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Preface and bibliography

Thermodynamics is a branch of physics that studies macroscopic systems (i.e. composed
of a large number of particles) using an energetic approach. It is a theory that applies to
many systems and allows to establish general relations between the coefficients that describe
the various states of matter.

Statistical mechanics gives a microscopic interpretation to the quantities studied in
thermodynamics. In simple cases, the postulates of statistical mechanics allow one to un-
derstand and interpret the laws of thermodynamics.

These lecture notes are intended for students who already have some notions in ther-
modynamics. After the first three chapters, which refer to key concepts (first and second
laws, energy, entropy, work, heat, ...), more advanced notions of thermodynamics are dis-
cussed (potentials and thermodynamic functions, thermoelastic coefficients, phase diagrams,
binary solutions, ...). Halfway through this course, two chapters outlining the fundamentals
of statistical mechanics shed light on how the macroscopic properties of matter (as described
by thermodynamics) are related to the microscopic behaviour of atoms and molecules; we
will discuss (amongst other notions) the Boltzmann factor, the equipartition of energy, the
statistical interpretation of entropy, the kinetic theory of gases, ...

These notes are associated with about forty short videos explaining the most tricky and
important points of this course.

Short bibliography

e Jancovici, Statistical physics and thermodynamics, Wiley (1973)

A concise book, ideal to review the basics of thermodynamics. It also addresses statistical mechanics.
Kubo, Thermodynamics: an advanced course with problems and solutions, North Hol-
land (1968)

Reference book with many examples and problems with complete solutions.

Landau and Lifshitz Statistical Physics, Elsevier, (1980)

More difficult (advised as a second reading): A classic, timeless, extremely concise!
Callen Thermodynamics and an introduction to thermostatistics, Wiley (1985)

A very formal book, the reading of which is strongly recommended.

Reif Berkeley Physics Course, Vol. 5: Statistical Physics, Mc Graw-Hill Dunod (1967)

Another classic, detailed, with illustrations, that you will enjoy reading!

Reif Fundamentals of statistical and thermal physics, Waveland Press (2009)

Book by the same author as the previous one, more advanced and swift in its presentation.






Chapter 1 [Video 1]

Review of basic concepts

1.1 Thermodynamic systems | Video 2

Thermodynamics is the science of macroscopic systems, i.e. of systems composed of N par-
ticles (atoms, molecules, ions, etc.), N being very large (N > 1).

Frame 1.1: Orders of magnitude I Video 3 I

Under normal conditions, the typical distance between particles is approximately:
e 3A =0.3nm = 310"°m for solids or liquids,
e 3nm for gases.
In 1 cm?® of matter, there are typically between:
e 10?2 to 10?3 particles for solids or liquids,
e 10 to 10?° particles for gases.
Recall that a mole is defined as the amount of substance in 12 g of carbon 12 and the
Avogadro constant A gives the number of particles per mole:

Ny = 6.02210% mol L.

Only a few cm? to a few tens of cm?® of solid or liquid are required to obtain a mole.
For an ideal gas, at atmospheric pressure and a temperature of 0°C, the volume of a mole is
22.40.

Thermodynamics studies the properties of matter at a macroscopic level, i.e. with a
number of particles so large that it is not feasible to study each individual trajectory.

Frame 1.2: Thermodynamic systems

A thermodynamic system is the object of the study under review. What is not in the
system is defined as the surroundings. A system can be:
e open or closed, depending on whether it can exchange matter, or not, with its
surroundings,
e non-isolated or isolated, depending on whether it can exchange energy, or not,
with its surroundings,
e movable or rigid.

Remark: if the system is open, it cannot be isolated.
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https://www.youtube.com
https://www.youtube.com/watch?v=LK4YIZ5U954
https://www.youtube.com/watch?v=o1T0wjl0N0Y

1.2 Thermodynamic equilibrium

If a system is left standing for a sufficiently long time, it will reach a state of thermodynamic
equilibrium.

Frame 1.3: Thermodynamic equilibrium

A system is considered under thermodynamic equilibrium when there is no more macro-
scopic movement nor any kind of flux.

e When a system is in equilibrium, there is no macroscopic movement (we cannot
see anything moving) but, considered individually, particles move randomly with
high velocity.

e A conducting wire in which flows an electric current is not in equilibrium since
there is a flux of charges as well as thermal dissipation.

e A piece of metal connecting a hot source to a cold source is not in equilibrium
since there is heat transfer and hence an exchange of energy from the hot towards
the cold source.

1.3 Thermodynamic variables

At thermodynamic equilibrium, it is sufficient to know a small number of quantities to fully
characterise a system. These quantities are called thermodynamic variables.

Frame 1.4: Thermodynamic variables

Thermodynamic variables are the quantities used to characterise a system.

e Some variables have a meaning even when the number of particles in the system
is small. Such variables are derived from geometry, mechanics, electromagnetism,
etc.; e.g. volume V', surface S, number of particles IV, amount of substance n (in
moles), applied force, internal energy U, magnetisation M, etc.

e Other variables only have a meaning for systems with a large number of particles;
e.g. gas pressure p, temperature 7T', chemical potential u, entropy S, etc.

A thermodynamic variable is said to be extensive if it is proportional to the amount of
substance in the system, and intensive if it is independent. A thermodynamic variable

is additive if the value associated with a system composed of several parts is equal to
the sum of the values associated with each individual part.

Example 1: A glass of 10c¢/ is taken from a bathtub filled with 100 ¢ of water. In the
glass, there is a thousand times less particles, moles, volume, energy, entropy than in the
bathtub; these quantities are extensive. On the other hand, the temperature, pressure and
chemical potential of the water are the same in the bathtub and in the glass; these quantities
are intensive. The contact surface between water and air has a complicated dependence on
the geometry of the glass and the bathtub; this surface is a quantity that is neither intensive
nor extensive.

Example 2: The system considered is the content of a half filled bottle, i.e. a liquid
(bottom part) and a gas (top part). The energy of the system is equal to the energy of the
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liquid plus the energy of the gas; this quantity is additive. It is also the case for volume,
entropy, etc.

Remark: In general, additive and extensive variables are the same.

Some variables are easy to measure (volume, temperature, pressure in a fluid, etc.) and
others can only be obtained through a calculation (internal energy, entropy, chemical poten-
tial, etc.). We distinguish external and internal variables.

e [Krternal variables are those controlled by the operator, either by maintaining them
fixed (e.g. mass m of a closed system, volume V' of a rigid system), or by exerting an
action on the system (e.g. pressure of a pressostat py, temperature of a thermostat Tp).

e The variable is internal (or free) when the operator does not have direct access to it
(even if he can define it or measure it). For example, this is the case of the number of
reagent particles in a closed system in which a chemical reaction occurs. The value of
these variables is fixed only by the thermodynamic equilibrium conditions.

For a pure single phase fluid, the equilibrium state of the system is entirely determined
by three thermodynamic variables, for example n, V and T or n, V and U... The values of
the other variables can then be obtained using the equation of state (relationship between
p, n, V and T') and other relationships, see the example of the ideal gas in frame 1.5, or of
the van der Waals gas in frame 1.10.

Frame 1.5: The ideal gas

The ideal gas is an ideal thermodynamic system where the interactions between parti-
cles are neglected. For a classical ideal gas (where quantum effects are neglected), the
equation of state (ideal gas law) is

p: pressure (Pa) V: volume (m3)
pV =nRT n: amount of substance (mol) 7T temperature (K)

where R = 8,31 J/K/mol is the ideal gas constant. We can also write
pV = N:I{ZBT N: number of particles
where kp = 1,38 1072 J /K is the Boltzmann constant. Since N = n\, we have

R = Nykg.

When the ideal gas is monoatomic, we also have the relationship

3 3
U= §nRT = ENkBT U: internal energy (J)

The ideal gas is a very good approximation of the usual real gases at ordinary tempera-
tures and pressures. However, when the molar density n/V becomes high, the ideal gas
approximation is no longer satisfactory: the mean distance between particles decreases
and the interaction potential between them makes for a sizeable contribution to the
total energy of the gas. On can then use a better approximation such as the van der
Waals gas, see frame 1.10.
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|Video4| 1.4 Transformations

In thermodynamics, one is interested in the transformations of a system and most often in
transformations between two equilibrium states. Let us consider a system transiting between
two equilibrium states (i) to (f) and X a state variable passing from the value X; to Xy, e.g.
the temperature T" which would change from T} = 20°C to T} = 60°C. The variation of X
during the transformation is defined by AX = X; — Xj, i.e. AT =Ty —T; = 40°C in our
example. By definition, this variation only depends on the initial and final states and not
on the sequence of intermediate states. In short, AX does not depend on the path of the
process followed.

Some transformations are brutal which can lead to intermediate states being poorly
defined: this is the case of a gas expansion in vacuum or an explosive chemical reaction. In
thermodynamics, we are more often interested in slower transformations for which the state
of the system is well defined at each moment. In particular, quasistatic transformations and
reversible transformations are of crucial importance:

Frame 1.6: Quasistatic transformation

A transformation is said to be quasistatic when it evolves slowly enough for the system
to be described by a continuous succession of (internal) equilibrium states. During a

quasistatic transformation, all the state variables X, X, ... of the system are defined
and vary continuously. We can then express the differential of any state function
O({X,}) as
0P 0P
do = dX, = Y,dX,, ith Y, = —,
— X, |y - s X,

as well as the variation .

A@z@—@i:/ do.

1

The fact that A® does not depend on the path followed is ensured by the fact that d®
is the differential of a state function. In mathematics, we can show that the expression
of d® is a differential if, and only if, all the following relations are verified

Y, Y,
0X,, 0X,

(cross partial derivatives equality, Schwarz’s theorem). The application of these rela-
tions to a state function @ constitutes Maxwell’s relations in thermodynamics. We will
return to this in chapter 4.
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https://youtu.be/df9A9Nl-zKs

Frame 1.7 : Reversible transformation

A transformation is said to be reversible when the path of the process can be followed,
in the same external environment, by reversing the direction of time (in other words,
the transformation obtained by reversing the procedure is credible). Conversely, a
transformation that is only feasible in the normal direction of time is described as
wrreversible.

For a transformation to be reversible, it is necessary to control step by step the evolution
of the system, which means that all the state variables must be permanently constrained
by the operator (i.e., they do not vary without the control of the operator). For such
an occurrence, not only does the system follow a quasistatic transformation, but it is
also permanently in equilibrium with its surroundings.

The concepts of quasistatic and reversible transformations are close, but distinct:

quasistatic transformation — succession of equilibrium states of the system,

reversible transformation — succession of equilibrium states of the universe.

Any reversible transformation is therefore quasistatic, however the reciprocal is gener-
ally false (but nevertheless true in a large number of cases).

The following terms are used for thermodynamic transformations:

isobaric — the pressure p of the system is constant,
monobaric = the external pressure pg is constant,
isochoric = the volume V' of the system is constant,
isotherm — the temperature T of the system is constant,
monotherm <~ the outside temperature Ty is constant,
adiabatic = the system evolves without heat exchange with its surroundings.

1.5 Internal energy U

The energy of a system Fi, can be divided in two, the macroscopic energy and the micro-
scopic energy or internal energy U.

e The macroscopic energy includes the overall motion of a system (solid in rotation,
flow in a fluid, etc.), potential energies (electrostatic energy if the system is charged,
potential energy of gravity, etc.), and so on.

e The internal energy represents the rest of the energy of the system: molecular motion,
energy of interaction between particles, etc.

In thermodynamics, one almost always considers situations where the macroscopic energy

is constant: the system is immobile (macroscopically), does not change altitude, etc. The
energy variations of the system are then equal to the variations of the internal energy:

AE = AU (in most cases). (1.1)

The internal energy is defined as the sum of several terms:
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https://www.youtube.com/watch?v=m4Nsboc6W2k

Frame 1.8: Different types of internal energies

Translational kinetic energy Fi.a,s is the kinetic energy accounting for the motion
of the particles. For a classical system at rest, it is written as

m;: mass of the particle 4,

N
the sum is over the N particles of the system
§ : 2
Etrans — =m;Vv;
i—1 2 v;: velocity (vector) of the center of mass of particle 4

(it is more complicated for a quantum system...)
Interaction energy between particles FEj,; which can be written as

the sum is over all pairs of particles; hence there are w terms

Eint - E U(Ti,j) ri,;: distance between particules i et j
(i,5) u: interaction potentiel.

(see frame 1.9 for more details on the interaction potential u(r).)

Rotational kinetic energy F,,i which represents the kinetic energy due to the ro-
tation of the particles on themselves.

Vibrational kinetic energy F.;, which represents the kinetic and elastic energy due
to the internal vibrations of the particles.

Other energy terms may contribute depending on the application, e.g. the energy
in the excitations of the electronic cloud (at high temperature), the interaction
energy with the magnetic field, etc.

The internal energy is the sum of all these terms:

U= Etrans + Eint + Erot + Evib Gece

The interaction energy FEi, is important in liquids and solids, but is weak (and often
negligible) in gases. By definition, it is zero for the ideal gas.

Frame 1.9: The interaction potential

The interaction potential u(r) between two particles separated by a distance r (refer
to frame 1.8 for the definition of Ej,) often has the form displayed hereafter:

T ]

=
3 0
Y E— AV AR— E— |
O o Tmin 2?"0 37“0
r

e 7.in is the distance for which the energy is minimal: the interaction is repulsive
for r < rpim and attractive for r > ryin.
e The repulsive force is extremely strong for » < 7y so that the distance between
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two particles is almost always greater than rg.

e Both distances 7, and ro are typically of the order of a few Angstroms.

e When r is large, the decrease in potential is very fast: it has a 1/r% depen-
dency. (This force originates from the dipole-dipole interaction between atoms,
also called the van der Waals force. It is an electrostatic force.) Usually, the in-
teraction between two particles becomes negligible when their distance is greater
than approximately three times rg, .e. typically one nanometer.

Taking into account this interaction potential leads, as a first approximation, to the
van der Waals gas, see frame 1.10.

Frame 1.10: The van der Waals gas

When matter density increases and the ideal gas approximation is no longer satisfactory,
one needs to take into account the interaction potential described in frame 1.9. The
main two effects are the following:

e Because of the repulsive part of the potential, the volume that the gas can oc-
cupy is effectively smaller by an amount which is proportional to the number of
particles.

e Because of the attractive part of the potential, the particles heading towards the
boundaries are slowed down by the rest of the gas; one shows that this has the
effect of reducing the pressure by an amount proportional to the square of the
matter density.

To take these two effects into account, van der Waals wrote in 1873 an equation of
state which reads
n’a
(p + W) (V —nb) = nRT,
where a and b are two gas dependent constants. As opposed to the ideal gas equation,
the van der Waals gas equation is gas-dependent. This quite simple equation allows to
understand a large number of observations, including the liquid-gas phase transition.
In this approximation, the internal energy of a monoatomic gas can be written
n2

U = ;nRT—aV

In all the situations we will encounter in this course, the internal energy will be an additive
quantity. This means that if a system is composed of two parts A and B, we can define
Ua (or Up) as the energy that system A (or system B) would have if considered separately
(alone), and U, p as the energy of the entire system, therefore

Uasp=Us+Up. (12)

To understand this result, the internal energy can be broken down as explained in frame 1.8:
U = Eians + Fit + Frot + Evip + -+ The terms Eians, Fiot, Fvib, €tc. are clearly additive
terms. The only problematic term is the interaction energy FEji,. This interaction energy
is usually written as a sum over all pairs of particles (i,7) of the interaction potential u
between these two particles. In this sum there are three types of terms: the terms where
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both particles are in part A, the terms where both are in B, and the terms where one particle
is in A and the other in B:

Buears = ulrig) = Y ulrig)+ Y ulrig)+ > ulrig). (1.3)

(4,9) (4.4) (4,9) (4.4)
i€EA,JEA i€B,jEB 1€A,jEB

(Recall that r; ; is the distance between particles ¢ and j.) The first term on the right-hand
side is Ejy 4, the interaction energy of part A. Similarly, the second term is Eiy; . The third
term is usually negligible. Indeed, assuming that the interaction potential u(r) is similar to
the one described in frame 1.9, then the only pairs of particles (i,j) with ¢ € A,j € B for
which u(r; ;) is not negligible are those which are on either side of the border between A
and B, in a layer of the order of the nanometer. This third term therefore concerns very
few particles with respect to the first two and is considered negligible. Hence we find that
FEi is an additive quantity and, therefore, the internal energy U is also, as expressed earlier.
However, there are two types of situations (which we will not consider in this course) where
the internal energy is no longer additive:

e When the dimensions of the system are of the same order of magnitude as the inter-
action length i.e. of the order of the nanometer. (But in this case are we still doing
thermodynamics?)

e When the interaction potential is not similar to the one described in frame 1.9 and
decreases slowly with distance (long range force). This is the case for example if the
system has a non-zero electrical charge (the electrostatic potential decreases in 1/r
only), or if we study the thermodynamics of a galaxy: the interaction between two
particles (i.e. between two stars) is gravitational and has a potential that decreases in
1/r.

1.6 Pressure p

A fluid exerts on a surface element dS of a wall a force of pressure perpendicular to dS,
directed outwards with a norm equal to pdS, where by definition p is the pressure of the
fluid.

The force of pressure, which is a force, a vector quantity the SI unit of which is the
Newton, should not be confused with the pressure, a scalar quantity whose SI unit is
the Pascal.

At thermodynamic equilibrium, the system must specifically be at mechanical equilib-
rium. Let us consider three examples:
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Two fluids A and B are separated by a partition which can slide
horizontally. Mechanical equilibrium imposes p4 = pg.

B Two fluids A and B are separated by a partition which can slide
| | vertically. Mechanical equilibrium imposes ps = pp + %, with M

A the mass of the moving wall, § its surface and g the gravitational
acceleration.

B The fluid A is enclosed in an elastic membrane (balloon, soap bub-
ble, etc.) which is immersed in the fluid B (typically the atmo-
sphere). Then ps > pp, and the difference between the two pres-
sures depends on the elastic properties of the membrane and its
radius of curvature.

If the partition between A and B is not mobile, this means that something is keeping
it motionless regardless of the pressures exerted by A and B. In particular we can have

PA # DPB.

From a microscopic point of view, the pressure can be understood as the effect of the
particles hitting the walls. A calculation, as detailed in the video, gives for a classical ideal
gas consisting of NV identical particles:

1 N 9 p: pressure (Pa) m: mass of a particle (kg)
p=3m=v,. N: number of particles V: volume (m?) (14)
3V vg: root-mean-square speed (m/s)

The root-mean-square speed v, is an estimate of the typical velocity of a particle. Its
precise definition is

the sum is over the N particles of the system (1 5)
v;: velocity (vector) of the particle . ’

(The notation (v?) can be read as the mean value of v? and is by definition + >, vZ.) The
translational kinetic energy can be written as Eyans = N X gmo? (see frame 1.8 and (1.5)).
We can deduce that for any ideal gas, we have

2 For all ideal gases
pV = —Firans p: pressure (Pa) V: volume (m?) (16)
3 Elrans: translational kinetic energy (J)

For an ideal monoatomic gas, we have U = FEi,.,s and therefore

pv — gU For an ideal monoatomic gas (17>

3 U: internal energy (J)

By using the ideal gas law pV = nRT', we obtain

3
Eirans = §nRT (for all classical ideal gases), (1.8)

and obviously U = %nRT for a classical monoatomic ideal gas.
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https://www.youtube.com/watch?v=GDodeAuD9Ko
https://www.youtube.com/watch?v=gU4LNJF2920

1.7 Temperature T’

The temperature of a thermodynamic system is a quantity that must verify the following
property:

When two systems A et B with different temperatures T4 and Tg are brought
into contact, the energy (in the form of heat) flows spontaneously from the body
having the highest temperature to the body having the lowest one.

This property is however not sufficient to clearly define temperature. There are several ways

to define the latter:

With a temperature scale. If the temperature of a given system is known, the tempera-
ture of all other systems can be deduced by comparison. For example, we can define
the temperature of an ideal gas by

_w

T )
nR

(1.9)
(See frame 1.5.) The temperature of any system can then be defined as the temperature
of the ideal gas with which it is in thermal equilibrium.

The problem with this definition is that the ideal gas is theoretical, and real gases can
only be approximated to an ideal gas.

From the microscopic thermal motion. In a classical ideal gas, there is a simple rela-
tion (1.8) between the translational kinetic energy and the temperature:

3
Bivans = 5nRT. (1.10)

This relation remains valid for any classical system (i.e. for any system where the
quantum and relativistic effects can be neglected) and can therefore be used as a
definition of temperature. From this point of view, temperature is a direct measurement
of molecular thermal motion. By introducing the mean translational kinetic energy per
particle €yans = Firans/N = %mvg and recalling that nR = Nkpg, we can also write for
a particle:

3
€trans — §kBT (111)

This definition works for gases, liquids and solids at usual temperatures. However, it
does not work for systems where quantum effects are strong. If we tried to determine
the temperature of the conduction electrons in a metal at room temperature using
(1.11), we would find a temperature between 10* et 10° Kelvin!
By derivation of the entropy. In an abstract manner, the temperature in defined by
1 9S

== — : 1.12
T 8U n,V,... ( )

Although very abstract, this definition is valid in all situations. It is the most accurate
way to define the temperature.
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Chapter 2 IVideo 1 I

Energy transfer

2.1 Energy conservation, work, heat

A system undergoing a transformation from a state A to a state B is considered. Assuming
that the system is macroscopically at rest in states A and B, energy conservation gives:

AU = Up — Uy = |energy received by the system between A and B].

Remark: The energy received is an algebraic quantity. If the energy received AU is positive,
the system receives energy. If the energy received AU is negative, the system gives away
energy.

Energy gains are classified into two categories, the work received W and the heat received

Q:

Frame 2.1: First law

During a transformation, we have

U: internal energy
AU =W + Q W: work received

@: heat received

(The three quantities W, @ and AU can be positive, negative or zero).

e The work received W corresponds to the macroscopic energy exchanges; it should
be possible to determine it by measuring the various forces applied to the sys-
tem. A work received W occurs with the change of a macroscopic parameter of
the system other than energy. For example, the work of pressure forces comes
with a change in volume, the work of magnetic forces comes with a change of
magnetisation, etc.

e The heat received () corresponds to the spontaneous energy exchanges between
two bodies at different temperatures, either by contact (conduction), or at a
distance (radiation), or by means of a moving fluid (convection). These energy
transfers occur at the microscopic level and are sometimes difficult to determine
with precision.

For an infinitesimally small transformation, we write

B B B
dU = oW +6Q with AU = / au, W = / oW and Q = / 0Q.
A A A
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e U is a state function, a property of the system. AU = Ug — Uy is the difference
in U between two different states A and B and dU is the difference (infinitesimal)
between two infinitely close states. The quantity AU depends only on the states
A and B and does not depend on the intermediate states.

e IV and () are two properties of the transformation. They depend on A, B and
all intermediate states (i.e. the transformation path followed). They cannot be
expressed as the difference of a quantity taken in B and A. Similarly, 6/ and
0() are infinitesimal energy gains during a transformation between two infinitely
close states. They do not correspond to a difference.

Remark: Transformations without heat or work exchange are possible. The typical
example is the Joule expansion (described in more detail in section 3.1.1): a gas is in an
adiabatic enclosure; a tap is opened which allows the gas to flow into another adiabatic
enclosure previously under vacuum. During the transformation the gas receives neither heat
(all the walls are adiabatic) nor work (there is no external force). Therefore we have @) = 0,
W = 0 and, of course, AU = 0. If the gas is ideal, since U does not depend on V, it implies
that AT = 0. If the gas is real, U is an increasing function of 7" and V' (see, for example,
the expression of U for a van der Waals gas, frame 1.10), and AU = 0 implies AT < 0.

pulley

thermometer ’
l

¢~ graduated ruler
i i
g Mass

blades

g

Figure 2.1: The Joule apparatus to establish heat/energy equivalence.

The historical content of the first law is that heat, considered until the mid-nineteenth
century as a separate quantity (with its own unit, the calorie), is actually a form of energy
(expressed in joules) similar to mechanical energy. The historical experience of Joule in
1845, see Figure 2.1, made it possible to highlight the heat/energy equivalence: a mass m
which falls from a height H drives the rotation of blades in a volume of thermally insulated
water. Once all macroscopic movements in the water have stopped, a thermometer indicates
a temperature increase. The same result could have been obtained by supplying the system
with heat (in calories) equal to the mass of water (in grams) multiplied by the temperature
variation (in Celsius). Instead a mechanical energy equal to mgH (potential energy of
gravity) was supplied. Heat is therefore a form of energy and calorie can be expressed in
joules. (Reminder: 1cal =4.186J.)
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2.2 Some examples of energy exchange through work

2.2.1 Work of pressure forces

A system whose volume is likely to change is considered. A typical g z
example is a gas in a container closed by a piston, as in the adjacent S| ¥
figure.

The system considered here is the whole system {gas+piston}. The external force exerted
on this system is the pressure force due to the surroundings (typically: the atmosphere). By
labelling the external pressure pey, the force is directed in the increasing z-direction with its
norm equal to Speyt, with & the surface of the piston. When the piston position increases
by dz, the work of the pressure force, which is also the work received by the system is

OW = PextS dx = —Poyt AV,

where dV = —S dz is the volume variation of the system.

Remarks:

e The expression 6W = —pey dV is valid for all geometries, not just for a piston. For
example, this expression applies to a balloon that is inflated, a metal that expands,
etc.

e If the piston slides vertically and its mass M is not negligible (or if S

a mass M is placed on it), the weight also contributes some work.
Usually, the work of the weight is included in the work of the pres-
sure forces and one still writes 0W = —pe i dV, but where po =
(the real external pressure) + 222, See also section 1.6. T

e When a transformation is slow enough so that the system is permanently under me-
chanical equilibrium (this is the case for a reversible transformation), we always have
P = Pext (With p the fluid pressure) and thus dW = —pdV.

e For a violent transformation, it may happen that p is not defined or that p # pey. It is
then necessary to be cautious, in the energy balance, to the fact that the piston (which
is part of the system!) gains a macroscopic kinetic energy. We must therefore write
dFiota = OW 4+ 6Q), and not AU = W + Q). If at the end of the transformation the
piston is at rest, one may have to wonder whether it has returned its kinetic energy to
the gas in the container or to the surroundings.

For a transformation where the external pressure is constant, we have of course W =
—Pext AV = —A(pextV'). When the external pressure is constant and the system is in me-
chanical equilibrium at the initial (pext = Pinitia) and final (Pexs = Phna) stages, the work of
the pressure forces is then W = —A(pV') and, if there are no other forces producing work,

/////////////

AH =@ if pext constant and pinitial = Phinal = Pexts (2-1)
where the enthalpy H is defined by
H=U+pV.

(See also frame 4.3.) Expression (2.1), valid for a “transformation at constant pressure”, is
to be compared to the expression AU = () valid when W = 0, i.e. for a “transformation at
constant volume”.
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2.2.2 Elastic work

If we pull on an elastic band with a force of norm fe, the system receives work
(5W — fext dL7

where dL is the length increase of the band during the transformation.

The remarks made for the work of pressure forces can also be made here:

e When the transformation is slow enough so that we can consider that there is per-
manent mechanical equilibrium (this is the case, for example, of a reversible transfor-
mation), we have at any moment f = fo with f the tension of the band and thus
oW = fdL.

e For a violent transformation (for example, we stretch the rubber band and then let go
of one end), we must take into account the macroscopic kinetic energy in any energy
balance.

To study this kind of systems, we sometimes define an enthalpy H = U — fL. We then have
AH = (@ for a transformation at constant tension without any other source of work.

2.2.3 Electric work

(Q%ixt A system made of a sample placed between the armatures of a ca-

‘ pacitor is considered. A voltage ¢ey is applied to this capacitor by a

} generator; it is this generator (placed outside the system) that deliv-

‘ ers the work. During a transformation that, for example, changes the

- SV capacity of the capacitor, the electric charge on its plates changes.
The work received is then

s

7 q —q X
@

L
\
N
N

(SW = ¢ext dQ7

where ¢ is the charge of the plate connected to the + terminal of the generator.

2.2.4 Chemical work

When the system is open, it can exchange substance with the surroundings and the number
of moles n can vary.

As a first example, imagine a closed recipient containing water in vapour and liquid forms
(for example a pressure cooker the valves of which are in the closed position). By heating
the recipient, the system “water vapour in the recipient” will see its amount of substance
increase: water will pass from the liquid to the vapour phase. If n, denotes the amount
of water in the vapour phase, the system receives an energy proportional to dn, during an
infinitesimal transformation n, — n, + dn,. It is the chemical work:

OW = pexs ANy, (2.2)

where ey depends on the properties of the surroundings, here the liquid. piey is called the
chemical potential. We will return in several chapters to this very important quantity.

The generalisation to mixtures of different species is immediate. Imagine that the system
contains different chemical species with a number of moles n; for each (i is the index of the
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different species). To simplify, we will assume that there is only one phase. During an
infinitesimal transformation of the amount of substance of each species (for example, during
a chemical reaction), the infinitesimal work is given by

oW ="l dn,. (2.3)

2.3 Some examples of heat exchange

2.3.1 Heat exchange by contact (conduction)

If a body X at temperature T'x is in contact with a body Y at temperature 7y different
from Tx, the two bodies exchange energy in the form of heat. This exchange is all the more
important as the difference in temperature, the contact surface and the contact time are
large. A phenomenological law consists in writing that the heat received by X during dt is

5Q = hS (Ty — Tyx) dt, (2.4)

where S is the contact area h is the heat transfer coefficient. This coefficient depends on the
materials constituting X and Y and on the quality of the contact.

Inside a material where the temperature is not homogeneous, we introduce the heat flux
¢ (in W/m?). The amount of heat that passes through an oriented surface (ﬁ during dt is

then ¢ (Tg dt. Phenomenologically, for situations close to equilibrium, we write
i=—\VT, (Fourier’s law), (2.5)

where A (in W/m/K) is the thermal conductivity of the material.

The typical example where Fourier’s law is used
is the following: we consider two bodies X and Y at
different temperatures, connected by a bar of length L
and section S. It is assumed that the bar is thermally
isolated from the surroundings (but not from the two
bodies X and Y). One can show that (2.5) implies that in the stationary regime (when
nothing is time dependent), the temperature T'(x) in the bar at a distance x from the body
Y varies linearly with z. By imposing 7'(0) = Ty and T'(L) = Tx, we find

Ty —Tx

Tx)=Ty —x 7

The heat flux density is then given by ¢ = (A/L)(Ty — Tx)e, and, therefore, the heat per
unit of time (i.e. power) that crosses the bar is (AS/L)(Ty — Tx).

2.3.2 Heat exchange via a fluid (convection)

When substance is transported in a fluid, 7.e. when there is macroscopic motion (a current),

heat is transported with the fluid; it is convection. There are two types of convection:

Forced convection, when the fluid is set in motion externally. For example, blowing (e.g.
to cool down soup) with a fan, etc.
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Free convection, when the fluid motion starts spontaneously because the temperature is
not uniform. For example, in a pot of water placed on fire, convection cells are created:
hot water from the bottom of the pot rises to the surface, cools in contact with the
atmosphere and goes down to warm up at the bottom of the pot.

Modelling convection phenomena is usually difficult. A simple case is that of a body X

at temperature Ty in contact with a fluid Y (for example, the atmosphere) at a different

temperature Ty. Conduction and convection phenomena occur in a layer of fluid at the
surface of the object. The thickness of this layer depends on the properties of the fluid.

Then the heat exchanges can still be modelled by equation (2.4), where the coefficient h is

now called the conducto-convective coefficient. This is Newton’s law.

2.3.3 Heat exchange by radiation

Electromagnetic radiation carries energy. When this radiation meets matter, it may, de-
pending on its wavelength, be absorbed, be reflected or pass through. The substance that
absorbs electromagnetic radiation obviously gains the corresponding energy.

For each substance, a radiation absorption rate is defined as a function of its wavelength.
A body that looks blue absorbs all wavelengths of the visible spectrum except those cor-
responding to blue. A body that looks black absorbs all the wavelengths of the visible
spectrum.

The black body is defined as an ideal substance that perfectly absorbs radiation at all
wavelengths (not just the visible ones!). It is demonstrated that each surface element dS
of a black body X of temperature Tx emits spontaneously an electromagnetic radiation of
power

dP = oTL dS,

where 0 = 5.671078 W/m?/K* is the Stefan-Boltzmann constant. It is the black body radi-
ation. The wavelength distribution of the emitted radiation, and thus the perceived colour,
depends on the temperature of the black body. It is this phenomenon which explains that
the stars have different colours according to their temperatures. Black body radiation is in
the infrared at ambient temperatures. It is a red glow just visible at 800 K; the sun emits as
a black body at 5000 K.

A real body emits as a black body only for the wavelengths it absorbs. (Hence a blue
body does not emit spontaneously in the blue.) In practice, however, the black body remains
a very good approximation for any substance.

If we have a body X (convex, to simplify) of surface S at tem-
4 LL( 5 fr ) perature Ty in an environment at temperature 7y (for example by

‘\,\; ] putting it in an enclosure), two phenomena occur:

e The body X loses energy by black body radiation with a power
N~ N oS Ty

e The body X absorbs the energy emitted by the environment.
W SN It is shown that the power received is simply oS T.
Iy

f g ’77 ) By combining these two effects, the heat 6@ gained by X during d¢

by radiation is written

6Q = oS(Ty — Ty)dt.
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Chapter 3

Entropy and second law of
thermodynamics

3.1 Necessity of the second law

The first law of thermodynamics (conservation of energy) sets limits on acceptable thermo-
dynamic transformations: for an isolated system, a transformation from state (a) to state (b)
is possible only if U@ = U® or, in other terms, if AU = 0. According to the first law, if the
transformation from (a) to (b) is possible, then the reverse from (b) to (a) is also possible.

However, experience shows that for each system (and each choice of U, V| N, etc.) there
exists only one well-defined equilibrium state, and that any isolated system evolves spon-
taneously and irreversibly towards this equilibrium state. Hence, the first law of thermody-
namics is not sufficient to explain this observation, and a second law is required to determine
the equilibrium state. Let us consider two examples of irreversible transformations.

3.1.1 Joule expansion

Let us consider a gas of n moles with an energy U in a chamber of volume V' isolated from
its swrroundings. This chamber is separated into two equal parts of volume V/2 each and
connected by a small pipe.

At equilibrium, each compartment contains n/2 moles and has an energy U/2. By installing
a valve on the pipe, an operator can distribute as desired the n moles of the gas between
the two compartments; for example, the operator may decide to put all (or almost all)
the substance in one of the compartments and leave the other empty (or almost empty).
However, as soon as the valve is opened (which can be done without heat or work), the
system spontaneously relaxes to the equilibrium state; it is Joule’s expansion.
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The reverse transformation can not take place spontaneously.

3.1.2 Bodies in thermal contact

Let two bodies be initially separated and at equilibrium temperatures 7 and 75, with for
example Ty > T,. They are brought together so they can exchange energy in the form of
heat. It is always observed that heat goes from the hottest to the coldest body, until the
temperatures equalize to an intermediate value 7. The opposite is never observed whereas
the first law does not exclude that the cold body can give heat to the hot body.
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3.2 The second law

It is natural to characterize the equilibrium state as the state that maximizes “something”.
This “something” is entropy.

I Video 3 I Frame 3.1: Entropy

For each system, there is a quantity S defined at equilibrium, called entropy, which is:
A state function
The value of S depends only on the (macroscopic) state of the system, not on its
history. In simple cases, we write

S=S(U,V,n).

In more complicated cases (several compartments, several species, ... ), entropy
may depend on more variables.
Maximum at equilibrium

An isolated system (U, V', n are constant, there is no exchange of work nor heat
with the surroundings) evolves towards an equilibrium state, compatible with the
external constraints, for which S is maximum. In particular, when a constraint is
lifted on an isolated system (two parts of the system are put into thermal contact,
a valve is opened to let particles through, etc.), the system will tend towards a
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new equilibrium state and its entropy can only increase.
An additive quantity
For a system composed of two parts, we have

Scomplete system — Sﬁrst part + Ssecond part-

Extensive
In most applications, entropy is an extensive quantity, see frame 1.4. However,
this property is not essential and may be lost when one studies certain properties
such as surface effects (surface tension) and gravitational effects (thermodynamics
of a star or a galaxy).

Application: Let us recall example 3.1.2 (Bodies in thermal contact). The system is
isolated and contains an internal energy U. U is the internal energy of part (1), on the left;
part (2), on the right, therefore has an energy Uy = U — U; and the entropy of the system
is written, by additivity,

5251(U1)+SQ<U_U1), (31)

where S7 and S5 are the entropies of part (1) and (2), respectively. (Of course, S; and S, also
depend on other variables like N, V| ...). Suppose that part (1) spontaneously gains energy
dUj in the form of heat from part (2). The new entropy is S1(U; + dU;) + So(U — Uy — dUy)
and an expansion allows one to obtain

0S5, 05,

dS:[a—m‘a—@

} du,. (3.2)

The transformation is only possible if dS > 0. We can deduce that

o If g_[i > g—gz, then dU; > 0. Heat can only flow from (2) to (1).

o If 2_2% < g—gz, then dU; < 0. Heat can only flow from (1) to (2).

This example shows that 0.5/0U must be a decreasing function f(T") of the temperature
(since the heat goes from the body having the smallest 0S/0U to the body having the largest
0S/0U). For each choice of f(T'), a definition of the temperature is thus obtained. For this
definition to coincide with the usual definitions of temperature, we must choose (and this is
far from obvious!) f(7') =1/T.

In the same way, by considering a system consisting of two parts separated by a piston, it
can be shown that 0S5/9V is connected to the pressure. Finally, when considering a porous
partition, we find that 0S/0n is connected to the chemical potential. To make the link with
what is already known from p and p, we must have the following relations:
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I Video 4 I Frame 3.2: First derivatives of entropy

For a system of n moles in a volume V with an energy U, the first derivatives of the
function S(U,V,n) are

a5
ou

1 oS

e oV

P oS

U,n_ T, %

(3.3)

U,V

I
T’
where T, p and p are respectively the temperature, the pressure and the chemical
potential of the system. These three equations can be written in a more compact way
using a differential:

1 p %
dS—TdU+TdV Tdn (3.4)

This expression is called the thermodynamic identity.
A general consequence of this identity and the maximum principle is that:
e for two bodies in thermal contact, the energy (in the form of heat) goes from the
warmest to the coldest,
e for two fluids at the same temperature separated by a piston, the volume goes
from the fluid with lower pressure to the fluid with higher pressure,
e for two bodies at the same temperature separated by a porous partition, the
particles migrate from the body with the greatest chemical potential to the body
with the smallest chemical potential.

Remarks:

e We are considering the function S(U,V,n). So, rather than writing 95/ 8V‘Un, we
could have written 0S5/0V which means, unambiguously, “derivation with respéct to
V' while keeping all the other variables constant.”

e The differential (3.4) is a description of the properties of function S: if we consider
two neighbouring states (U, V,n) and (U + dU,V + dV,n + dn), then we can calculate
the difference in entropy dS between these two states. The differential (3.4) describes
the result of a transformation only when this one is quasistatic.

e The quantities T, p and p thus defined are also functions of U, V' and n.

e These equalities imply that the unit for S is the joule per kelvin and that the unit for
1 is the joule per mole.

e In statistical physics, the chemical potential is often written using a derivative of S
with respect to N (number of particles) and not with respect to n (number of moles):
p = —T9S/ON; in this case the unit of u is the joule. The ratio between these two
definitions of p is the Avogadro constant.

e One needs to know how to adapt these properties to more complicated systems. For
example, for a mixture of two species (1) and (2), the entropy depends on U, V', ng
and no, and there are two chemical potentials ;17 and .

Historically, the postulate did not appear as if by magic. Entropy was discovered in the
19*" century as part of the study of thermal machines (motors, refrigerators). Major names
associated with these discoveries include: Carnot, Clausius and Kelvin. The postulate was
then expressed in the form of laws which all stated an impossibility, that is, in mathemat-
ical terms, an inequality. (This inequality is obviously equivalent to the statement of the
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postulate, even if it is not obvious.) We refer the reader to supplement A of the book on
thermodynamics of Diu, Guthmann, Lederer and Roulet. The reading of Feynman’s Lec-
tures on Physics 2, Chapter 44 is also very interesting on this subject. The presentation in
the form of a postulate, for example in the book of Callen, has the advantage of being very
clear and concise.

3.3 Applications

3.3.1 Expression of dU
The differential of U is obtained by inverting (3.4):

Frame 3.3: Differential of U

For a system whose only variables are n, V' and U, we have
dU =TdS — pdV + pdn. (3.5)
In other words, the first derivatives of the function U(S,V,n) are

oU ouU oU
oS|,, 1 Wl U omlg, (3.6)

For an ideal monoatomic gas, U = %nRT . However, we can not deduce from the
previous frame that p>={ nor that M The reason is that (3.6) gives the deriva-
tives of the function U(S,V,n), at S constant, and not the derivatives of the function
U(T,V,n), at T constant.

Remarks:

e This expression must be adjusted when the system depends on different variables.

e During an infinitesimal transformation where n is fixed, generally dU = 6Q + 6W. If
the transformation is reversible, then dU is the internal energy difference between two
neighbouring equilibrium points and dU = T'dS — pdV. Moreover, for a reversible
transformation 6\WW = —pdV; therefore we deduce that

5Qreversible =TdS. (37)

e In fact, we also have 6¢Q) = T'dS for a quasistatic transformation at constant volume or
such that p = pey. In particular, this is the case when the system under consideration
is a heat bath (see frame 3.4 hereafter).

3.3.2 Positivity of Cy

Let us again consider the example of two bodies in thermal contact. When body (1) has an
energy U; and body (2) an energy Us = U — Uy, the entropy is given by (3.1):

S = Sy(Uy) + So(U — U7).
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The system is considered at equilibrium, that is to say that

1098 98, 1

T, oU, U, Ty

We assume as before that part (1) gains energy dU; from part (2) and we would like to
calculate dS. The expression (3.2) of dS' is not sufficient since the term in dU; is null, and
it is necessary to develop to the second order:

028y 0%S,

it ) Z e 2
o0z 8U§} (0"

9 1
This quantity is necessarily negative: the system has been assumed to be in equilibrium,
entropy is at a maximum, and any change in the state of the system (a non-zero dU;) must
lead to a decrease in entropy.
A reasoning on extensivity shows that, in the limit of the size of body (2) tending to
infinity, we have 0%S;/0U% — 0 (see also the calculation hereafter). We can then deduce
that for body (1), whatever it is, we must have

928
— <
oz =

where we have written S and U rather than S; and Uy, for simplicity. The function S is
necessarily concave in U. In fact, we can generalize this argument and show that

S is a concave function of all its variables.
So, for any system, we have

s 9 [1]  1or 1
T2 0U  CyT?

Uz~ au |T

where Cyy = 0U/OT (here a constant V' and n are implied) is the heat capacity at constant
volume. It is an extensive quantity. (In particular, if the size of the system tends to infinity,
then Cy — oo and 925/0U?% — 0, as predicted). We have just demonstrated that

Cy > 0.

We will see several other relations of the same type in chapter 4.

3.3.3 Entropy of an ideal gas

For an ideal monoatomic gas (for example helium or argon) the equation of state and the
value of the internal energy are known, see frame 1.5:

3
pV =nRT, UzénRT.

From these two expressions, 1/7" and p/T can be extracted and injected into the thermody-
namic identity:

3 dU v
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Only the expression of p seems to be missing. To get by, we start by assuming that n is
a fixed parameter, and that the only real variables of S are U and V. The differential can

then be written s 4y v 5
ds = §HRF + nRV = d[ﬁannU + annV]7

and so, after integration,
3 13 7
S = §nR InU +nRInV + “constant”.
Here, the integration constant is a constant with respect to the variables U and V' over which

we have just integrated, but it can also depend on the parameter n. Hence, we will write it
in the form f(n), where f is an unknown function to determine:

3
S(U,V,n) = §nR1nU—i—annV—l—f(n). (3.8)
It is important to understand that this unknown function f(n) depends only on the amount
of substance n and certainly not on U or V. To further determine the entropy, we will use
the property of extensivity: if system (A) is of the same nature as system (B) but is A times
larger, i.e. if (A) has A\ times more substance than (B), occupies A times more volume and

has A times more energy, then the entropy of (A) is A times larger. This can be written as
an equation:

S(AU, AV, An) = AS(U,V,n).
But, according to (3.8),

S(AU, AV, An) = ;/\nR In(AU) + AnRIn(AV) + f(An),
= ;)\nR(ln)\ +InU) + AnR(InA+InV) + f(An),
= )\[gannU +nRIn V} + gAann)\ + f(An).

Comparing with the expression of A\S(U,V,n), we find that the function f must verify
5
5)\an11)\ + f(An) = Af(n).
We can find the solution to this equation by choosing A = 1/n. We then obtain
5
f(n)=n|f(1)— éRlnn :
f(1) is a constant, independent of U, V or n. It can however depend on the type of

monoatomic gas used. We write f(1) = Rc to enable factorization by R and we obtain,

in (3.8),
S(U,V,n) =nR Ean—i—an—glnn—l-c] =nR Eln%—}—ln%—l—c . (3.9)

(The right-hand side of the equation shows immediately that S is extensive.)
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In general, the argument of a mathematical function (exp, sin, tan, ...) must be a
dimensionless number: hence the expression expfikg) has no meaning For this reason,
some consider that we should not write In U, but rather ln = where uq is a constant
energy (for example uo = 1J). But, formally, the properties of the logarithm allow us
to write ln = = InU —Inug and, in a sense, to integrate In uy into the unknown constant
c. We therefore allow ourselves to write In U, knowing that ¢ contains a term correcting
this expression. As a result, the constant ¢ cannot be dimensionally analysed, and its
value depends on the unit of energy chosen to calculate InU.

3.3.4 Reservoirs: thermostat, pressostat

Frame 3.4: Reservoirs

e A heat bath, or thermostat is a system that can receive or provide heat without
changing its own temperature:

T'r: temperature of the heat bath
Tr = whatever fiS
d R 0 at 5QR 0QRr: heat received by the bath

e A wolume reservoir, or pressostat is a system whose volume may change without
its pressure changing.
_ h ver PR: reservoir pressure
dp (2 0 whateve dVR dVR: volume received by the reservoir
e A particle reservoir or substance reservoir is a system that can receive or supply
heat and substance without changing its temperature or chemical potential.

WwRr: reservoir chemical potential
dTR = 0, d/,LR =0 whatever 5QR and an dng: amount of substance
received by the reservoir

A reservoir is always assumed to be in internal equilibrium (all thermodynamic variables
are therefore well defined). The transformations undergone by a reservoir are therefore
always assumed quasistatic.

Remarks:

e Reservoirs are ideal systems, and only approximations can be made.

e In general, a physical reservoir is a “big” system. For example, the ocean is an excellent
thermostat (if an exothermic reaction in a test tube occurs in the ocean, the ocean
will receive heat from the reaction but its temperature will not change). Similarly, the
atmosphere makes an excellent pressostat.

e An example of a “small” thermostat is a mixture of water and ice, which is necessarily
at 0° C: if heat is supplied to this system, some ice will melt, but the temperature will
not change. Similarly, when cooking, a “bain marie” is a thermostat at 100° C.

Imagine a system of study (whose variables are denoted S, U, V, p, T, etc.) which
exchanges energy and volume with a heat bath R (of variables Sk, Ug, Tk, etc.). One can
choose to consider the whole set (i.e. {system + reservoir}) as isolated.
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For a heat bath, you can always write

QR
dSgr = —,
R= T
with 0Qr the heat received by the reservoir. As the set {system + reservoir} is isolated, we
have

0Q +0Qr =0,
with 6@ the heat received by the system. We can deduce that
_ @ _Q
dSR = _T_R and ASR = TR

(We used the fact that T is constant to integrate. One needs to pay attention to the fact
that @ is the heat received by the system, the heat received by the reservoir being —(Q).)
By using AS+ASz > 0 (the entropy of the universe can only increase), we finally obtain:

Frame 3.5: Minimal increase of entropy

For any system in contact with a single heat bath at temperature Tz and which receives,
during a transformation, heat ) from this reservoir, we have

>_
AS TE’

R

the equality being valid only for a reversible transformation.

Remarks:

e This inequality and its generalizations are called “Clausius inequalities”.

e This inequality remains valid if the heat bath is also a volume and / or substance
Teservoir.

e [f the system undergoes a quasistatic transformation at constant temperature 7', then
AS =Q/T > Q/Tr. Which means Q > 0if T <Tr and Q <0if T > Tk.

e If the system is in contact with three baths of temperature T, T5 and T3, and it receives
heat ()1, Q)2 and @3 from these three reservoirs, the above is generalized to

Ql Q2 Q3
> 2l 22 %3
= Ti + T * T3

In general, if there is an infinity of reservoirs, we can write

asz [ 22

ext

3.4 Microscopic interpretation
The microscopic interpretation of the internal energy is carried out microscopic configuration

by microscopic configuration: if the microscopic configuration of a system is known, that
is to say if all the positions and momenta of the particles are known, then it is possible
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to calculate the (mechanical) energy that results as a sum of the kinetic energy and the
interaction potential. We can talk about the energy of a single configuration.

Entropy has no equivalent interpretation: it is not a mechanical quantity, and we cannot
speak of the entropy of a microscopic configuration. Entropy is a quantity related to all the
microscopic configurations accessible to the system, and their probabilities: it is a statistical
quantity.

The basic idea is that for a gas, at U, V and n fixed, there are a lot of accessible
microscopic configurations, that is, ways of deciding where the particles are and what their
velocities are, knowing that we count only the configurations having the correct energy and
the correct number of particles in the correct volume. If we look at the system at a given
moment, we will see a configuration. If we leave for a coffee and come back to observe the
same system, we will see another configuration, completely different. Of course, the laws of
classical mechanics allow, in theory, to calculate what should be the second configuration
from the first, but this calculation is not feasible and, in practice, for each observation, we
have a configuration that seems to be drawn at random. The important question is therefore,
what is the probability of each configuration?

The statistical interpretation of entropy is done in two postulates.

Frame 3.6 : Statistical interpretation of entropy

We consider an isolated system (so U, V and n are fixed, in simple cases) and we write

() — | The number of microscopic configurations
accessible to the system given U, V', n, ...

Then, at thermodynamic equilibrium,
e All accessible microscopic configurations are equiprobable.
e The entropy of the system is
S=1 B In £2.

Remarks:

e [f we change U, V' or n, the number of accessible microscopic configurations changes.
(2 and S are therefore functions of U, V', n, ...

e Since the (2 states are assumed equiprobable, the probability of each one of them is,
by normalization, 1/(2.

e In classical mechanics, mathematically there is an infinity of microscopic configura-
tions: each coordinate is a real number, and there is an infinity of real numbers in each
interval. To obtain a finite {2, one must make the physical assumption that the posi-
tions and momenta are known with a finite number of digits after the decimal point.
In quantum mechanics, {2 counts the (finite) number of eigenstates of the Hamiltonian
with an energy (roughly) equal to U.

These axioms are often rather disturbing at first sight: what we are saying is that in the
system of example 3.1.1, the following two microscopic configurations are equiprobable at
equilibrium:
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However, we know that it is essentially impossible for all the particles to be on the left
side. It is important to understand why:

Each individual configuration has the same probability, but there are Mmany
more configurations where the particles are well distributed in both sides rather
than configurations where they are all on the left.

Let us do the math using the following notation:

e (2 the total number of microscopic configurations,

e (). the number of configurations where all the particles are on the left,

e N = nN, the number of particles present in the system.

The probability of having all the particles on the left is on the one hand 1/2V (because
each one of the N particles has a one in two chance of being on the left) and on the other hand
et /2 (number of favourable configurations divided by total number of configurations). So
we have

Q - 2N Qleft .

This factor 2V, with N of the order of 10%, is an unreasonably large number. The prob-
ability 1/2V that all the particles are on the left is essentially equal to zero, because the
corresponding configurations are extremely rare.

Suppose we put a valve on the pipe and prepare the system with all the particles on the
left. The number of accessible configurations is 2. and the entropy of the system is

Sall particles on the left — kB In Qleft-

We then open the valve and wait for equilibrium. The number of accessible configurations
is now (2, which is much larger, and the new entropy is

Sparticles are everywhere — kB In (2.

Then by choosing a configuration at random, we are quite certain to choose one where the
particles are well distributed because these configurations are very much in the majority.
The fact of having opened the valve led to an irreversible evolution of the system towards a
new equilibrium state where the particles are well distributed. This irreversible evolution is
accompanied by an increase in entropy given by

AS =kgln Q2 —kgln Qe = kgIn2Y = Nkgln2 = nRIn 2.

It is easy to verify that this is the result obtained by doing AS = S(U,2V,n) — S(U,V,n)
from expression (3.9) of the entropy of an ideal gas.
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Chapter 4 IVideo 1 I

Thermodynamic functions and potentials

In this chapter, we present the first applications of the two laws: the thermodynamic poten-
tials, the state functions resulting from the Legendre transformations and the definition of
the calorimetric coefficients.

4.1 Thermodynamic potentials

4.1.1 Definition

The evolution criterion towards equilibrium of an solated system is known: according to the
second law, the entropy S of the system becomes maximal. For a non-isolated system, one
must use the entropy of the universe Sy, the value of which is inconvenient to work with.

In this section, we therefore consider a system that is a priori not isolated and which
is at least in contact with a heat bath of (constant) temperature Ty. The thermodynamic
potential is then a function @ such that, for any transformation,

AD = ~TyAS . (4.1)

By direct interpretation of the second law, the thermodynamic potential is a function which
decreases during an irreversible natural transformation to reach its minimum at thermody-
namic equilibrium and that remains constant during a reversible transformation.

For a given system, there are as many thermodynamic potentials as there are possible
external situations: with or without pressostats, with or without generators, with or without
reservoirs, etc. A difficulty is therefore, for a given situation, to find the “good potential”.
Strictly speaking, the thermodynamic potential is not a state function of the system, but
remains a state function of the universe. The two most common cases are:

Frame 4.1 : Thermodynamic potentials

e For a system only in contact with a heat bath of temperature Ty,
o =U—1T,S. (4.2)

e For a system only in contact with a heat bath of temperature T, and a volume

reservoir of pressure pg
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For any transformation, then A® = —TyASuniv. The thermodynamic equilibrium is
thus reached when @ is minimal.

Indeed, the heat received by the heat bath is ToASinerm, SO the heat received by the

system is Q = —ToASiherm-

e In the case of a system in contact with only one heat bath, we have W = 0 (there
is no work) and therefore AU = @ = —ToASierm- As expected, we then obtain
AP = AU — ToAS = —To(AS + AStherm) = —ToASuniy-

e In the case of a system in contact with a heat bath and a volume reservoir, the system
receives work: W = —poAV'; we therefore have AU = —TyASiherm — poAV . From this
we deduce AQ = AU —ToAS +poAV = —=To(AS+ ASiherm) = —ToASuniv as expected.

Remark: The potential ¢ depends on Tj, pg (in the case of a volume reservoir) and on

the state of the system that can be characterized by the variables of our choice, for example

(U,n,V,...),or (S;n,V,...)or (T,n,V,...).

4.1.2 Using the potential to determine equilibrium
Situation where there is contact with only one heat bath

We consider a system made of rigid and impervious walls (n and V' are fixed) in contact
with a heat bath. The suitable potential is ® = U — TS. The system is assumed to be
already in internal equilibrium and we are looking for the equilibrium conditions with the
surroundings. At thermodynamic equilibrium, @ is minimal and therefore its differential is
Zero:

d® =dU —T,dS = 0.

To go further, we must choose which variable to use to characterize the system.
e If we choose U, then we write dS = %dU and

Ty
dd=(1-22)dU =o.
( T)U 0

e If we choose S, then we write dU =T dS and
d® = (T —Ty)dS = 0.

e If we choose T, then we write dU = Cy dT and dS = Cy dTT (we will come back to
these equations later in frame 4.4) and we get

0
o—(1-10 T =0.

We reach the same conclusion, whatever the choice of variable (fortunately!): In thermody-
namic equilibrium, we have

T:To.
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Situation where there is contact with a heat bath and a volume reservoir

A homogeneous fluid is considered in contact with a heat bath and a volume reservoir.
The adapted thermodynamic potential is ® = U — TS + poV'. The fluid is assumed to be
already in internal equilibrium and we are looking for the equilibrium conditions with the
surroundings. At thermodynamic equilibrium, @ is minimal and therefore its differential is
Zero:

d® = dU — Ty dS + podV = 0. (4.4)

To go further, we must choose which variables to use to characterize the system. If we choose
U and V (and other variables like n), we use the thermodynamic identity dU = T'dS —pdV
and we obtain

The equilibrium condition between the system and the heat bath is, of course,
T= TOa P = Po.

As in the first case, other choices of variables are possible. For example, if we choose T
and V' and, anticipating a little the end of the chapter, we use in (4.4) the definitions of the
calorimetric coefficients (4.21) and (4.22), we arrive at

dQB:(1—%)C’VdT—|—{(1—%)6—]94—]00}&/:0. (4.6)

The cancellation of the terms in factor of d7° and dV restores the conditions 7' = T, and
p = po. The thermodynamic potential is therefore minimal with respect to any set of
variables.

4.1.3 First introduction of thermodynamic functions

We consider a fluid (for simplicity) characterized by the variables {U, V,n}. For each value of
{U,V,n}, we can calculate the temperature T'(U, V,n) of the system, the entropy S(U,V,n)
of the system, etc.

A quantity of this fluid is placed in an impervious and rigid recipient in contact with
only one thermostat at temperature 7. The values of V' and n are fixed, the energy U is not
(the system exchanges heat with the thermostat) and we want to determine the equilibrium
value Ugq of the energy.

As we have just seen, the equilibrium is described by the state which minimizes the
potential ® = U — TS, and the above calculation shows that it is obtained by writing
T = Ty. More precisely, we write that U is such that T'(Ueq, V,n) = T, which allows to
obtain Ugq as a function of V', n and 7.

The minimum value of @ (therefore, reached at equilibrium) is called the free energy F
of the system:

F =Usq — T0Seq = Ueq — ToS (Ueq, V, n).

It is important not to confuse @ and F":

e the potential @ is a function of four variables: a variable T, which describes the heat
bath, and three variables {U, V, n} which describe the system. It is defined whether or
not the system is at equilibrium with the heat bath.
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e The free energy F' is a function of three variables: Ty, V and n. Indeed, the value
Ueq of the energy at equilibrium is itself a function of 7y, V' and n. The free energy
characterizes a system at equilibrium with a heat bath.

By definition, F'is the minimum value of @ over all possible choices of U; hence we have

F(Ty,V,n) = mUin@(TO, U,V,n) = min (U - T,S(U,V,n)]. (4.7)

Or, we can simply write

F(T,V,n) = Usq — TSeqs (4.8)

where U and Seq are the equilibrium values of the energy and entropy of the system when
it is at temperature 7' (assuming V' and n are fixed). One way to set the temperature of
the system is to put it in contact with a heat bath (and then we have T = Tj), but we can
always define F' using (4.8), even if there is no heat bath.

From a mathematical point of view, the function F' obtained from (4.7) or (equivalently)
from (4.8) is the Legendre transformation of the function U(S, V,n) with respect to the vari-
able S. This is a mathematical operation which plays an important role in thermodynamics
and that we will study in detail in the following section.

In the same way, if the system is in contact with a heat bath (at temperature Ty) and a
volume reservoir (at pressure pg), the values of U and V' are determined by the equilibrium
condition that the (suitable) potential @ = U —T,S+poV is minimal. This potential depends
on the five variables {7, po} and {U,V,n}. The value of the minimum potential is called
the free enthalpy or Gibbs free energy G, which is a function of the three variables {Tpy, po}
and n. We can write:

G(T(],po,n> = I[l’]ll‘;l [U — T05<U, V, 71) +p0V] (49)

or, equally,

G(T7p7 n) = Ueq - TSeq + pVeq, (410)
where Uyq, Seq and Ve are the equilibrium values of the system when it is at temperature T
and at pressure p.

4.1.4 Internal variables

Consider again a system in contact with a heat bath. This system is described by the
variables {U,V,n} and by an additional internal variable X. (For example, X can be the
position of a piston or the fraction of energy in the left part of a system, etc.)

To find the equilibrium, the thermodynamic potential ® = U — TS must be minimized
with respect to U and X:

od

0P oP
oU N

VX 0X

= 0.
Vin,U

As before, the first condition leads to an internal equilibrium energy U, such that T" = Tj.
By introducing this value of U, in @, we obtain the free energy F' and the second condition
becomes:

oOF
X 0.

Vin,T
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We thus obtain the following result and its generalization:

Frame 4.2: Thermodynamic equilibrium in terms of F' and G

e The equilibrium of a system in contact with a heat bath only is such that the tem-
perature is equal to the temperature of the heat bath and the internal variables
minimize the free energy F'.

e The equilibrium of a system in contact with a heat bath and a volume reservoir is
such that the temperature of the system is equal to the temperature of the heat
bath, the pressure is equal to the one of the volume reservoir, and the internal
variables minimize the Gibbs free energy G.

4.2 Legendre transformation

The thermodynamic identity written in the form of dU = T'dS —pdV +- - - poses a technical
problem: the entropy S is not an easy variable to control. Its conjugate variable, the tem-
perature T' = 0U/0S, is clearly preferable. The Legendre transformation makes it possible
to substitute these variables without loss of information.

4.2.1 Mathematical presentation

Let = be a variable and f(x) a function. Then let y be the variable such that y = f'(z) = y(z).
We want to replace the information content of function f(x) by the content of a function of
y. One could imagine doing a direct substitution:

y=ylxr) = x=u2z(y) and we write g¢g(y)= flz(y)].

But the flaw of this operation is that there is a “loss of information”. Let us try to do the
reverse operation: let g(y) be known, we are looking for the function f(x) such that

y() = f'(x) and f(z) =gly()] = flz)=glf'(2)]

Besides the fact that the differential equation f(z) = g[ I (:E)] is not necessarily easy to
solve, there is an insoluble problem of constant determination: there are several solutions.
We prefer to use the Legendre transformation by introducing a new function

h(y) = min [f(2) - zy]. (4.11)

In practice, to calculate h(y), we must find the value z(y) which minimizes f(z) — zy, the
value of y being fixed. Because it is a minimum, the derivative of f(x) — zy with respect to
x must be zero when = = z(y) and so we obtain

h(y) = flz(y)] —z(y)y  where z(y) is defined by f'[z(y)] —y = 0. (4.12)
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In practice, to be able to carry out calculations efficiently, one gains to be a little slack
on the notation: the variables y and z are conjugated through the equality y = f/(z). In
some cases, we can think of y as a function of x, and in other cases we will think of x as a
function of y (that is, we simply write as x what was written above as x(y)). Then we can
simply write

h<y> = f — XY with Y= f/(q;)
= f(z) — af'(z) = —2? d (M)7 (4.13)

Az \ @

where x is to be understood as a function of y. To calculate h'(y), the simplest method is
to consider the differential; using df = y dx, we get

dh =d(f —xy) =df —xdy — ydx = —zdy, (4.14)

and therefore x = —h/(y). Exercise: obtain this result from (4.12).

It is easy to reverse the Legendre transformation: given h(y), how do we recover f(z)?
We simply write

flx)=h+uzy with z = —h/(y

— hly) — g (y) = — v (h—y)> , (4.15)

where y is to be understood as a function of z.

Note the simplicity: the reverse transformation of the Legendre transformation is (to
within a sign factor) the Legendre transformation itself. In fact, it can easily be verified that
f(x) = max, [h(y) + zy], to compare with (4.11).

The Legendre transformation has a geometric interpretation. Knowing the function f(z),
its graphical representation can be drawn; y = f’(z) is the slope of the tangent of the curve at
x and h(y) = f —xy is the intersection of this tangent with the y axis (figure a). Conversely,
knowing the function h(y), for each value of y, the line of slope y and y-intercept h(y)
can be plotted. The curve of f(z) can be reconstructed as the envelope of all these lines

(figure b).

a
Q&Q@x@
. = | ~Jope Y
h(y) = f —xy
v

42



4.2.2 Application to thermodynamics

Frame 4.3 : The thermodynamic functions I Video 2 I

Let there be a system where the internal energy is written U = U(S,V, X1, Xs,...),

such that
dU =TdS —pdV +Y,dX; + YodXo + - --

By Legendre transformations, the following state functions are defined:
e Free energy F(T,V,Xy,Xs,...)=U-TS.
e Enthalpy H(S,p, X1,Xs,...)=U+pV.
e Gibbs free energy G(T,p, X1,Xs,...)=U —-TS +pV.
The differentials of these functions are deduced from the differential of U:

dF = —SdT — pdV + Y1 dX; + Yy dX, 4 - - -

dH = TdS+Vdp+YidX; +YodXy+--- (4.16)
dG =-SdT+Vdp+YidX; + YodXs + - --

Remarks:
e A large number of relations can be deduced from the differentials (4.16). Here are
some first derivatives:

g_ _9F  _ _0G _od) oG
T lyvxy Ty xa O |s(x.y OP Imqx,y
, _ OF OH oG
" 0X, TVAXin} T 0X, S Xin} T 0X, T {X i)

and some Maxwell equations (one for F', one for G and one for H)

_ o
a7

_ 95
dp

08
X,

_os
oV

Y,

dp B
T

aT

Vi{Xn} TA{Xn} T{Xmzn} {Xn} TAXn} pA{Xn}

e The free energy F' of a system that does not depend on the volume V' can of course be

defined.

e The free energy F' is the Legendre transformation of U for the pair of variables (S, T =
0U/0S). The enthalpy H is the Legendre transformation of U for the pair of variables
(V,—p = 0U/OV'). The Gibbs free energy G can be seen either as the Legendre
transformation of F for the pair of variables (V,—p = 0F/0V), or as the Legendre
transformation of H for the pair of variables (S,7 = 0H/0S).

KN
N
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e The relation (4.15) applied to F' and G constitutes the Gibbs-Helmholtz equations:
F/T T
U = _TQM H = _T2M (4.17)
I lvixa) Oy xa)

e Let a system exchange heat with a thermostat at temperature 7j, and receive work
W. According to the first law, AU = Q + W, with Q = —Ty ASiherm- It is assumed
that, in the initial and final states, the system is in equilibrium with the thermostat,
and therefore has a temperature T' = Tj. Then,

AF = AU —A(TS) = Q+ W —TyAS = W — To(ASiperm + AS) = W — TyASumy < W,

according to the second law. It is assumed that the operator wants to recover work (and
therefore that W < 0). This inequality puts a limit on the work that is recoverable:
|W| < —AF. Therefore, during a monothermal transformation, the energy of a system
“that can be released” is the variation of the free energy, hence its name.

e The enthalpy can be interpreted as follows: Let a system exchange heat and evolve
in contact with an external pressostat of pressure pg. According to the first law,
AU = Q + W, with W = —pyAV. It is assumed that in the initial and final states,
the system is in equilibrium with the pressostat, therefore with pressure p = py. Then,

AH=AU+A(PV)=Q+ W +p AV = Q. (4.18)

The heat exchanged by a system during a monobaric transformation is therefore the
variation of the enthalpy (hence the greek name 9dinew, thalpein, to heat).

e The Gibbs free energy can be interpreted as follows: Let a system evolve in contact
with a heat bath of temperature Ty and an external pressostat of pressure p,. We
seek to recover work W' other than that exerted by the pressostat. By writing W =
—poAV + W' the first law gives AU = @Q — poAV + W', with Q = — ToASherm- 1t is
assumed that in the initial and final states, the system is in equilibrium with the heat
bath and the pressostat, therefore at temperature T' = T and pressure p = py. Then,

AG = AU+ A(=TS +pV) = Q — poAV + W' — TyAS + poAV
=W - TO(AStherm + AS) =W - TOASuniv < W/>

It is assumed that the operator wants to recover work (and therefore that W’ < 0).
The above inequality places a limit on the work that can be recovered: |W'| < —AG.
Therefore, during a monothermal and monobaric transformation, the energy “that
can be released” other than the work of the pressostat, in other words the releasable
enthalpy of a system, is the variation of the Gibbs free energy or free enthalpy, hence
its name.

One should be careful not to confuse the free energy F' = U —T'S with the potential & =

U — TS suitable for the study of a system in contact with a heat bath. Similarly, the Gibbs
free energy G = U —T'S 4+ pV should not be confused with the potential & = U —TpS + poV/
adapted to the study of a system in contact with a heat bath and a volume reservoir:

e The state functions F', G and H, obtained by Legendre transformations, are used to
conveniently manipulate the chosen variables. To each set of variables corresponds an
appropriate state function, independent of the external environment (surroundings) of
the system.
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e The thermodynamic potential @ is chosen according to the external environment of
the system and it serves to find the thermodynamic equilibrium of the latter. It is
minimal with respect to any set of variables of the system.

4.2.3 Gibbs-Duhem relation

A homogeneous fluid is characterized by three variables: U = U(S,V,n), and therefore
F=F(T,V,n) and G = G(T,p,n). The differential of G is

dG = —SdT + Vdp + pdn.

Here G (as well as U, S, F, ...) is assumed to be extensive; this is always the case except
when dealing with some very particular problems such as surface tension problems.

The extensivity property means that if the size of the system is multiplied by A (that is,
if n is replaced by An without changing T" or p), then G is multiplied by A\: G(An,T,p) =
AG(n,T,p). Specifically, by taking A = 1/n, we find that G(n,T,p) = ng(1,T,p). Compar-
ing with the differential, we see that g(1,T,p) = u(T,p) and, finally,

G(T,p,n) =nu(T,p).

This is Euler’s equation. Taking the differential, we find that ndy = —SdT + V dp and so,
dividing by n,

dp = —sdT + vdp, (4.19)

with s = S/n and v = V/n the entropy and the molar volume of the fluid, respectively. This
is Gibbs-Duhem relation.

4.3 Calorimetric coefficients of a fluid

4.3.1 Definitions of calorimetric coefficients

The calorimetric coefficients make it possible to express the entropy variations of a system
as a function of T and other given variables. During a reversible transformation where the
heat exchanged by the system is given by 0Q,., = T'dS, these coefficients make it possible
to quantify heat exchange, hence their name.

We will present the calorimetric coefficients of a homogeneous fluid for a closed system.
The number of moles n is fixed once and for all and we will not write the terms in dn in the
thermodynamic identities. Two variables to describe the fluid remain and there is a choice
in how to write the thermodynamic identity, see frame 4.3:

AU = TdS — pdV, dF = —SdT — pdV,

(4.20)
dH =T dS + V dp, dG = —SdT + V dp.
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I Video 3 I


https://www.youtube.com/watch?v=cUUm6sg-idw

I Video 4 I

Frame 4.4 : Calorimetric coefficients

e If we choose to work with the variables {7, V'}, we can write

ds = %dT + %dv & TdS=CydT +¢dV. (4.21)

With the thermodynamic identity (4.20), we obtain

dU = Cy dT + (£ — p) dV, (4.22)
and therefore
oS oU oS oU
Cy=T—| =— d (=T—| = — 4.23
= 91|, " ar|, ™ avl, PTav|, (4.23)

e If we choose to work in the variables {T', p}, we can write

ds = %dT + %dp e~ TdS = C,dT + hdp. (4.24)

With the thermodynamic identity (4.20), we obtain

dH = C,dT + (h+ V) dp, (4.25)
and therefore
oS o0H oS o0H
=T—| = — d h=T—| =— — . 4.2
Cy 8T‘p oT |, an |, V+ % | (4.26)

The coefficients Cy and C,, are the heat capacities at constant volume and at constant
pressure, respectively. The coefficients £ and h have no name.

Caution: in both cases, dS is a differential, but T'dS = 0Q,e, is not.
For an isochoric (dV = 0) transformation of the fluid, we have /W = 0 and (4.22) gives

T
5Q=dU = CydT, & Q=AU-= / Cy dT. (4.27)

T;

For an isobaric (dp = 0) and quasistatic transformation of the fluid, we have éW =
—pdV, dH = dU 4 pdV = §Q and (4.25) gives

T
0Q =dH = Cp dT, & Q=AH = Cp dT