases:

1) ny, 2 n+ 1 for some vy,
2)ni+n;+n<nforl<i<j<k<s.

In the first case the scheme is obviously regular (Remark 1.3).

DErINITION 1.9. A scheme N = {ny,...,n;;n} € S satisfying the above
condition 2) is called basic. :
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The set of basic schemes is dencted by BS.

CoNJECTURE 1.10 [GHSY0). A basic scheme is singular if and only if it
belongs to LC.

We have proved that Conjecture 1.10 is true in the case
(1.7) > ny, < 3n,
ving >1
and that the above two conjectures are equivalent (see [GHS92b], and also

[GHS93] for the wider concept of regularity).
Let us define the intersection preduct of schemes as follows:

(N, M) = Zn,,m,, — nm,
v=]

and set

(N) = (N,N):Zn,%—-nz, V] = Zn,,~»3n.

v=] PE

The schemes A and M are called orthogonal (N L M) if (N, M) = 0. We
say that a set A of schemes is orthogonal if (A, M) = 0 for any distinct
N, M e A

Denote by N the difference of the number of conditions of A and the
dimension. of the space of algebraic curves of degree n, i.e. dim 7, (R?) — 1:

N::Zﬁywn+1+1-
v=1
Thus, N/ < 0 means that N € LC, and N = 1 if A is an interpolation
scheme. Let us mention the following identities:
(18) N+ M) = N) + (M) + 2N, M),
' NFM=N+ M+ (N M)

Note also that
(1.9) N = (W) +IV])/2.

It is not hard to check the following properties of quadratic transformation
and reduction (see [GHS92b], [GHS95]):
LeMMA 1.11, Let N, M e S.
B W =N
(i) (N, M) = (N, M*).
(i) V] =[N, W) = W*), N =~
(iv) W] = WX —r W)= N)
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DEFINITION 1.12. (i) The schemes A, M are called quadratically equiv-
alent (M ~ M) if one of them can be obtained from the other by means of
quadratic transformations. _

(ii) We say that A reduces to M (N — M) if M can be obtained from
N by means of reduction and (or) quadratic transformations.

Theorem 1.8 implies

Remark 1.13. If a scheme N reduces to a scheme M, then they are
simultaneously regular or not.

Let us denote by E, 4 the scheme {ey,...,es; e} with

ep=e;=e=1, e =0 forv=1...9 v#pqg

Now we give the definition of prime numerical cirves which play an essential
role in our invegtigation.

A scheme which is quadratically equivalent to some F,  is called a prime
numerical curve. We denote the class of prime numerical curves by PNC:

PNC = {N € § : N ~ E, ¢ for some p,gq}.
Note that in view of Lemma 1.11, for A € PNC, we have
(1.10) [A]=-1, {(4d)=1, A=0.
DEFINITION 1.14. (i) A scheme which is quadratically equivalent to some

basic scheme is called an e-basic scheme.

{ii) A scheme which can be reduced to some basic scheme is called an
r-basic scheme.

We denote by BS™ and BS** the classes of e-basic and r-basic schemes
respectively. Of course we have BS C BS*  BS**. Note that Theorem 1.8
and Remark 1.3 imply

Remark 1.15. If A is singular then A/ € BS**.

The results reported below in this section are proved in [GHS95]. The
following theorem shows, in particular, that the quadratic transformation
can be applied to any triplet of members of a prime numerical curve different
from By, and of an e-basic scheme (setting 4 = E, ,).

THEOREM 1.16. If A, B are distinct prime numerical curves and M is
an e-basic scheme, then

(i) (4,B) <0,

(i) (4, M) <0,

Part (i) of the following theorem gives a characterization of e-hasic
schemes, and (ii) readily follows from (i).
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THEOREM 1.17. (i) A scheme N is e-basic if and only if (A,N) <0 for
all A € PNC.

(i) The sum of e-basic schemes is e-basic.

The next theorem establishes the canonical decomposition of r-basic
schemes: '

THEOREM 1.18. Let N' € BS™*. Then there exists o finite set 2y of
prime numerical curves, an e-basic scheme N+ and naturel numbers pa =
Han such that

(1.11) N= 3" psd+nN,

A&y

{NMYYU Qu 45 orthogonal.

Moreover, N'— N\ and the decomposition (1.11) is unique.

In view of (1.8), from (1.11) we have
(1L12) N= 3 ui-1+NT.

Acy

Note that a prime numerical curve A belongs to 2y in the canonical
decomposition (1.11} if and only if {4,A) > 0; moreover, we then have
w4 = {A,N).

‘We also have

(1.13) N eLC and (MY <0 if N eNC
2. Some numerical results. We start with a result on factorization of
r-basic schemes.

THBOREM 2.1. Suppose a scheme N € BS* with N = 0 has a represen-
tation .

(2.1) N=N+...+N,; MENC, ¢g=>2
Then
(2.2) N~ ACy,

where Cy is o scheme of degree 3 having nine nonzero members equal o 1
euch, and A is the greatest cornmon divisor of the members and the degree
of N'. Moreover, we have

i=1
For the proof we need the following lemma (cf. [GHS95]). -

LeEMMA 2.2. Suppose that N = {na,...,nsn} is a besic scheme with
3¢ 1 < 3n. Then (N) <0, equality being possible if and only if N = ACq
or N = M{1;1} for some A € Z,.. :

(2.3) N ~ 2, Co,
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Proof Suppose the members of A are in decreasing order. Then
n? > nfny +ng +ng) — (n—n1)(ny ~ n2) — (n — na)(na — na)
=n? +n} +n3(3n —ny — ng)
>nd+nd+nglng+...+n) >0t A+l
It is easy to see that (N) = 0 only if either ny =... =n, =n/3 and s = 9,
orng =nand ng = ... = n, = 0.
In particular, in view of (1.9), (1.10) and Lemima 1.11, Lemina 2.2 implies

COROLLARY 2.3. (i) Suppose N € BS*, N'= 0 and (N) = 0. Then
N ~ ACy.
(ii) PNCNBS = (.

Proof of Theorem 2.1. Since the sum of numerical curves is a
numerical curve, we can suppose that there are only two summands in (2.1).
Also, in order to prove (2.3) we can suppose that one of the two summands
coincides with MV, for any fixed 4, 1 <4 < ¢,

Thus, we assume ¢ = 2 in (2.1). Consider the canonical decompositions

Ni= ZNAA+M17 1=1,2,
Aecs;
where {see (1.13))

(2.4) NP eBS*NLC, (NP) <0, i=1,2
Thus, we get the representation
(2.5) : N= 3" pad+ M,
AE(
with 25 := 2 U 2 and M := Nf +J\/;,l. According to Theorem 1.17 we
have M € BS”. Using identities (1.8) and Cauchy’s inequality we obtain
(2.6) M=NE+ N} + 20 MH <.
Equality here holds if and only if
(2.7) Np =Nf = Wy = (M) =0, Wi =,
Note also that in this case, according to Corollary 2.3, we have
(2.8) N} ~vCo,  i=1,2.

Since N € BS*, the canonical decomposition of A is trivial: N = A. Hence
the decomposition (2.5) cannot be orthogonal if f2; % §. On the other hand,
we can get an orthogonal and hence the canonical decomposition of A by
changing the representation (2.5) as follows:
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1) If there is B € £23 such that (B, M} < 0, then
N = Z paA+ (pp —1)B + My,
A€ (3, A£RB

with Ml = M + B
2) If there are B, D € {25 such that (B, D) < 0, then

N= 3
A€fy, A£B,D
with Mg := M+ B+ D.
In both cases, using Theorem 1.17 and identities (1.8) we get
M; € BS*, (M;) <0, M;<0, i=12

paA+ (pp — 1)B + (up ~ 1)D + Ma,

Thus, after a finite number of steps we will obtain the canonical decomposi-
tion N = A with N < 0. This contradiction proves that the set 23 of prime
numerical curves in (2.5) is empty and N = M = Nj + Mo = N} + N3,
Since N = 0, we have equality in {2.6) and therefore (2.7} and (2.8) hold.
Theorem 2.1 is proved.

From now on we will also use the canonical decomposition of an r-basic
scheme N with a slightly changed last summand:

(2.9) N= Y pad+pNY,
Aey
where ut = X and N = INif M~ ACp, and pd =1 and NV = NY
otherwise. .
The following theorem shows that the canonical decomposition of a nu-
merical curve is in a certain sense the unique representation as a sum of
numerical curves, provided that A4 = 0.

THEOREM 2.4. Suppose a scheme N € BS** with NV = 0 has a repre-
sentation

N=N-+...+N, NENC g22.
Then N is divisible by each Ny, t.e
JV;' = Z .u"i,AA + #?NU,
A€y
with nonnegative coefficients satisfying

a
Z Hi A = HA,

- b
E uy=pb.
i=1 =1
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Proof. As in the proof of Theorem 2.1 we suppose that ¢ = 2 and
consider the canonical decompositions

-Afiz ZMAA+ML9 1=1,2,

AE);

where again
NleBS nLO, WH<o0, i=12
Then we get the representation.
(2.10) N= 3" pad+ NP+ M)
AER

with 25 1= £2; U £25. Changing (2.10) as in the proof of Theorem 2.1 we find
that for some set D C {23 the representation

N = Z pad + N

AEQa\D

is canonical, where ! = N} + NF + 2oacp baA. Now, in view of the

condition N = 0, Theorem 2.1 implies that D = § and N; v =0 or NP~ +
A;Cly, for ¢ = 1, 2. This completes the proof.

The following theorem anncunced in [H94] establishes the interesting
fact that for every A" € BS” there is only one (up to the order of members)
basic scheme, dencted by A'* = {n},...,nd;n’}, such that A’ ~ A%

THEOREM 2.5. If basic schemes N and M are quadratically equivalent,

then they have the same degrees and the same members, maybe in different
order.

First we need two lemmas.

LEMMA 2.6, Suppose A = {a1,..., 0,0} € PNC (a > 1).

(i) There ewist quadratic transformations Qg 4 = 1,.
supp A such that

(2.11) Q1A =E,,, Q;is positive, i = 1.0

(i) If op = oy = 1 for some p,q then there ezist quadmm transforma.-
tions (3, 1=1,...,1, with

(2.12) suppQi N {p, g} =0, i=1,..,1
such that (2.11) holds.

(iii) If ap = 1, then for some g € supp A, g # p, there exist quadratic
transformations Ql, i=1,... 1, with

(2.13) supp@: N{p} =8, i=1,...,],
such that (2.11) holds.

vl oand g €
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Proof. The statement (i) follows from Theorem 1.16(i) and the fact
that the sum of the three maximal members of every prime numerical curve
is greater than its degree (see Corollary 2.3).

To prove (ii) and (iii) we use induction on deg A. The case deg A = 1 is
trivial. Suppose & > 1 and the lemma holds if deg 4 < «.

Note first that each prime nurerical curve with degree greater than
one has at least five nonzero members. This follows from the fact that the
unigue scheme from which {1,1;1} can be obtained by means of guadratic
transformations is {1,1,1,1,1;2}, and every prime numerical curve can be
transformed, without enlarging its support, to {1,1;1}.

Therefore, we can choose the three maximal members of A such that the
quadratic transformation ¢ with this triplet satisfies (2.12) or (2.13) with
1 = 1. According to Corollary 2.3(ii), Q1 is positive, ie. deg( 14) < @, and
the induction hypothesis completes the proof.

The following lemma completes Theorem 1.16(ii) from {GH.S%].

LEMMA 2.7. Suppose N = {ny,...,n;n} € BS and A = {ay,...,a.; )
€ PNC. Then

(N A)< max (n,+n1—n)

1<i<j<s
More precisely, we have
(2.14) NJA) < (N, Epg) =np-+ng—n
provided that (2.11} holds; moreover, equality holds in (2.14) if and only if
(2.15) QN =N, i=1,...,L

Proof. It is encugh to show that for every B € PNC and any quadratic
transformation @ which is positive for B, we have

(2.16) (N,B) < (N,QB)

and equality holds iff QN =N
Suppose that supp @ = {i, §,k}, B = {B1,..-,5s; B} and

=GB +h-B>0, ti=nitn+n—n<0

Then

N, QB = ny (81 — )+ na(Ba — 7) +13(Bs — 1) = n(B —7) + D mufBy

v==d
= (Na-B> —Tt 2 (N:B)
Equality holds iff £ = 0, i.e. QN = N.
Lemmas 2.6 and 2.7 imply
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COROLLARY 2.8. Suppose N € BS, N # 0, A € PNC and (N, A} =0,
Then, taking into account only nonzere members, we have either N =
{nl,nzgnl -+ ’nz} and A = Ey 9, or N = {nl;nl} and A = E]ﬂq.

COROLLARY 2.9. Suppose N = {n1,...,ns;n} € BS and A € PNC.

(1) If A has a member equal to one outside the support of N, then

< -
(N, 4) < Moy n - .

(1) If A has two members equal to one outside the support of N, then
N, Ay € —n.
Let us define:

s B —the scheme with zero members and with degree one;

* X, — the scheme with zero degree and zero members except for the pth
memnber which is one;

s Byi=x,+ E.

Proof of Theorem 2.5 Let N = {n(,...,nen}, M= {my,...,
me;m} and

(2.17) N=T.. . TM,
where T} are quadratic transformations. We can suppose that
(218) SuppT—,;C{l,...,S}, i=1,...,L

Let us prove first that n = m. By Lemma 1.11(ii) and Corollary 2.9(ii)
we have

(2.19) —-n = (Es_g_]_,s.{.z,.N‘) = (Tk e T1E3+1,5+2, M> = (A, M) S -,
where
(2.20) A= {Oﬁl, ey Qgge2; a} =Ty .. TlEs+1,ﬂ+2 & PNC

with asy1 = 0,19 = 1. Similarly we get m > n. Hence we have equality in
(2.19) and Lemma 2.7 implies '

(221) QiM = M, i=1,....1

where the positive quadratic transformations Q; are defined by Lemma 2.6(1)
(with s +2 instead of s, p=s+ 1, g= s+ 2):

(2.22) Qr.. QA= Eyprain,
From (2.17) and (2.20)-(2.22) we obtain

M=Q..Q1Te. . TN, Benera=Q...Q1Te... T1Fyr1opn,
and hence £ = Q;...Q,T ... T.E. Therefore for each v € Z.. we have
(2.23) My =Qr...uTe... TUN,,

supp@; C {1,...,s}.
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where
N’r ={n1,...,n0+ 7} = N ++E,
My = {my, ..., ngm+9} = M+ +E.

Thus, we have (2.17) with sufficiently large n = m and it remains to prove

that
Ny = My, v=1,...,s

Let # supp N > # supp M. We will prove the above equalities by induction
on # suppN. The case #suppN = 0 is already proved (n = m). Let n;,
and 1y, be the maximal members of A" and M respectively. In view of the
relation (2.23) we can assume that

(2.24) dny, <n, 4dmy <m (n=m).

According to Lemma 1.11(ii) and Corollary 2.9(i) we have

(225)  mig —n = (Biger, N) = (T T1 By o1, M) = (A, M)
L Myjp — M = Mg — Ny

where (see (2.18})

(2.26) A= {ay,...,au 0} =T T1B; 541 € PNC,

with asp1 = 1. Thus, ny, < my,. Similarly we get my, < n;,. Hence we have
equality in (2.25) and Lemma 2.7 implies that

(2.27) QM =M, i=1,...,1,

where the positive quadratic transformations @; are defined by Lemma
2.6(ii) (with s+ 1 instead of 5, p=s+1):

Q... Q1A =Ej 1, supp@: C{L,...,s}
This, combined with (2.17), (2.26} and (2.27), implies
M= Qg...QlTk...TlN,

(2.28) Biper1=Q1... Q1T .. . T1Big,e11
and since the supports of all transformations in (2.28) are in {1,..., 8},
(229) Ejn = Qz...QlTh...TlEiu.

From (2.28) and (2.29), taking into account that ni, = M, We get

Mo i=M =B, =Q. .. Q1Tk Ty (N — nig By ) =: No.

It follows from (2.24) that My and My are basic schemes and since
4 supp Mo < # supp No = #supp N — 1,

we can use the induction. hypothesis to complete the proof.
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LEMMA 2.10. Suppose N = {n1,...,ns;n} € BS", A={o1,..., 0510} €
PNC and

(2.30) (AN} =0, n,=0, ap#0,

for some p, 1 < p < s. Then N ~ AE, with some ¢, where A is the greatest
common divisor of the members and the degree of N and

7 e . fig M 1
(231) Am{Tli"'JpTlalr 1;\+13"'1")'\€";"5\'}=SN+X23-

Proof. Suppose A = T}, ... TyN, where T} are positive quadratic trans-
formations with p & suppT;. The transformation T; is applicable to each
prime numerical curve which has a nonzero member outside supp T3, hence
we can consider the scheme

(2.32) B={f,...,B;8}:=T,... T A
We have .

(B,N’y=0, WN®eBS, BEPNC, B,=a,#0, nb=0
According to Corollary 2.8 we have

N=n*E,, B=E,,= -%N” + Xp-
T
This, combined with (2.32), completes the proof.

COROLLARY 2.11. For every scheme N = {ny,...,ng;n} with N ~ \E,
there exist exactly s — # supp N prime numerical curves A satisfying
(A,LN} =0, suppA C{l,s], suppA\suppA #0.

Moreover, these schemes are orthogonal to each other and are of the follow-
ing form:

1
{2.33) A= XJV'-i-xp, pe{l,...,s}\ suppWN.
(The orthogonality of the set (2.33) follows from the equality (N =
MEq) =0.)
In the next theorem we consider the problem of extension of the sot {2y
in the canonical decomposition and its maximal possible cardinality.

THEOREM 2.12. Lei {N} U A be an orthogonal set of schemes with N €
BS*, A C PNC and

(2.34) supp A C supp A if N = \E,,
Then
(2.35)  #A4 < dN)
— {#SHPPN -1 if N ~ {m1,ma;my + mz}, myma # 0;
#supp N — #supp NP otherwise.
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Moreover, there exists A' C PNC with (2.84) such that AC A, (N}u A’
is orthogonal and #A' = d(N).

Remark 2.13. Note that if N® # AE,, then the inclusion in (2.34) holds
by Lemma 2.10.

Proof of Theorem 2.12. Suppose N? = Ty.... TyA, where A €
BS and T; are positive quadratic transformations. Then

(2.36) ng#0 foriel:=suppTi.

We use induction on k. The case k = 0, i.e. N = N? € BS, follows from
Corollary 2.8, _

Suppose now the theorem holds for the scheme TYN =Ty ... TR\ % Then
(TLN)® = N* and we denote :

TN ={n},...,n5;n"}.
For i € I we set {ps,q;}:= 1T\ {i} and
Ipr={iel:(N,Ep,)=0}={iel:n}=0}

Thus, we have

(2.37) AN + #Ia = d(N).
Consider the following families of schemes:
Ao = | Bpig» A= A\ Ao
icly

According to Theorem 1.16 the transformation T3 is applicable to each
scheme A € A; and in view of Lemma 1.11(ii) the set {TWN} U Ti (A1)
is orthogonal, where
T]_(.A.l) =B = {TlA A e .Aj_}
Suppose first that A o¢ AE,. Then using the induction hypothesis and (2.37)
we obtain (2.35):
#A < H#T (A + #Io < ATN) + #1o = dN).
Ou the other hand, there exists a set B} of prime numerical curves such that
By C B, {TLA} U B is orthogonal and #B1 = d(T1N). Consider the set
Al =Ty (Bi) U Ay ¢ PNC.

(7 is applicable to any scheme from B}, since By, ¢ € B with i € I implies
ny, +ng, =n" ie n; =0, which contradicts {2.36).)

It s “easy to sec that A C A and #A" = d(N). Let us check the or-
thogonality of {A/} U A" In view of Lemma 1.11(ii) we only need to prove
that

(2.38) (Epogi TB) =0 if i€ o, B={f1.....Bs 5} € Br.
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For i € I we have n} = 0 and since (B, T3} = 0, Lemma 2.10 implies that
supp B ¢ supp(TyN), i.e. B; = 0, which is equivalent to (2.38).
Consider now the case N = AE, for some A and ¢. We define
31,1 = {B c By SuppB C Supp(TlN)}, Bl,g = Bl \Bj_,]_.

It follows from Lemma 2.10 and (2.34) that
1
(2.39) B]_,g = {_B1 TP € Il}, where B;:= XTlN“i”Xi, Il

The set {73 }UB1 1 of schemes is orthogonal and according to the induction
hypothesis there exists a set B] ; of prime numerical curves such that B 1 C
B ,, {TIN} U B}, is orthogonal, #B1 ; = d(11N) and
(2.40) supp B ; C supp(TuN).
Consider the set
AH = U E:Di,Qi ] T]_ (Bi,l) U Tl(B]_’z).
iclo\D
From (2.37) and (2.39) we have (2.34) for A" and
#A = d(TjN) + #ly = d(N)

The orthoganality of the set A L A” can be checked as in the previous case,
using (2.39) and (2.40).

It remains to prove that A C A", Since Ay = T1(B1) € Th(Br1) U
T1{B,2), we only need to show that Ep, o € AN A implies ¢ € Iy \ I1.
Indeed, for any A € A; we have (Ep, 4, A) = 0 and hence ¢ ¢ supp T1(A).
Since the sth member of B; equals one (see (2.39)), this means that B; & B,
Le. i€ I\ Iy. Theorem 2.12 is proved.

‘We define

supp A 1= U supp A,
Aed
where A is a set of schemes.

THrOREM 2.14., Let A be an orthogonel set of prime numerical curves
with supp A C U C Zy and

diy (A) == sup{#A': AC A, supp A’ C U, A’ is orthogonal}.
Then either dy(A) = #U — 1 or dy(A) = #U.

Proof We use induction on #U. It is easy to see that dy(A) = 1,3,3
if #U = 2,3, 4 respectively. Suppose #U > 5. T'wo cases are possible:
Case 1: There are p,g € U/ such that

(2.41) Byl A or Ey,,cA
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Let @ be an arbitrary quadratic transformation with {p,q} < I := supp @
¢ U. Define '

Ao i={Fp,.q 11 € I}, Ay = A\ A,

where Inp = {1 € I : By L A or B, € A}, #Iy < 3. The quadratic
transformation ¢ is applicable to any scheme from 4; and according to
Lemma 1.11(if) the set

B= Q(.Al) e {Q(A) tA e Al}
ig orthogonal. On the other hand, we have
supp B C U i=U\1Ty, #U1=#U~#I <#U.
Therefore the induction hypothesis implies that dy, (B) is either #0U; — 1 or
#U and there exists an orthogonal set B' such that
(2.42) Bc B CPNC, suppB cUi, #B =dy, (B).
Define
A= Q(BYU Ap.
Since Ip Nsupp B = §, it follows that Ay L Q(B’), which combined with
Lemma 1.11(ii) means that A’ is an orthogonal set. On the other hand, we
have
ACA, #A =B +#Ag = dy,(B) + #,

hence #.A’ is either #U — 1 or #U. To complete the proof in Case 1 it
remaing to show that there is no prime numerical curve A with

(2.43) AL A, suppACU

Indeed, if (2.43) holds, then A ¢ Ay, hence @Q is applicable to A and
Q(A) LB, supp@(4) C Uy,

which contradicts (2.42).

Case 2 There are no p,q € U satisfying (2.41). Then any quadratic
tramsformation () with suppQ ¢ U is applicable to any scheme from A
and supp Q(A) = supp A. Morcover, as in Case 1, we can prove that A is
maximal on U if and only if Q(A) is, i.e. dy(A) = dy(Q(A)). This means
that using a finite namber of quadratic transformations we can reduce Case
2 to Case 1 (since any prime numerical curve is quadratically equivalent to
{1,1;1}). Theorem 2.14 is proved.

DEFINITION 2.15. A scheme N with canonical decomposition (2.9) is
called mamimal if N+ o6 A, and #02x = dN).
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Using Theorem 2.12 and following the proof of the analog of Bezout’s
theorem for numerical curves ((GHS95], Theorem 5.7) we can improve it as
follows:

TuEOREM 2.16. Let N, M be numerical curves.

() If (N, M) > 0, then N and M have a common prime numerical
curve in their canonical decompositions.
(i) If (N, M} >0 and one of N', M is mazimal, then N and M have

a common scheme in their canonical decompositions.

3. Standard and general quadratid transformations of polyno-
mials. We will call the points

e; =(1,0,0), e2=(0,1,0), e3=(0,0,1)
of R® the standard fundamental points and the coordinate planes the stan-
dord fundamental planes.

Let 7, (R®) be the space of homogeneous polynomials of degree n in three
variables and let P € 7, (R®):

(3.1) P(z) = P(z1,z2,23) = >
i1 +ig-piz=n
It is not hard to check the following

Remark 3.1. The order of the zero of the polynomial P at the funda-
mental point e; is the difference of deg P and the highest degree of z; in

(3.1).
Suppose now that P has zeros of order > n; at e;,7 = 1, 2,3. Then P can
be represented in the following form (with fixed 4, {5, k} = {1,2, 3} \ {¢}):

T
P({E) = Z :I:?MUAV(.’E_:,‘,ZE;G),
v=nq
where A,, is a bivariate homogeneous polynomial of order v. Therefore we
have

(AR P )
ﬂiﬂzismllmzzm;'

(3.2) Plzoxs, z1@3, £122) = 27 2y z5° P* (21, 22, 3)
for some P* € 7,,_4(R?*), where

t=mni+mny+ng—mn, t€Z
Now we have the following (cf. {W50] and [GHS92)):

DerFNtTiON 3.2. The polynomial Q(P) = P* defined by (3.2) is called
the standard (ny,ng, n3)-quadratic transformation of P.

Setting zy == zpx3, T3 = 3123, 23 = 2122 in (3.2) we get

E * *
(33) $?1$;2mg3 P(a’;l, To, 323) = pP* (.’ngg, 13, mlscg), :
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where n} := n; — t. Using Remark 3.1, relations (3.2), (3.3) and the fact
that the degree of 4, ¢ = 1,2, 3, on the left hand side of (3.2) is < n, and
the one on the right hand side of (3.3} is < »* := n — ¢, we obtain

Remark 3.3. The standard quadratic transformation has the following
properties:

1. The polynomial Q(P) has a zero of order not less than n! at e,
i=1,2,3. .

2. For every w = (uy,us,us) € R® with ujuguyz # 0 the order of the
zero of P at u is the same as the order of the zero of Q(P) at Q(u) :=
(uptig, w1y, U1z ).

3. The order of the zero of P at e; is greater than n; if and only if Q(P)
has a factor z; (i = 1,2,3).

4. The order of the zero of Q(P) at e; is greater than n} if and only if P
has a factor z; (¢ = 1,2,3).

5. The polynomial P has a factor different from z; (1 = 1,2, 8) if and
only if @(P)} has such a factor.

6. The (n],n%,n})-quadratic transformation of Q{P) is P.

Suppose now vy, vy, vg ate arbitrary points from R? with vols[0, 1, v2, va)
# 0 and L is a linear transformation of R® with L(e;) = v, 4 = 1,2,3,
(det L # 0).

DurINITION 3.4. The polynomial

Quy vgwy (P) 1= L7IQ(LP)  with LP(z) := P(L{z}))
is called the (general) (ny, ng, na)- quadratic transformation of P with respect
to the points v, vg, v3.

The points vy, v, vy and the planes H; ; passing through 0,v;,v;, 1 <
i < § <8, are called fundamental for the transformation Qy, v, s

Let the fundamental planes be given by the equalities

hig(@,e0,%3) =0, 1<i<j<3
It is not hard to sce that

(i) A polynomial P has a factor hyy if LP has a factor ., {4, 4, k} =
{1,2,3}. '

(i) A point @ belongs to a general fundamental plane iff L(z) belongs
to the corresponding standard fundamental plane.

(i) The order of the zero of LP at @ equals the order of the zero of P
at L(x).

Using these properties we easily get from Remark 3.3

Remark 3.5. The general quadratic transformation has the following
propertics:
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1. The polynomial Qu, v, vs(£) has a zero of order not less than nj :=
n; —tatw,i=123

9. For every u = (uy,us,u3) outside the fundamental planes the order
of the zero of P at u is the same as that of Qu, us,us(P) 8t Quyu,ve (8) 1=
L1Q(L(u)).

3. The order of the zero of P at v; is greater than n; if and only if
@Qoy,00,0s (P) has a factor Ay, {i,5,k} = {1,2,3}.

4. The order of the zero of Quy ug,ve(F) at v; is greater than nj if and
only if P has a factor h; k.

5. The polynomial P has a factor different from h;; if and only if
Quy,va,0s (P) has such a factor.

6. The (n], n%, n})-quadratic transformation of Qy, u, v, (F) With respect
to vy, vs,03 I8 P.

4. The Hilbert function of schemes. For every scheme N = {ny,...,
ng;ntrand 7=10,1,... we define

N+T = {ﬂ’lu SEETY (TPN[TES PEPRER LS n}:
where ngy1 = ... = ngy, = 1, and set
R(N) == min{7 : N}, isregular}, O0<RWN)<n+ 1

It is easy to see that R(N) coincides with the minimal {with respect to the
node set 7) dimension of the space of algebraic curves of degree < n passing
through 7 with multiplicity > N'.

DEFINITION 4.1. The Hilbert function h(N) is defined by the equality
BN):==n+1-RW), Ne&

We have R{(N) =0 and A(N) =n +1 for a regular scheme N

Note that h{\) coincides with the maximal (with respect to T) number
of independent conditions, given by A, i.e. in (1.3).

Let us denote by mult,C the multiplicity of z € R® in an algebraic curve
C and by multzC the sequence {mult,C : z € T}, where 7 is a node set.

Remark 4.2. Note that R(A) = 1 means that there is a set Uy, C R¥
whose complement has measure zero such that for every node set T € Uy
there is a unique algebraic curve N7 of degree n such that

(4.1) multz N7 > N

Indeed, if V' is the set of T's for which there are at least two distinct
curves satisfying (4.1}, then (Miy,7 U {w}) is singular for 7 € V and all
w € R?. Since the scheme ANy is regular, therefore volss V = 0.
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THEOREM 4.3. For every scheme N == {ny,...,nsn} € BS** we have

n+1—R(Nl)=n+1—m—1+Zn_},

v=1
Zn—u— 2 pa -1
p==l

Acly

It

(4.2) h{N)

the second equality holds provided that Congecture 1.10 is true.
The proof of the theorem follows from the next two lemimas.
LEMMA 4.4. If N — M, then RIN) = R(M).

Proof According to Theorem 1.8, if A reduces to M, then they are
both singular or both regular. On the other hand, we have A, — M, for
al T2 0.

LEMMA 4.5. If N € BS* and Conjecture 1.10 is irue, then

(4.3) AN = iﬁ,,.

v=l
Proof. Note first that if (4.3) holds and M = {mq,...,mgm} ~ N,
then s
h(M) = ",
v=1
Indeed,
(M) =m 41— RM)=m+1~-R(WN) =m+1+hN)—n+1

=m+i+y m-ntl=m+I+N-1

st

8
=M FI+M-1=> M.
Wz,
Therefore it is enough to prove (4.3) for the basic scheme A € BS, provided
that Conjecture 1,10 is true. This follows from the fact that in this case the
minimal 7 for which N.., is regular is determined by K =1
Tndeed, except for the schemes of the form (4.4) below, N € BS implies
Nir € BS. And if A is of the form

(44) 1) {mn}, 2){n—1;n}, 3) {ni,mani+ne}, mnz #0,

then we get this using reductions in the first case, quadratic transformations
in the second case and one quadratic transformation in the third case (see
Theorem 1.8).
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5. Some geometrical results. In this section we consider applications
of numerical curves to algebraic curves. We start with establishing the con-
nection between reducibility of polynomials and schemes.

THEOREM 5.1. Suppose a scheme N is singular and for every node set
T ¢ F ¢ B3 where volg, F > 0, there is a reducible polynomial P = Pr
satisfying (1.3). Then

(5.1) N = N1+ Ny,
where N; # 0 is singular.

Proof Denote by D the set of all decompositions of A of the form
(5.1). Obviously D is a finite set. Let 7 € F and Pr = P Py Since deg P =
deg Py 4+ deg P, and the multiplicity of P at each point equals the sum of
the corresponding multiplicities of P and P, we have N = Nl,q— + Nzifr,
where (N 1, 7T) is singular. This means that

(Nl 1N2)ED
where
Spp = {T € B* : (M, T) is singular}.
On the other hand, volz; Sy = 0 if M is regular. Thus, if each couple of D
comtains a regular scherme, then
volgs (Sp, N San) =0
for all (M, N2) € D, which contradicts (5.2), since wolgs ' > 0. Theorem
5.1 is proved.

‘We will say that a quadratic transformation @ is applicable for the node
set T = {t1,...,%.} C R? if there is no plane containing 0 and the nodes
{t. : v € supp Q}. In this case we define

Q(T) = {Q(tl): sy Q(ts)}-
For A ¢ PNC with A = @;...QE, , we denote by G4 the collection of
node sets 7 such that
(i) @; is applicable for G;—1 ... 1T, 1=1,...,1;

(it} the plane passing through the pth and gth nodes of the node set

Qi -..Q1{7) and through 0 does not contain any other node of that set.

Obviously, the complement of G4 in R has measure zero (in fact, it is
a union of surfaces).

THEOREM 5.2. Suppose A = {a1,...,a5;a} € PNC and T € G4. Then
there exists a unique olgebraic curve AT of degree o with

(5.3) multz A7 > A’
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Moreover,
1) muliz A7 = 4.
2) There is no singular point of AT outside T
3) A7 is quadratically equivolent to a line and hence is irreducible.

Proof Suppose that A = Q... Q1 F, ;. We use induction on {. The case
! =0 is obvious. Suppose the theorem holds for @, A and @1(7) € G, 4.

Consider the algebraic curve C of degree o satisfying (5.3), i.e.

multrC > A

(the existence of O follows from A € LC). If 1) does not hold, then in view
of Remark 3.5(3) we will have a reducible curve with multiplicity (@1 4) on
the node set Q4 (7), which contradicts the induction hypothesis.

On the other hand, C cannot be reducible by Remark 3.5(4,5) and the
induction hypothesis. In a similar way we obtain the unigqueness of C.

To check 2), note that in view of (1.10) we have

(5.4) ey — 1) = (a ~ 2)( — 1).
12l
Now, if the algebraic curve C has a singular point outside 7 with multiplicity
g = 2, then from (5.4) we get
a4
Cl{-i((}!f, - l) > (cx - 2)(0& - 1),
D

V=

which means that C is reducible (see [W50], Theorem 4.4). Theorem 5.2 is
proved.

Tn the next theorem we goneralize this result for an orthogonal subset of
PNC.

THEOREM 5.3. Suppose A is an orthogonal set of prime numerical curves,

TeGa=[) Ga, M=) M4,
AgA AcA
where Aa & By Then
(i) There caists o wnique algebraoic curve MT with

(5.8) multyMT > M.

(i) For this unique curve we have equality in (5.5), and the curve consists
of the components AT with mulliplicities Aa, t.e.

(5.6) MT =5 M AT
AgA
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(iit) If z € MT\T then there exists o unique A € A such that x € AT;
TnoTeover,
mult, M7 = mult, A7 = Aa.
Proof. For algebraic curves Cy, Oy and a node set 7 we define

(Gl, Gg):r = Z mult, Ciymult,Cs ~ deg C deg Cs.
el _
Suppose T € G.4. Since M is a numerical curve {and hence a singu-
lar scheme), there exists an algebraic curve € of degree deg M such that
multyC > M. Then for fixed B € A with Ap > 1 we have (C, B}z >
{M, B) = Xp. Therefore, BT, which is irreducible, is a component of C' with
multiplicity A > 1 by Beszout’s theorem.
Let us now prove that

(5.7) A> Ag.
Suppose A < Ap and €1 := C — AB7. Then Theorem 5.2 implies that
multzCy > Y Mg~ AB
AcA
and hence
(€1, BTYy > ( 3 )\AA~AB,B> - ( ¥ AAA,B> ~A=Xg—A>0.
AeA AgA

By Begout’s theorem this contradicts the fact that B7 is not a component
of G]_.

Using the equality

degC' =deg M = Z Aadeg A,
AEA

we deduce from (5.7) that for every A € A the multiplicity of A7 in the
algebraic curve C equals A4, this curve is unique and satisfies (5.6). Equality
in (5.5) follows from Theorem 5.2.

Statement (iii) of the theorem follows from the fact that (A7, A7)y =
(A1, Ag) = 0 for A;, 42 € A, and hence no two of the curves A7 for A€ A
have an intersection point outside 7. Theorem 5.3 is proved.

Remark 5.4. Note that if Ay < 1 for all A € A, then M7 has no
singular point outside 7.

In the following theorem we discuss the problem of irreducibility of al-
gebraic curves with given singularities. :

THEOREM 5.5. Suppose Conjecture 1.10 is true and N © BS*, N = (.

Then there is a set Gy C B3 whose complement has measure zero such
that for every node set T € Gy
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(i) There is a unique algebraic curve N7 of degree n with multy N7 >
N

(i) The curve N T has o unigue irreducible component with multiplicity
Xif N~ ACp, A > 2, and is irreducible otherwise.

Proof. Note first that the assumptions of the theorem imply R(N) = 1.
Hence, according to Remark 4.2 we have (i) for every 7 from a set Upn
whose complement in R3? has measure zero. In the case N £ ACp for A > 2
it follows from Theorems 2.1 and 5.1 that the set Vi of 7 for which M7 is
reducible has measore zoro and it remains to take Gy = Un \ Vi

If N ~ Mg with A > 2, then in view of A/ = ANV and N+ ~ Cj the
uniqueness of the curve A7 implies that it has a unique component (N4)7
with multiplicity A. To complete the proof we set Gy = Uy \ Varu.

The next theorem concerns the (exact) number of components of alge-
braic curves with given singularities.

THEOREM b.6. Suppose N is @ singular scheme with canonical decompo-

sition
N= > pad+utNt, NV £,

Ay
and let T € Gg,, . Then each curve C of degree deg N with multz C' > N
containg all the components AT, A € Ry, with multiplicities pa and at least
one additional component (not necessarily irreducible) C% of degree deg NV
with multiplicity p* such that
(5.8) multC¥ > (WHY'.
In addition,

(i) mult,C = mult,C¥ if z € C+\ 7. o .

(if) mult,C = mult, AT if x € C'\ C¥, where A € ly withw € A7,
Moreover, if R(N) == 1 and Conjecture 1.10 is true, then for every T €
Gny NUpu there is exactly one additional component CY (with multiplicity
u¥) which is drreducible.

Proof, As in the proof of Theorem 5.3 we see that the curve € has all
the components AT, 4 € 2y, with multiplicities ;4. Denote the product
of the remaining components by cY:

V= O Z ;AAAT.
AGy
The relation (5.8) follows from Theorem 5.3. The orthogonality of tﬁxe canon-
ical decomposition and Bezout’s theorem imply that the curves Cvand A

have no common point outside 7, which means that (:ir) hoéds. .The statement
(if) follows from the fact that two distinct curves A%, BY with ABe 2y
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cannot have a common point outside C¥, which follows from Lemma 2.10. To
end the proof it remains to note that R(NV) = R(N) and use Theorem 5.5.

Finally, we consider the following problem: can the size of N guarantee
the regularity of N'7

THEOREM 5.7. If Conjecture 1.10 is true, then all the schemes N =

{n1,...,ngn} satisfying N > n—=1 are regular, while for the singular
scheme N = n{1, 1;1} we have
(5.9) N=n~1

Proof. According to Remark 1.15 we can assume that A" € BS™*. We
have the following inequalities for the coefficients of the cancnical decompo-
sition of A

(5.10) S a1 ) pa-k<n—k<n—1,

AES N Acly

where k = #££2)y. This, in view of (1.12), implies that N! > 0. Therefore, if
the conjecture is true, the scheme A! and hence N is regular.

Remark 5.8. Note that we have equalities in (5.10) if and only if
N = n{1,1;1}, hence these schemes are the only singular schemes satis-
fying (5.9).
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