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Thermodynamics = |

El Thermodynamics describes natural phenomena in idealised terms.

E The scope of the description can vary, and must be adapted to our
needs at any given time.

A We can then use the model to perform thought experiments that
reveal certain characteristics of the system’s behaviour.
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ENVIRONMENT

Explain in your own words what is meant by the concepits:
system, boundary and environment or surroundings.
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§ 001 System

El A system is a limited part of the universe with a boundary that
may be a mathematical surface of zero thickness, or a physical barrier
between it and the surroundings’.

EH A reservoiris a system that can interact with other systems without
undergoing any change in its state variables. These reservoirs, and
other simple systems, have properties that are spatially and direction-
ally uniform (the system is homogeneous with isotropic properties).

A A real-world system will never be perfectly uniform, nor completely
unaffected by its surroundings, but it is nevertheless possible to make

some useful simplifying assumptions.

' We must be able to either actively control the system’s mass and composition, im-

pulse (or volume) and energy, or passively observe and calculate the conserved quan-

tities at all times. All transport properties p must satisfy lim,_o+ p = limy_o- p so that p

is the same for the system and the surroundings across the control surface. In physics,
KP81 08 Advanced Thermodynamics
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Properties

El The state of a thermodynamic system is determined by the sys-
tem’s properties— and vice versa.

El For example, the energy of the system is given by the formula
U = (dU/dX1) Xy + (dU/3dX2) Xo + - - - once the state variables X; and
the derived properties (dU/dX;) are known.

BB (dU/JX;) can then be calculated from the function U(X1, Xz, ...)
through partial differentiation with respect to Xi.

The measurements are no longer directly visible to us, but are in-
stead encoded in the shape of model parameters (that describe the ob-
servations to some degree at least).
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Variables

Kl State variables only relate to the current state of the system.

H In other words, they are independent of the path taken by the sys-
tem to reach that state.

The state of the system can be changed through what we call a
process.

B Terms such as isothermal, isobaric, isochoric, isentropic, isen-
thalpic, isopiestic and isotonic are often used to describe simple physi-
cal processes.
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Variables (2)

El Without considering how to bring about these changes in prac-
tice, the terms refer to various state variables that are kept constant,
such that the state change takes place at constant temperature, pres-
sure, volume, entropy, enthalpy, (vapour) pressure or osmotic pressure
respectively.
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§002

Explain in your own words what is meant by the terms:
state, property, process and path.
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§ 002 The state concept

E A thermodynamic state is only fully defined once all of the relevant
thermodynamic properties are known.

Kl |In simple systems, the properties are (by definition) independent of
location and direction, but correctly identifying the system’s state vari-
ables is nevertheless one of the main challenges in thermodynamics.

El. A cycle is the same as a closed path. The cycle can either be
temporal (a periodic process) or spatial (a cyclic process). In a steady
state, the variables do not change with time, whereas in dynamic sys-
tems they change over time. Between these two extremes you have a
quasi-static state: the state changes as a function of time, but in such a
way that the system is at all times in thermodynamic equilibrium, as de-
scribed in greater detail in Paragraph 4.
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§ 002 The state concept (2)

il A state that is in thermodynamic equilibrium appears static at the
macroscopic level, because we only observe the average properties of
a large number of particles, but it is nontheless dynamic at the molecu-
lar level.

. In a theoretical reversible process, it is possible to reverse any
change of state by making a small change to the system’s interaction
with its surroundings.

Let us assume, for example, that the movement creates friction in
the pulley. You will then need a small, but measurable, change in mass
in order to set the weights in motion one way or the other.
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§ 002 The state concept (3)

< 2 Thermodynamic ...

B The total energy of the system is conserved, but the mechanical

energy is converted into internal (thermal) energy in the process —so it
is irreversible.
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Extensive /intensive

Kl Experimentally it has been shown that the size of a system is pro-
portional to some of its properties. These are called extensive proper-
ties, and include volume, mass, energy, entropy, etc.

El |Intensive properties, meanwhile, are independent of the size of the
system, and include temperature, pressure and chemical potential.

El The system’s mass is a fundamental quantity, which is closely re-
lated to inertia, acceleration and energy. An alternative way of measur-
ing mass is by looking at the number of moles of the various chemical
compounds that make up the system.

B Systems of variable mass contain a minimum number of indepen-
dent components that together make up the chemical composition of
the system.
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Extensive/intensive (2)

< 2 Thermodynamic ...

I Only the composition at equilibrium can be described in these sim-
ple terms, which is because we are forced to specify as few as possible
variables that depend on mass or the number of moles.
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§003

Explain in your own words what is meant by a property
being intensive or extensive. If you divide an extensive
property by the number of moles in the system or its
mass, you get a molar or specific property respectively.
Show that the property obtained is intensive.
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§003 Size

Kl Inthermodynamics, size is not only a measure of the volume of a
system, but also of any properties related to its mass.

Kl Properties that can be doubled in this way, such as entropy S,
volume V and the number of moles N, are proportional to the size of
the system, and are referred to as extensive variables.

i} Certain pairs of extensive and intensive variables combine to form
a product with a common unit (most commonly energy), and feature in
important relationships such as U = TS — pV + u1Ny + poNo + -+ -.

ifl Thesepairsof Tand S, pand V, and y; and N; are called conjugate
variables.
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§003 Size (2)

B Dividing one extensive property by another gives you a new, in-
tensive variable that represents the ratio between the two properties.
Then p = f/g = a/b is independent of x, in other words p is intensive.
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Degrees of freedom

Kl Let us consider a thermodynamic system that does not change
with time, which means that it must be in equilibrium.

Bl The general principles of equilibrium mean that the energy of the
system will be minimised with respect to all the degrees of freedom that
form the basis for the system description.

i The degrees of freedom are at all times controlled by the physical
nature of the system, and this determines which extremal principle to

apply.
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§004 O & ||

ENVIRONMENT

Explain in your own words the following terms associated
with equilibrium and equilibrium states: phase, phase
boundary, aggregate state, equilibrium and stability.
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§ 004 Equilibrium

K. Equilibrium is the state attained by the system when t — .

I If the system returns to the same equilibrium state after exposure
to a large random perturbation (disturbance), the equilibrium is said to
be stable.

B A metastable equilibrium is stable when exposed to minor pertur-
bations, but it becomes unstable in the event of major displacements.

i If the stability limit is exceeded, the system will split into two or
more equilibrium phases (from the mechanical analogy in the figure it
is equally likely that the ball will fall to the right as to the left).
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(In)exact differential | |

Kl State variables are variables that form part of a state function.

H A state function always produces an exact differential, but not all
differentials in physics are exact?.

E One example from thermodynamics is (dU), = Q — W, which
describes the energy balance for a closed system. Here the energy U
is a state function with the total differential (dU)n.

B For any change 6Q — 6W there is a unique value of (dU)p.

@ For any change (dU), there are in principle an infinite number of
combinations of 6Q and dW, since only the difference between heat
and work is observable.
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(In)exact differential (2)

2 Lete.g. f(x,y) = xy + ¢ be a state function with x and y as its state variables. Here
df = ydx + xdy is the total differential of the function. The right side of the equation
is then called exact. If as a pure thought experiment we change the plus operator on
the right side to minus, the differential becomes non-exact. It is possible to transform
the left-hand side into y>dg = y 5x — x dy, where y? is an integrating factor for the
differential and dg is the total differential of g(x, y) = xy' + ¢, but the new differential
y dx — x dy remains non-exact, since it cannot be expressed as the total differential of
any known function.
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§005

Explain in your own words the meaning of the terms:
heat, work and energy. Are all three state variables?
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§ 005 Heat and work

< 2 Thermodynamic ...

El Heatand work are two closely related mechanisms for transporting
energy between the system and its surroundings.

BH Transporting energy affects the state of the system, but the heat
and work are not themselves accumulated in the system.
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Das Ding an sich

Kl Last but not least, we need to know the purpose of our analysis.

Mathematics provides us with a useful tool, but that does not mean
that models and reality are two sides of the same coin, and hence that

we, by carefully eliminating “all” assumptions, can reach an absolutely
true answer.

Bl Mathematical descriptions allow us to understand some character-
istic events that surround us, but they do not give us the whole picture.
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Das Ding an sich (2)

B mmanuel Kant® unified the most im-
portant strands of rationalism and empiri-
cism with his interpretation of das Ding
an sich.. Science is based on observable
events taking place in a world where time
and space are assumed to be indepen-
dent of us, but from a philosophical point

DUCK OR RABBIT ? of view Kant argues that we may be un-
able to see all the aspects of whatever we
are observing.

t . Thermodynamics is really a subject that describes das Ding fiir
uns* as opposed to das Ding an sich.
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Das Ding an sich (3)

B The solid circles show calometric readings for the mixing enthalpy
Amixh of the system H,O-D,0O? at varying compositions (mole fractions
x) of the two compounds.

i The line fits the data points very well, and we can therefore con-
clude that this simple model adequately represents the readings taken.

B Based on our understanding of nature, isotopes are chemically
identical, but in this case the mixing enthalpy measured is equivalent
to a fall in temperature of 0.43 K for an equimolar mixture of the two
isotopes, which is much greater than expected.

The reaction product HDO is not stable either since it decomposes
instantaneously to H,O and D,O, which prevents us from observing
the substance in its pure state.
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Das Ding an sich (4)

B3  In reality all scientific knowledge is based on theoretical models of
one kind or the other, and therefore does not imply that we have any
exact understanding of das Ding an sich.

Bl The foundations of phenomenological thermodynamics are too
weak to state hard facts about the true nature of the systems it de-
scribes, but strangely enough thermodynamic theory can still be used
to falsify claims that break the laws upon which it is founded®.

B Thermodynamic analysis is capable of confirming prior assump-
tions, or of demonstrating new relationships between existing results,
but the calculations are not necessarily correct even if the model ap-
pears to correspond with reality.
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Das Ding an sich (5)

Bl It is also worth remembering that even a small one-component
system has maybe 10'°—102° microscopic degrees of freedom that are
modelled with only three thermodynamic state variables”.

ER It is therefore necessary to develop our ability to recognise what
is important for the modelling, so that we can perform the right cal-
culations, rather than trying to look (in vain) for the very accurate

description.

8 Immanuel Kant, 1724—1804. German philosopher and logician.

4 Referred to as Erscheinung in Kant's thesis.

5D. V. Fenby and A. Chand. Aust. J. Chem., 31(2):241-245, 1978.

6 The perpetuum mobile is the most famous example of this. In Norway it is in fact
impossible to apply for patent protection for a perpetual motion machine, cf. the Nor-
wegian Industrial Property Office’s Guidelines for processing patent applications. The
online (2010) version of Part C: Preliminary examination; Chapter Il Contents of the
patent application, except requirements; 3.3.6 Insufficient clarity excludes inventions
: (Ch NTN KIE’-81-08 Advanced Thermodynaﬁ\iés 3] y ?

physical laws to be broken—this applies e.g. to perpetual motion machines.”
VAN <P W R T JRL Y SR
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The Legendre transform

< see also Part-Contents
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Energy

Kl From a pragmatic point of view it is convenient to remember that
U is useful for dynamic simulation, H for stationary simulation, etc. If a
feasible solution to the problem already exists then this is perfectly ad-
equate, but when seeking a new solution we need a deeper theoretical
understanding.

H Here, the Legendre! transformation is the key, as it provides a
simple formula that allows us replace the free variable of a function
with the corresponding partial derivative. For example, the variable

V in internal energy U(S, V, N) can be replaced by (dU/dV)g y, see
Figure 4.1.
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Energy (2)

ViVo V3 V4

Figure 4.1: Legendre transformation of internal energy to enthalpy.
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Energy (3)

A The new variable can be interpreted as the negative pressure «
and the resulting transformed function, called enthalpy H(S, iz, N), is in
many cases more versatile than U itself. In fact, as we will see later, H
has the same information content as U.

T Adrien-Marie Legendre, 1752—1833. French mathematician.
KP8108 Advanced Thermodynamics
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Transformation rules
El Mathematically, the Legendre transformation ¢; of the function f is
defined by:
Oi(Eir Xjy Xk, o Xn) =F(Xi, Xj, X, -, Xn) — EiXi,
&5 G, (4.1)

EH As mentioned above, one example of this is the transformation of
internal energy to enthalpy:

H=Uy(S,mt,N)=U(S,V,N)-nV
m= (%)S,N = P
Note that the volume derivative of U is the negative pressure 7, because

U diminishes when the system performs work on the surroundings —
not vice versa.
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Transformation rules (2)
El To begin to get an understanding of the Legendre transform we
shall first write out the differential
dgi = df — x;d&; — &;dx; ,

and then substitute in the total differential of the initial function f ex-
pressed as: df = &;dx; + Z};i (9F/9%). x.....x, AXi-

B The simplification is obvious:

doj = -xd&;+ Y (2D) dx; .

X
P I Xiy X re-rXn

KP8108 Advanced Thermodynamics
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Transformation rules (3)

H If we now consider ¢; as a function of the derivative &; rather than
of the original variable x;, the total differential of ¢; can be written

201 o0
dep; = (a?,xx xd5'+z(¢gxk d; -
J#i

A Comparing the last two equations term-by-term gives us the
important transformation properties (9i/d&)), ,, ,, = —X and
(a(pf/a)(f)éi,xk,...,xn = (af/axf)x,,xk,...,xn = 5!"
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Transformation rules (4)

The latter shows that further transformation is straightforward:
¢ij(éi/ éjr Xkreves Xn) = ¢i(gi/ Xj/ Xksooos Xn) - éjxj ’ (42)

o~ (99
éj o (‘9’(1)5 XicyerrXn

(aX/ Xis Xk s+ Xn )
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Repeated transformation

El Combining Egs. 4.1 and 4.2 gives the alternative, and conceptually
simpler, expression

Gii(&ir Ejy Xks - Xn) = F(Xi, Xj, Xk, - - -, Xn) = EiXi — EjX;, (4.3)

where the sequential structure of the Legendre transforms in 4.1 and
4.2 has been replaced by a simultaneous transformation of two (or
more) variables.

I Moreover, as the Legendre transform is independent of the order
of differentiation, we know that ¢; = ¢;;. Mathematically we say that the
Legendre operator? commutes.

[ The three sets of variables (x;, Xj,...,Xn), (&, X, ..., %) and (&,
&j, ..., Xn) are particularly important, and are often referred to as the
canonical variables of the functions f, ¢; and ¢;; = ;.

KP8108 Advanced Thermodynamics



L

@ Canonical potentials Manifolds Inversion Maxwell relations Gibbs—Helmholtz equation @

Repeated transformation (2)

2 Mathematical operators are often allocated their own symbols, but in thermodynamics
it is more usual to give the transformed property a new function symbol.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 122 /1598
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Canonical potentials

Kl In thermodynamics, we refer to canonical potentials, meaning
those that contain all of the thermodynamic information about the sys-
tem.

B Here we will show that the Legendre transforms of internal energy
give us a canonical description of the thermodynamic state of a system.

@ Essentially, what we need to show is that U(S, V,n), A(T, V,n),
H(S,-p,n), etc. have the unique property that we can recreate all of
the available information from any single one of them.

This is not trivial, as we will see that U(T, V,n) and H(T,—p, n), for
instance, do not have this property.

KP8108 Advanced Thermodynamics
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@ Canonical potentials Manifolds Inversion Maxwell relations Gibbs—Helmholiz equation @
§019

Derive all of the possible Legendre transforms of
internal energy. State carefully the canonical variables
in each case. Use the definitions® © = (9U/dS)y, .
= (dU/dV)g y and u = (dU/IN)g y to help you.

3 Let 7 and © denote temperature and negative pressure respectively. This is to em-
phasize that they are transformed quantities, like the chemical potential u. In this no-
tation, all intensive derivatives of internal energy are denoted by lower case Greek let-
ters.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 124 /1598
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®
§ 019 Energy functions

El For asingle-component system this means that there are 28—-1 = 7
possible transformations.

K By using Eqg. 4.1 on each of the variables in turn we get three of
the transforms:

A(r,V,N) = U(S,V,N) - (4g), yS = U~1S,

(4.4)
H(S, 7, N) = U(S,V,N) = (§p)g vV = U-7V, (4.5)
X(S,V,u)=U(S,V,N) - (§R)g yN = U—puN. (4.6)
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§ 019 Energy functions (2)

B By using Eq. 4.3 on pairs of variables we can obtain three more
transforms:

G(t,mr,N)=U(S,V,N) - (%)S,N V- (%)V,N S

2U-nV-1S, 4.7)
Y(S,m,u)=U(S,V,N) - (g_L\})s,N V- (g_%)s,v N

=U-nV-uN, (4.8)
Qz, V,u) = U(S,V,N) = (58), S~ GRs v N

=U-1S-uN. (4.9)

KP8108 Advanced Thermodynamics
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§ 019 Energy functions (3)

H Finally, by using Eq. 4.2 on all three variables successivly we can
obtain the null potential, which is also discussed on page 199 in Chap-
ter 5:

Ot ) = U(S, V,N) ~ W)y V = () S - @ N
=U-nV-1S-uN
=0 (4.10)

KP8108 Advanced Thermodynamics
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HAUG
Kl Several of the Legendre transforms of energy have their own
names:

E Internal energy U(S, V,N) is used when looking at changes to
closed systems, and is in many respects the fundamental relationship
of thermodynamics.

El Helmholtz energy A(t, V, N) is central to describing the properties
of fluids.

B Gibbs energy G(t, 7, N) has traditionally been the transform that is
of most interest in chemical thermodynamics and physical metallurgy.

EH Enthalpy H(S, 7, N) is important for describing thermodynamic pro-
cesses in chemical engineering and fluid mechanics.

KP8108 Advanced Thermodynamics
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§020

The variable &; in Eq. 4.2 can be defined as either
(09i/9X))e, s, . x, OF (9F/9Xj), . . . Useimplicit differentiation
to prove that the two definitions are equivalent.
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§ 020 Differentiation I

Kl Itis natural to start with Eq. 4.1, which we differentiate with respect
to x;:

Ip; A(f—&ix;)

(axj)gl ( 3)([ )51 / (411)
where (9¢,/9Xj),. is by definition zero.

Bl Hence, at constant &;:
d(f —&ixi)g, = ) dx,+( ) dx, &idx;
=& dX/ + (af) de &idx;

(ax, X

KP8108 Advanced Thermodynamics



) Canonical potentials @

§ 020 Differentiation | (2)

A The full derivative takes the same value as the corresponding par-
tial derivative (only one degree of freedom). Substitution into Eq. 4.11
yields

9PN _ (Ify -~

Gy =Gy, =4 (4.13)
leading to the conclusion that differentiation of ¢; with respect to the

untransformed variable x; gives the same derivative as for the original
function f.

KP8108 Advanced Thermodynamics
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§021 &= &= |/

Use the result from Paragraph 20 on page 122 to
show that the chemical potential has four equivalent
definitions: y = (dU/dN)g , = (dH/IN)g ., = (dA/IN), , =
(dG/IN), .. Specify the equivalent alternative definitions
for temperature T and negative pressure 7.
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§ 021 Identities |

El Letf= U(S,V,N)be the function to be transformed. The question
asks for the derivatives with respect to the mole number N and it is
tacitly implied that only S and V are to be transformed.

H Fromthe Egs. 4.4 and 4.5 we have ¢4 = A(t, V,N) and ¢ = H(S,
7t, N), which on substitution into Eq. 4.13 give:

9A U
GN TV (m)s,v ’ (4.14)

(g_n)sﬂ = (g_%)S,V . (4.15)

E The transform ¢12 = ¢21 = G(7, 7, N) in Eq. 4.7 can be reached
either via A or H.
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§ 021 Identities | (2)

B Inserted into Eq. 4.13 the two alternatives become:

3N T (19N"[V’ (416)
G
ON/ 1 = (W)S,T( : (41 7)

So, in conclusion, the following is true for any single-component
system:

P‘:(g Tvé( )sné(aNm ( )S,V' (4.18)

Bl By performing the same operations on temperature and negative
pressure we obtain:

T_(aan ()vy (QSnyé(g_LSJ)VN’ (4.19)

n = (5 TN_( )sp (avw v )SN (4.20)

KP8108 Advanced Thermodynamics
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§ 021 Identities | (3)

KP8108 Advanced Thermodynamics



) Canonical potentials @

§022 = &= |

The Legendre transform was differentiated with respect
to the orginal variable x; in Paragraph 20. However, the
derivative with respect to the transformed variable &;
remains to be determined. Show that (aqb,-/aé,-)lekaxn
= —Xj.
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©
§ 022 Differentiation Il

B Let us start with i(&i, X)) = f(x;, x;) — &ix; from Eq. 4.1 and differen-
tiate it with respect to &;. Note that the chain rule of differentiation

¢, =&, (33.)

has been used to obtain the last line below:

Qi d(&ixi)
(T&)x (35:)x ( dE; )

(ag,)x — & (g_g)

"X

=@, (§§;)Xj -~ &G, - (4.21)

KP8108 Advanced Thermodynamics

Xj

Xj



) Canonical potentials @

§ 022 Differentiation Il (2)

E From Eqg. 4.3 we know that (af/ax,-)xj = &;, which can easily be
substituted into Eq. 4.21 to produce

i
(a%)x,. =X, (4.22)

which leads to the following conclusion: The derivative of ¢; with respect
to a transformed variable ¢&; is the original variable x;, but with the sign
reversed.
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Non-canonical differentiation

El The Eq. 4.22 is strikingly simple, and leads to a number of simplifi-
cations in thermodynamics.

EH The properties explained in the previous paragraph are of prime
importance. Before we move on, however, we should investigate what

happens if we do not describe the Legendre transform in terms of
canonical variables.

H Differentiating ¢; = f — &;x; with respect to the original varibale x;
gives:

P 9é Pt
(Q_X;)xj (axl X% (QX:)X¢ B aXIaXI)X i
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§023 & = ||

Use the results obtained in Paragraph 22 to prove that
the derivatives (dH/dn)g , (dG/dn), y and (Y /dn)g ,
are three equivalent ways of expressing the volume V
of the system. Specify the corresponding expressions
for the entropy S and the mole number N.
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§ 023 Identities Il

El Let us start out once more from f = U(S, V,N) and define* the

transform ¢, = H(S,, N) = U — V. Inserted into Eq. 4.22, this gives
us (dH/dm)g y = —V.

H Systematically applying Eqg. 4.22 to all of the energy functions in
Paragraph 19 on page 117 yields®:

_V_( )SN = ( N = ( )S,u (4.23)
-S _( )VN = ((97 N ( )V.U (4.24)
((9# s,V (9u S (W oV (4.25)
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§ 023 Identities Il (2)

4 The symbol © = —p is used here as the pressure variable. This is quite deliberate,
in order to avoid the eternal debate about the sign convention for p. As used here,
7, m and u are subject to the same transformation rules. This means that the same
rules apply to e.g. (dH/dn)gy = —V and (dA/dt),y = —S, whereas the traditional
approach using (dH/dp)gy = V and (JA/dT), y = —S involves different rules for p
and T derivatives. Note, however, that it makes no difference whether —p or p is kept
constant during the differentiation.

5 Sharp students will note the absence of —S = (90/01),.,, V = (d0/dn),, and =N =
(90/du),,. These relations have no clear thermodynamic interpretation, however,
because experimentally 7,7, u are dependent variables, see also Paragraph 26 on
page 157.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 145/1598

.



) Canonical potentials

§024 &» &= ||

Use the results from Paragraphs 21 and 23 on pages
125 and 133 to find the total differentials of all the
energy functions mentioned in Paragraph 19.
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§ 024 Differentials |

El The total differentials of the energy functions can be stated by tak-
ing the results from Eqgs. 4.18-4.20 and 4.23—4.25 as a starting point:

dU(S,V,N)= 7dS+ndV+ udN, (4.26)
dA(7,V,N)=-Sdt +ndV+ udN, (4.27)
dH(S,n,N)= tdS-Vdn+ udN, (4.28)
dX(S,V,u)= tdS+mndV-Ndu, (4.29)
dG(t,n,N)=-Sdt - Vdn+ udN, (4.30)
dY(S,n,u)= tdS-Vdn-Ndu, (4.31)
dQ(7,V,u)=-Sdt +ndV-Ndyu, (4.32)
dO(t,m,u)=-Sdt - Vdn - Ndyu . (4.33)
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Manifolds

Bl Inwhat has been written so far we note that all of the state variables
7, S, n, V, u and N appear in conjugate pairs such as tdS, —Sdr,
ndV, =Vdn, udNor -Ndpu.

El The obvious symmetry reflects Eq. 4.22, which also implies that
the Legendre transform is “its own inverse”.

Bl However, this is only true if the function is either strictly convex
or strictly concave, as the relationship breaks down when the second
derivative f(x;, Xj, Xk, ..., Xn) is zero somewhere within the domain of
definition of the free variables (see also Section 4.3).
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Manifolds (2)

E This is illustrated in Figure 4.2 based on the transformation of the
third order polynomial

) =x(1-x%) = &x)=@E)=1-

The Legendre transformation of f to ¢p = f — &Ex can be expressed in two
different ways:

o) =2x° = o) ==2(5E)°. (4.34)

A Moreover, both x and f can be expressed as functions of the trans-
formation variable &:

x:i(1g‘5)1/2 = f(é)zi(s )1/2(2?5),

This means that in total we have to consider three functions involving x,
and three involving &: f(x), ¢(x), &(x), f(&), (&) and x(&).
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Manifolds (3)

In order to retain the information contained in f(x), we need to know
either ¢(x) and &(x), or f(&) and x(&), or simply ¢(&). In principle, the
latter is undoubtedly the best option, and this is the immediate reason
why ¢(¢) is said to be in canonical form.

B Nevertheless, there is an inversion problem when ¢ is interpreted
as a function of & rather than x.

i} Instead, they are examples of what we call manifolds (loosely
speaking folded surfaces defined by a function) as illustrated in Fig-
ures 4.2c—4.2d°.

6 A function is a point-to-point rule that connects a point in the domain of definition with

a corresponding point in the function range.
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Consistency requirements

Kl Finally, let us look at what differentiating ¢ with respect to & implies.
From Section 22, we know that the answer is —x, but

AP\ qg\1/2
) ===
initially gives us a manifold in & with two solutions, as shown in Fig-

ure 4.2.

E It is only when we introduce x(&) from Eq. 4.34 that the full picture
emerges: (dp/dE) = —x.

B I the three values have been independently measured, then the
relation (d¢/dE) = —x can be used to test the experimental values for
consistency.
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Consistency requirements (2)

A The existence of these kinds of tests, which can involve a variety of

physical measurements, is one of the great strengths of thermodynam-
ics.
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Figure a-b). The function f = x(1 —
x2) and its Legendre transform ¢ =
2x® defined as the intersection of the
tangent bundle of f and the ordinate
axis. Note that f shows a maximum
and a minimum while ¢ has no ex-
trema.

AN
f(x W

EAve

C) d)

f(&) P(&)
~__ /

AN
a) b)
Figure c—d). The same two functions
shown as parametric curves with & =
(9f/dx) = 1—3x? along the abscissa.

The fold in the plane(s) is located at
the inflection point (92f/dxdx) = 0.

Figure 4.2: The Legendre transformation of f = x(1 — x2) to ¢ = f — Ex where
& £ (df/dx) = 1 — 3x2. The two domains of definition are x € [- v2/3, V2/3]
and & € [-1, 1]. Together, the four graphs demonstrate how an explicit function
of x, i.e. f(x) or ¢(x), is turned into an implicit manifold when expressed in

terms of &, i.e. f(&) or p(&).
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Vapour-liquid

Kl Inview of these practical considerations, we cannot claim that Leg-
endre transforms are globally invertible, but it is true to say that they
are locally invertible on curve segments where the sign of (92f/dxdx)
remains unchanged. We shall therefore take the precaution of treating
each curve segment as a separate function.

Bl Forinstance, in vapor—liquid equilibrium calculations we shall des-
ignate one of the curve segments as being vapour and the other as be-
ing liquid, although there is no thermodynamic justification for this dis-
tinction, other than the fact that (9°A/9VdV); = 0 somewhere along
the isotherm.
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From¢ptof?

Kl In this section we will explain how, and under what conditions, it

is possible to convert the Legendre transform ¢ back to the original
function f.

E This operation will be based on the transformation rule set out in
Eq. 4.1

oy) =f-(gh)x, (4.35)

where the properties of the variable y are, as yet, unknown.
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From ¢ tof ?(2)

EFl What we need to know is whether the same transformation rule
applies to the inverse transform of ¢(y), such that

=0~y (4.36)

and, if so, what y is (we have an inkling that y = (df/dx), but we need
to prove it).

B Substituting Eq. 4.36 into Eqg. 4.35, rearranging the expression
slightly, and applying the chain rule, gives us:

~@Dy=-D @y @x. (4.37)
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From ¢ to f ? (3)
EH Next we substitute Eq. 4.35 into Eq. 4.37:
~(@h - B x- &) By < E)x
(B x @)y = (&) x

@y L@ . (4.38)
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Integration

El For the inverse transform to exist, it must be true that (92f/dxdx) #
0. This is a necessary condition.

B It is also worth adding that in general, partial differential equations
do not have an analytical solution. However, thermodynamic problems
are often unusually simple, and that is also the case here.

E Let us define & = (9f/dx), which gives us

e -1
GyeG)
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Integration (2)

B Introducing the logarithmic variables diny = dy/y and din& =
d¢ /€ produces an elegant solution to the problem (note how the chain
rule is used in reverse in the second-last Iine)'

(aln 5)

(am y
(288 (2) =

Gins) =1 (4.39)
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Solution criteria
El The most general solution can be expressed as y = ¢c& =

c (df/dx), where c is an arbitrary factor. It is natural to choose ¢ = 1,
which means that y = &, as we know from our earlier discussion of the
Legendre transform, but any value of ¢ € R, will give the same result,
as the inverse transformin Eq. 4.36 is insensitive to scaling.

E We say that x and & are the natural (or canonical) variables of the
functions f(x) and ¢(¢&), as they allow transformation in both directions
without the loss of any information.

B In the context of thermodynamics, this means that e.g.
A(T,V,n) can be inverse transformed to U(S, V,n), provided that
(82U/8S(98)V,n #0.
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Solution criteria (2)

I However, the transformation rule is symmetrical, and the same re-
quirement must also apply in the other direction: U(S, V, n) can only be
transformed into A(T, V,n) if (9?A/dTIT), , # 0.

A The two requirements may appear contradictory, but in actual fact
they are overlapping, because:

22U _ _ PA N
(asas)v,n - ( )Vn (aT Vn - (aTaT)v,n

In states in which one of the derivatives tends to zero, and the other
one tends to infinity, the system is on the verge of being unstable.

El Depending on the variables involved, this relates to either thermal
(T, S), mechanical (p, V) or chemical (u;, N;) stability.
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§025

Use the result from Paragraph 22 on page 129 to
show that performing two Legendre transformations
on f, first with respect to x; and then with respect to

&i, returns the original function.
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%

§ 025 Inverse transform

El Given Definition 4.1 and Eq. 4.22, the inverse Legendre transfor-
mation can be written

bi = a(’”) Ei=pi—(=x)& =T, (4.40)

‘,IX

but it is not entirely clear what variable set should be used to define f.

EH To understand the nature of the problem, let us consider the follow-
ing example. From Eg. 4.4 it follows that:

U(S, V,N) - (ZEYN) S = U(S,V,N)—1S 2 A(t,V,N). (4.41)

)VN

El To approach it from the opposite direction, we have to calculate the
Legendre transform of A(z, V, N) with respect to the variable t:

A(z, V, N) - (ZAELN = A(t, V,N)=(=S)t = U(-S, V,N). (4.42)

)VN
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§ 025 Inverse transform (2)

B This clearly returns the original function U, but the set of canonical
variables has changed from S, V,Nto —-S, V, N. In order to get back to
where we started, we must perform two further Legendre transforma-
tions:

U(=S,V.N) = (5557, o (=8) = U(=S,V,N) = (-7)(~$)

) VN
=A(-t,V,N), (4.43)
A=t V,N) = (2555, (1) = A(=2 V. N) = (1)
= U(S,V,N). (4.44)

B In other words, performing repeated Legendre transformations re-
veals a closed cycle, where the original information contained in U is
retained, as shown in the figure below:’
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§ 025 Inverse transform (3)

UGS, V,N) = A(z,V,N)
T-1 T

A(-1,V,N) <& U(=S,V,N)

7 In practice it may be easier to use the canonical variables (x, y) = (- (dg9/9z2),,y) for
the inverse transformation, rather than (x, y) = ((dg/dz), ,y) as has been done here.
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Invertibility

El This example shows that the Legendre transform is (locally) invert-
ible, which means that we can choose whatever energy function is most
suitable for our purposes.

E Moreover, Eq. 4.10 tells us that the Legendre transform of U with
respect to all of the state variables S, V and N is a function with very
special properties. The function, which is known as the null potential, is
identical to zero over the entire definition domain, and as such it has no
inverse.
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§ 026

Show that performing a Legendre transformation of
internal energy U(S, V, N) with respect to all the canonical
variables S, V, N gives the null potential O(z, T, u) =
0. Next, show that the differential of O is identical to
the Gibbs—Duhem equation; see also Paragraph 34
in Chapter 5.
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§ 026 Null potential

B However, since this result is valid for the entire domain of definition
it must have a bearing on the degrees of freedom of the system.

E Mathematically, the O-function forms a hyperplane in dim(n) + 2
dimensions.
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Seven samurai
El We have in this chapter introduced seven energy functions: U, H,
A, G, X, Y and O, and six state variables: S, V, N, t, p and p.

EH On reflection it is clear that only four of these variables are inde-
pendent, because the discussion has relied entirely on the fact that in-
ternal energy U is a function of S, V and N.

El All of the other varaibles have been defined at a later stage either
as partial derivatives or as transformed functions of U.
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§ 027

Set out all of the Maxwell relations that can be derived
by applying the Leibniz® rule 02f/dxjox; = 9*f/dx;dx;
to the functions U, A, H, Y, G,Q, X and O, restricting

yourself to single-component systems.

8 Gottfried Wilhelm von Leibniz, 1646—1716. German mathematician.
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§ 027 Maxwell relations

El Let us begin by illustrating what is meant by a Maxwell® relation
using U(S, V, N) as our starting point. From the definitions of 7 and r it
follows that:

G5 = G = |36 Gsnly v = 157 @unls n
= (g_g)V,N = (W)S,N :
B Similarly, cyclic permutation of the variables S, V and N yields:
Gy =Gy = GOyn=Esy
s =Gs = Gsn=EPsy -

El By systematically comparing the second derivatives of all of the
Legendre transforms mentioned in Paragraph 19 on page 117, we get

the results shown below.
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§ 027 Maxwell relations (2)

EH Note that the Maxwell relations which are derived from the null
potential O(z, rt, 1) have no physical interpretation, as experimentally 7,
, u are dependent variables.

% James Clerk Maxwell, 1831-1879. Scottish physicist.
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Alternative procedure

El We are familiar with the key characteristics of Legendre trans-
forms, having looked at topics like transformation geometry, differen-
tiation rules, inverse transforms and Maxwell relations. We shall now
focus on the simple rule used in Figure 4.1, which shows that the Leg-
endre transform is equal to the intersection of the tangent bundle of the
original function and the ordinate axis.

E The subject becomes even more interesting now, as we are going
to prove another rule, which is even simpler, although not so easy to
derive. The key to this is a simple change in variables from y and x in
(dy/dx) to y/x and 1/x in the expression (d(y/x)/d(1/x)).
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§028

Verify the Gibbs—Helmholtz equation (d(G/1)/d(1/7)), n = H-
See if you can generalise this result.

KP8108 Advanced Thermodynamics



) Gibbs—Helmholtz equation ©

§ 028 Gibbs—Helmholtz

El From the mathematical identity

ay/x) _ dy  _ d
o) =Y+ X 8(1}//x) =y-xj%

we can conclude that

a(f/x; ~ ~
Gy = f—&xi =y, (4.46)

Xj Xk s+ Xn

cf. the Legendre transform in Eq. 4.1. The identity applies generally,
including to ¢;; and to any other derived transforms.

B One of the classic applications of the Gibbs—Helmholtz equation
is in calculating the temperature derivative of the equilibrium constant,
as shown in Chapter 16, where InK = —AG,/RT is shown to be an
almost linear function of 1/T with a slope of Axh./R.
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Continued differentiation

Kl !t remains to be shown that it is straightforward to differentiate the
Gibbs—Helmholtz equation. To illustrate this, let us use the derivative of
the equation given in the worked example above:

(G/7) _ J d(G/7) _ 9(V/1)
(877 TN ( (19(1/"[ )n N)"[,N - (8(1/"[) ( an )T,N)n,N - 9(1/T))7-(,N
Note that the enthalpy has been differentiated with respect to nega-

tive pressure, which is a canonical variable; the result follows an easily
recognisable pattern.

K Finally, it is worth adding that every time we derive an expres-
sion of the form y — x (dy/dx) we can choose to replace it with

(A(y/x)/9(1/x)).

KP8108 Advanced Thermodynamics



@ Part 5 ©

Euler’s Theorem on Homogeneous Functions

< see also Part-Contents
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State description

El The thermodynamic state of a so-called simple system is described
mathematically by the mapping f : R"2 — R where n > 0 stands for
the number of chemical components’ in the system.

El Apart from this constraint, the domain of definition of a multicom-
ponent system is infinitly large, but the mathematical treatment is con-
siderably simplified by the fact that it can be verified experimentally that
f is linear along all state vectors starting at the origin.

B The practical consequences of this linearity? will be clarified when
we start investigating the mathematical properties of f, but let us first
formalise our statement by stating that the function f(xy,..., x») is ho-
mogeneous of order k € Z provided that the parametrised function
f(Ax) is proportional to AK in the direction of x = (x1, ..., Xn).
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State description (2)

A More precisely, the function f(xy,...,Xn, &Ens1,--.,Em) is homoge-
neous of order k in the variables xi, ..., x, if the following criteria are
satisfied:

F(X1/---/Xn/£n+1/---/5m) = /\kf(xh---/Xn/§n+1/---/§m)/ (51)

X,' = /\X,'.

' An empty chamber has no chemical components, but it nevertheless constitutes a
thermodynamic system of electromagnetic radiation with two degrees of freedom.

2 Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, 2nd
edition, 1985.
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Homogeneity

Note that F has exactly the same function
F k=— k=1 definition as f. Hence, it is only by conven-

tion that we distinguish the two forms. We
K—0 may therefore write:

X
Faf
k=2 %
H It is then assumed that &,.4,...,&m do
not take part in the homogeneity of f.  That
X  means the scaling law in Eq. 5.1 is valid for
all choices of £y, ..., Em.
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Homogeneity (2)

Taking this a step further, one can say that f = xyz is homogeneous
of order 1 in x if y,z are taken to be constant parameters (the same
argument holds circularly for y and z), and homogeneous of order 3 in
x,y, z if all of the quantities are treated as free function variables.
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From our daily lives

Bl Of particular interest to us are the energy functions® U, A,...,O
with state variables belongingto S, V, N or , rr, u.

EH The energy functions, and entropy, volume and mole number, are
homogeneous functions of order 1, while temperature, pressure* and
chemical potential are homogeneous functions of order 0.

El In the context of thermodynamics these quantities are referred to
as extensive and intensive state variables respectively®.
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From our daily lives (2)

3 In thermodynamics it is common to write F = X(f) in this case, where X is a physical
quantity, i.e. a quantity with an associated unit of measurement. We could look, for
example, at the total number of moles for all components in the system while it is kept
at a constant composition (constant mole fractions). In this case F(X) = Af(x) where
X = Ax and X = {X} [X]. Here, {} denotes the magnitude of X and [] denotes its unit of
measurement. Let us now choose x = X/{X}i.e. A = {X}. Itis then possible to write
F(X) = {X} - f(X/{X}) = {X}[X] - f(X/{XD)/[X] = X - f(X/{X})/[X]. Itis for instance
quite common to write the total Gibbs energy for the system as G(t, r, N) = Ng(z, 7, X)
where X is a vector of mole fractions, or, alternatively, as G = Ng(z, ) if x = [1]. The
function g = (f) denotes molar Gibbs energy in both cases. Correspondingly, we can
write U = Nu(s, v), H = Nh(s, t) etc. for the other molar energies.

4 Here, 7 and 7 are used for temperature and negative pressure respectively, as al-
ready introduced in Chapter 4. In this context we want to stress that the properties (in
common with the chemical potential i) are intensive quantities.

5 A physical quantity is extensive if it is proportional to the system size and intensive if
it is insensitive to the system size.
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Differential in X and &

El We are not initially aiming to embark on a general discussion of
the multicomponent functions in Eqg. 5.1. Instead, we will start with a
detailed analysis of the simpler two-variable functions f(x, &) and F(X,

&)

El In order to exploit the function properties, it makes sense to use
the total differential of F expressed in X and &-coordinates:

dF = (%), dX + (), dE .
B The variable X is defined as a function of x and A in Eq. 5.2, and

by substituting the total differential of X, or more precisely dX = Adx +
x dA, we obtain

= (20, xdA + (ZR), Adx + (&), de . (5.3)
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Differential in A and f

El An alternative would be to make use of F = AKf from Eq. 5.1 as
the starting point for the derivation:

dF = kAK=TfdA + AR df .

B Substitution of the total differential of f expressed in x and &-
coordinates gives:

dF = kA" fdA + A% (D), dx + A% (D), de . (5.4)
El Note that Eqg. 5.3 and Eq. 5.4 are two alternative expressions for
the same differential dF (A, x, &).

Bl Comparing the equations term-by-term reveals three relations of
great importance to thermodynamic methodology:
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Case dA

El Comparing the dA terms reveals that (9F /dX); x = kAK=1f. Mul-
tiplying both sides by A gives (dF/dX); Ax = kAKf, which if we substi-
tute in Eq. 5.1 and Definition 5.2 can be transformed into:

(R), X = kF. (5.5)

E The resultis known as Euler®s first theorem for homogeneous func-
tions, or simply as the Euler integration of F.

KP8108 Advanced Thermodynamics
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Case dx

El Comparing the dx terms reveals that (dF/dX): A = AK (If/IX)¢.
Dividing each side by A leads to:

(%) = A" (&), . (56)

El Hence, (dF/0X), is a homogeneous function of order k — 1.

B Differentiation with respect to X therefore reduces the order of ho-
mogeneity of F by one.
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Case d¢

El Comparing the d&-terms reveals that the homogeneity of the
derivative with respect to & is unchanged:

ol m k (of
(ﬁ X~ A (x)x ! (.7)

Kl Differentiation with respect to & therefore conserves the homogene-
ity in X.

KP8108 Advanced Thermodynamics



o -

®
Note

El It should be stressed that the Euler integration in Eq. 5.5 is not
limited to one particular interpretation of X.

B In fact, any scaled variable x = A-' X satisfies the equation:

(90 X = Kf .
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Extended notation |

El The general properties of homogeneous functions will be ex-
plained further in Chapter General Theory, but to get a sense of the
overall picture we shall briefly mention what changes are required in
Egs. 5.5-5.7 to make them valid for multivariate functions:

z Xi (% —kF (5.8)
]#:I <,I
JF k 1
(a )X#: £ - (3)(’))(#: & 4 (59)
__ 1k
(&,k)x Lk A (aék)x Lk (5.10)
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§029

Internal energy U = U(S, V, N) is an extensive function

in the variables S, V and N. The total differential of U

isdU = 1dS +ndV + udN. Explore the homogeneity
associated with the functions for 7, m and p.
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§ 029 Intensive functions

El The variables 7,7 and u mentioned above must first be defined.
Mathematically, the total differential of U(S, V, N) is:

= (g_LSJ)V,N ds + (g_L\;)S,N dVv + (g_%)s,v dN

B Substitution of k =1, Xi = S, X; € {V,N} and & = @’ in Eq. 5.9
yields:

(S VN)_(z?USVN

d
Yy =A0 (D) =r(s,v,n).  (5.11)

B The function (S, V, N) is obviously homogeneous of order 0 in the
variables S, V, N because it is independent of the scaling factor A.
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§ 029 Intensive functions (2)

A Similarly, differentiation of U with respect to V and N yields

~ 8USVN) 0 (du(s,v,n) _
(S, V,N) = ( )sn = A5 D)  =n(s,v,n),  (5.12)
~ 8USVN d
u(S,V,N) = ( by =A% (%) | =

u(s,v,n, (5.13)

where the (negative) pressure and the chemical potential are intensive
variables as well.

7 Actually an empty set. Here it is used to denote a missing variable or an empty

vector.
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§030

Internal energy U = U(S, V, N) is an extensive function
in the variables S, V and N. The total differential of
UisdU = 1dS + ndV + pdN. What is the correct

integral form of U? Explain the physical significance
of this integral.
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§ 030 Euler integration

Bl Substituting k =1, X; € {S, V, N} and &, = @ into Eq. 5.8, together
with the definitions from Paragraph 29 on page 182i.e. t = (dU/dS)y y;

= (dU/dV)g y and u = (dU/JN)g y yields Euler's equation applied to
internal energy:

U=1S+nV+uN. (5.14)

E We are not being asked about multicomponent mixtures, but

Eq. 5.14 is quite general and can (by analogy with Eq. 5.8) be extended
to:

n
U=1S+nV+ Y uNi2tS+nV+pu'n (5.15)
i=1
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Remark

El The total differential of internal energy for a single component
systemis dU = 7dS + ndV + pdN.

El Physically, this means that the system can be built up from zero
size® in a manner that keeps 7, 7t 1 constant during the process.

EH When these subsystems are merged into one big system there will
be no changes in the intensive properties, because the requirements for
thermodynamic equilibrium are automatically fulfilled, see also Chap-
ter 21 on page 1162.

8 By definition, a system of zero size has zero internal energy, i.e. U = 0. In this
context, “zero size” refers to zero volume, zero mass and zero entropy. Note, however,
that it is not sufficient to assume zero mass, because even an evacuated volume will
have radiation energy proportional to T*!
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§ 031

Gibbs energy G(t, 7, N) is an extensive function of
the mole number N at a given temperature 7 and
(negative) pressure 7. The total differential of G is
dG = -Sdt - Vdn + udN. Explore the homogeneity
associated with the functions S and V.
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§ 031 Extensive functions
Kl First of all the functions S, V and p must be defined. Mathemati-
cally, the total differential of G(7, =, N) is:

dG = (23), ydr+ (D), ydm+ (), dN.
El Comparing this with the differential in the problem formulation

yields —=S(t, i, N) = (dG/dt), N, —V(7, 7, N) = (dG/dn), y and p =
(dG/IN), .-

H From Eqg. 5.9 it can be seen that the chemical potential is (still) a
homogeneous function of order 0, see also Eq. 5.13.

KP8108 Advanced Thermodynamics



#@ G)L

§032 &> @ ||

The Gibbs energy of a binary mixture is given as a
homogeneous function of order 1 in the mole numbers
N; and N, (at fixed T and p). Make a contour diagram

illustrating the function G = aNj x> + N In Xy + Nalnxo where
N> is plotted along the ordinate axis and N; along the
abscissa. Let x; = Nj /(N1 + Ng) and xo = Ng/(N1 + Ng)

Show that the isopleths corresponding to constant

G (the contour lines) are equidistant for a series of

evenly distributed Gibbs energy values. Use a = 2.4
in your calculations.
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§ 032 Gibbs energy |

El The function is nonlinear in Ny and N,, and the isopleths must be
calculated iteratively using e.g. Newton—Raphson’s method: Np k1 =

No  — (Gk — G)/u2, where up = ax12 + In x» is the partial derivative of G
with respect to N».

H A fixed value is selected for Ny, and N, is iterated until Gx_,., has
converged to G, see the Matlab-program 1.4 in Appendix 30.

B Note that each isopleth defines a non-convex region, which can be
interpreted as a fundamental thermodynamic instability.
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§ 032 Gibbs energy I (2)

EH The corresponding two-phase region (the symmetry of the model
reduces the phase equilibrium criterion to p4 = p2) can be calculated
from the total differential of G, rewritten here into the tangent of the
isopleth:

Np #

d —_ =
(W)T,p,G T w2
This indicates that the phase equilibrium condition is fulfilled when-
ever two points on the same isopleth have common tangents (remem-
ber that G takes constant values along each isopleth such that the cri-
terion is reduced to 1 = o).
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Figure 5.1: Contour diagram of GibbsAénergy (solid lines). Equidistant values

(open circles) are made visible along 3 rays (dotted lines) from the origin.

The two-phase region is spanned by the two outermost rays. One of the

isopleths indicates the phase equilibrium condition in the shape of a convex

hull construction.
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§033

Homogeneity causes a whole range of remarkable
results. One formula obtained by differentiating Eq. 5.5
is:

Xd(@E), — k(&) dé = (k- 1) (&), dX ,
For k = 1 this implies that (9?F/dXdX), = 0 and

(OF [9&)y = (9?F/dXIE) X. Verify these results and
give a physical explanation for them.
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§ 033 Homogeneity

El The left-hand side of Eq. 5.5 is differentiated and the right-hand
side is replaced by the total differential of F:

X d(98), + (9%) dX = k (98) dX + k (), d& .
Bl For k = 1 the expression reduces to X d(dF /dX). = (dF/d&)y dE.

To proceed we need the differential of dF/d X, and because F is a func-
tion of X and & it can be written as the total differential

dZ), = Gako), dX + (H)de

A Substituted into the equation above (letting k = 1), this yields the
intermediate result:

X (ed%); OX + X () de = (&), de . (5.16)
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§ 033 Homogeneity (2)

This implies that two non-trivial relations follow from Eq. 5.16 (one

equation in three variables gives two non-trivial relations), irrespective
of the actual values of X, dX, £ and d¢:

PF
Fxox): =0, (5.17)
P2F oF

X (Fxa2) =59, (5.18)
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Parametric form

El From a physical point of view any extensive function F(X, &) can
be expressed in the form F = (&) X.

E This stems from the fact that F(0, £) = 0 in addition to 0%F /0XIX =
0, see Eq. 5.17° The derivative of F with respect to & is therefore an
extensive function p’(£)X where the second derivative of F with respect
to both X and & is equal to the intensive parameter p’(&).

9 It should be noted that it is the second derivative function which is zero. It is not
sufficient to say that the second derivative is zero at a given point.
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Extended notation Il

Kl If F(x, &) is extensive in x it can be shown that the differential in
Paragraph 33 on page 194 takes the form:

T
x"d(@), - (D), ds =0, (5.19)

where the differential of dF /dx is written:
d(%0); = (L) dx + (£5) dg . (5.20)

El The two quantities dx and d¢ are independent, and by substituting
the differential 5.20 into Eq. 5.19 it follows that:

(55D x=0, (5.21)
(R x =), - (5.22)

A Thisis Euler's second theorem for homogeneous functions.
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§034

Substitute U = U(S, V, N) into Paragraph 33 on page 194
and show that Sdr + Vdn + Ndu = 0. Do you know
the name of this equation in thermodynamics? Does

it make any difference if you plug in G = G(t, it, N)
rather than U(S, V, N)?
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§ 034 Gibbs-Duhem

El Substituting F = U(x, &) into Eq. 5.19 where x" = (S, V,N) and
& = @, reduces the expression to x" d(dU/dx) = 0. From the definitions
of t,m and u in Paragraph 29 on page 182 we can write

Sdr+ Vdn+ Ndu =0, (5.23)
B Alternatively, if F = G(x,&) where x = N and &' = (, ), then
Eq. 5.19 takes the form:
G
NAGR). - nNdT_( 2. ndm=0.
Bl The partial derivatives of G with respect to N, and = have been
identified as u, —S and —V in Paragraph 31 on page 188.

EH The expression can therefore be reformulated as Ndu + Sdt +
V dn = 0 which is identical to the Gibbs—Duhem equation.
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§ 034 Gibbs—-Duhem (2)

A |Infact, all Legendre transforms of U end up giving the same Gibbs—
Duhem equation.
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Comment

El We have not been asked for any extensions, but by analogy to
Egs. 5.8 and 5.15 the Gibbs—Duhem equation may be extended to a
multicomponent form:

n
Sdr+ Vdn+ ¥ N;dy; = Sdt+ Vdr+nTdu=0. (5.24)
i=1

B The homogeneity, which effectively removes one degree of free-
dom in the function expression, shows up as a mutual dependency in
the nth derivatives (of U).

A In single component systems this means that any arbitrary inten-
sive variable can be expressed as a function of (at most) two other in-
tensive variables, see also Paragraph 39 on page 214.
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El tis important to realise that the information contained in U is con-
served during the Legendre transformation to H, A, ..., O.

E For example, knowing the Gibbs energy G(t, 7, N) really implies
full knowledge of U(S, V, N), and vice versa.

El The Gibbs—Duhem equation can therefore be derived from any of
the energy functions.

B In particular this also applies to the differential of the null-potential
O(t, mt, u) which is identical to Eq. 5.23, see Paragraph 26 on page 157.

KP8108 Advanced Thermodynamics



#@ G)L

§035

Use the result from Paragraph 33 on page 194 to
determine the second derivatives (9°G/INoN), .,
(0°Y[989S),, , and (9°Q/aVaV), ,, where G = G(z,
n,N)and Y = Y(S,m, u) and Q = Q(z, V, u).
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§ 035 Linear potentials
E The three functions G, Y and Q are extensive in N, S and V re-
spectively, i.e. in one variable each.

EH This makes Eq. 5.17 valid and the substitution of the definitions for
7, and p yields:

2G

INON/ 7,7 (3N T (5.25)
2y
9598/, (as mu 0, (5.26)
22Q _

VoV )z, (av AT (5.27)
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§ 036

Show that the Hessian of A = A(t, V, N) has only
one independent element when the temperature 7 is
taken to be a constant parameter. Use Eq. 5.21 as
your starting point.
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Example

El Helmholtz energy is extensive in V, N at any given temperature .

EH Bearing in mind Eq. 5.21 the Hessian of A can be expressed as a
function of only one independent variable because the matrix, in addi-
tion to being symmetric, must satisfy the relation:

2 2
PA ~ (8_\7} TN (#\Il TV v _ 0
IXIX T - p) p) -
u u
(W 7N (m)T,V N 0

El The fact that the matrix, like all Hessians, must be symmetric, in
this case leads to (dnt/dN), , = (du/IV), -

B Altogether there are 4 matrix elements, with 3 associated relations.
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§ 036 Hessians

El The solution of the homogeneous (!) system of equations can be
formulated in an infinite number of ways, one of which is:

N
N z?_y 5 -1 V i 0
V(aNT,V[_\q %][N]_(o]' (5.28)

B Note that the second derivative of Helmholtz energy with respect

to the mole number is non-zero in Eq. 5.28, while the corresponding
second derivative of Gibbs energy is zero in Eq. 5.25:

fra 5.25: (g—,’f, n=0,
og fra 5.28: ((‘3—,’3)T v #0.
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§ 037

Find analytical expressions for (dG/dt),. y and (dG/dm),
by using the Euler method to integrate the partial molar
entropy and partial molar volume.
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§ 037 Partial molarity

El Replace F by G(&,n) in Eq. 5.22, where &' = (7,m) and nT =
(N1, ..., Np). This gives, without much difficulty:
2G

(81 N | _ (&IanT)n n=— (anT)m n=—

2°G
((97'( 7N (87u9nT) (8nT)

EH The partial derivatives of S and V on the right hand side are called
the partial molar entropy and partial molar'® volume respectively.

T

(7]

n

Th

<l

Bl A more compact notation is therefore S =n's and V = n'v.

10 A partial molar quantity is defined as f = (dF/on)_ ., irrespective of whether or not
F has 7,7, Ny, ..., N, as canonical variables (it is only for Gibbs energy that there is a
correspondence between the two sets of variables).
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§038

Show that G(S, V, N) is really an extensive function of
the variables S, V and N, thus verifying the conjecture
set out in the introduction to this chapter (on page 190).
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§ 038 Proof

El From the definition G(t,t, N) = U—- 1S — nV, where U = U(S, V,
N), T = (dU/dS)y y and 1t = (dU/dV)g p;, it follows that we can express
Gibbs energy as a function of S, V and N, because the right-hand side
of the equation only includes U and functions derived from U:

G(S,V,N) = U(S, V,N) - 7(S, V,N)S — =(S, V, N)V..

E We already know that t and = are intensive variables, whereas
U, S and V are extensive variables.
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§ 038 Proof (2)

Kl From this it follows that
G(S,V,N) = Au(s,v,n) — At(s,v,n)s — An(s, v, n)v
= Ag(s,v,n),

which clearly demonstrates that G is homogeneous, in accordance with
the conjecture.
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§039

Starting from Paragraph 35 on page 204, can you tell
how many thermodynamic variables are needed to
determine the intensive state of a system?
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§ 039 The state concept
E A thermodynamic system is normally described by n + 2 indepen-
dent state variables.

EH However, the intensive state can be determined once n + 1 (inten-
sive) variables are known.

B |n fact, the (single) extensive variable determines the system size
but has no influence on 7, w and p.

A For asingle-component system we can describe the intensive state
in three different ways:

T

(),
(T, 1),
u(z, m).

Tt
u
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Equations of state

< see also Part-Contents
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1 Ideal gas law

1 Helmholtz potential
2 Gibbs potential
3 Grand canonical potential

2 Molecules
1 Translation
2 Vibration
3 Rotation
4 Other intra-molecular degrees of freedom

3 Photons
4 Phonons

5 Free electrons
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6 Virial
7 Van der Waals

8 Murnaghan
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State description

El Although thermodynamics builds on some basic, fundamental
principles of physical science, which form part of a well-defined mathe-
matical theory, it is essentially an empirical science.

El Thatis how it was in the past, and that is how it will continue to be
in the future, because with the exception of a handful of simplifications
used in statistical mechanics' there are no precise models, and there
will always be the need for essentially physical models with adjustable
parameters.

A |nthis chapter we learn about a variety of useful concepts, such as
ideal gases, virial development, the Einstein—Debye phonon model and
van der Waals theory, but first of all we need to define the concept of an
equation of state.
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State description (2)
Let us start with any canonical differential, e.g. of internal energy
dU:TdS—pdV+£1y,-dN,-, (7.1)
i=

defined using the canonical variables S, V, N;.

Bl If we know the fundamental state functions referred to as the equa-
tions of state of the system

T=T(S,V,n), (7.2)
p=p(S,V,n), (7.3)
ui= wi(S,V,n), (7.4)

then Eq. 7.1 can be integrated using Euler’s 1st theorem to give U =
TS-pV+ Y., uiN;, as shown in Paragraph 30 in Chapter 5. However,
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State description (3)

in practice this doesn’t work, because the relationships defined by 7.2—
7.4 only exist as implicit functions?.

Bl Itis therefore more normal to start with

n
(dG)T,p = ‘Z1 ui dN; (7.5)
=
or alternatively
n
(@A)r =-pdV + L. N, (7.6)
=

but it is still difficult to accurately describe the chemical potential of the
compounds in a multi-component mixture.

B The exceptions to this are ideal (gas) mixtures for which we can
obtain exact solutions using statistical mechanics.
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State description (4)

The alternative to the above approach is to derive the thermody-
namic functions in non-canonical coordinates:

U(T, V, n) rather than U(S, V, n)

H(T, V,n) rather than H(S, p, n)

S(T, p, n) rather than S(H, p, n)

This is particularly useful if you only need to obtain U, H or S, but not
AorG.

' Above all crystalline phases, ideal gases and dilute electrolytes.
2 Only very rarely can entropy be written as an explicit (independent) variable in the

state functions.
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Ideell (perfect) gas

Kl An ideal gas consists of individual particles (atoms, molecules or
radicals) that move freely and independently in space, without any kind
of interaction.

H |n spite of this massive simplification, the total energy of the gas is
not equal to zero, as the particles have their kinetic energy (translation),
moment of inertia (rotation), internal degrees if freedom (vibration, in-
ternal rotation, torsion, electronic excitation) and chemical binding en-

ergy.
Ideal gases are only valid as a special case of the true thermody-

namic state when pressure approaches zero, and can never be mea-
sured directly in a real (physical) system.
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The ideal gas law

E It is not a new idea that the world is composed of more or less
distinct material points, but the experiments that underpin the ideal gas
law as we know it today are more recent:

Name | Observation | Year
Boyle PV )rn=c1 | 1662

(
Charles (VIT)pn=cC2 | 1787
Gay-Lussac | (P/T )yn=rcs | 1809
Avogadro (V/IN)rp=cs | 1811

E It was only in 1834 that Emile Clapeyron successfully formulated
the ideal gas law in the simple form:

p'9 = NAT (7.7)
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The ideal gas law (2)

EHH We can see that the unit of the product p - V is the same as
for A, which means that there may be a deeper relationship between

pressure—volume and the energy functions.

vmode (bug):
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Gibbs—Duhem |

El The quickest way to obtain a useful result is to apply the Gibbs—
Duhem Eq. 5.23 described in Chapter 5. For a thermodynamic system
with only one chemical component, the folowing applies:

sdrt 4+ vdn+du =0.
B This differential has no general solution, as s and v are quite arbi-
trary functions of the material state, but for a change of state that is as-

sumed to be isothermal, thendt = 0and v'9 = V/N = RT/p = —RT/~,
giving us

(du'9)r = % dr,

or:

W9(T,p) — u(T) = RT?%” =RTIn(£).

po
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Gibbs-Duhem | (2)
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Euler’s homogeneous function theorem

El The Helmholtz energy of a single-component system can therefore
be written as the integral A = —pV + uN.

H From Chapter 4 on Legendre transforms we know the general
equations S = —(JdA/dT), y and U = A + TS, which means that it
also follows that:
Us = N[yo - T(%)] — NRT = Nh, — NRT .
aT

A |n other words, the internal energy of the gas depends on the
system’s size N and temperature T through the constant of integra-
tion3called po.

3 The internal energy U9 is inevitably independent of both pressure and volume: ideal
gases are a collection of free material points without any form of interaction. It is only

the internal degrees of freedom of the particles that contribute to their energy, and

these are also what determine the integration constant .
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Gibbs—-Duhem Il

Kl Our next challenge is to generalise this result into one that is sim-
ilarly valid for a multi-component system. In order to do that, we must
write the ideal gas law in its extended form

N:RT
p® =Y (7.8)
1
so that we can identify the components that constitute the mixture.

H The Gibbs—Duhem equation from Chapter 5 follows directly from
the fact that U is a homogeneous function to which Euler's theorem
applies when expressed using the variables S, V and n.
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Gibbs—-Duhem Il (2)
Let us substitute for 1 = —p'9 while keeping © = T constant as
shown below:

—v; BELdV - v; R—VTdN,-+;N,-(dy,-)'$ -0,

or YL(RTYY - RT F + (duj)r) = 0.
]
Bl The simplest solution for an expression with a sum equal to zero is
to assume that each individual term is equal to zero:

(du))?
RT

dn; . ;
Z—%JFT,' Vie[1,n].
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Gibbs—-Duhem Il (3)

<« 7 Equations ...

i Integrating the differential gives us
Ar (T, V) = pf(T) = ~In g +In g .

Note that the constant of integration o8 which will hereafter be called
the standard state of component i, is a function of temperature.
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Standard potential

El The normal convention is to assume a pure-component standard
state where VO/N,.° = RT/p, and where p, = 1 bar, or, in older reference
works, where p, = 1 atm.

El Bearing in mind this fundamental understanding of what u; means,
the chemical potential of the component can be expressed as

uf(T,V,n) = (T, p.) + RTIn(B57) . (7.9)

Here we should particularly note that (dy}g)r,v,n = 0 must be true for all
values of p..
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Standard potential (2)

i} Essentially, standard states are presented in three different ways in
the literature:

wi (T, po) = 17 (T, Po) (7.10)
uo(T,po) = Ach®(T) = Ts2(T, po) (7.11)
uS(T,po) = Acth?(To) + (h2(T) = h2(To)) = Ts2(T,p.).  (7.12)

il These equations follow from the definiton G = U + pV - TS =

H — TS from Chapter 4 applied to the standard state as defined in the
above paragraph.
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Standard potential (3)

%

I All of the formation properties (enthalpy, volume, entropy, etc.) of
any given compound AzBy ... Z; in an ideal gas state are defined anal-
ogously by

Ashy 2 h9,  —ah§-bhl—...-zhs,

AsBy..Z A2Bp...Z,
where «, p and C indicate the phases (configurations) of the various
elements.

For example, hydrogen bromide would have the formula

(H2)o5(Br2)os, giving the enthalpy of formation
L9 [o] lig
Aihfg, = his, — 0.5hHZ - 0.5hBr2 .

at T, =298.15K and p, = 1bar.
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Standard potential (4)

[} Hence, in the above equation h} = hllall = 0 and the enthalpy of
formation Athg, = hl}%gr is given relative to this arbitrary reference.

B There are therefore many ways of reporting the standard state, but
for all of them it is true that

he(T) - he(T.) = [ c2(T)dT, (7.13)

c;,,.(T)dIn T. (7.14)
BX One of these equations (it doesn’t matter which) can be viewed as
a definition of c;, while the other one follows from the total differential
dh = Tds+ vdp+ ) uidN;, which for constant pressure and composi-
tion gives us (dh)pn = T ds.
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The superposition principle

Kl In practice, all thermodynamic reference works are based on a
large number of carefully recorded measurements supported by one
or more theoretical calculations, which together produce figures for
Ath?(To), s7(Ts, po) and c;’,.(T).
El The enthalpy of formation is generally measured using calorimetry,
whereas the heat capacity of an ideal gas component essentially ad-
heres to the superposition principle 4

c;,,.
and can be calculated from spectrometric measurements.

__ Atrans rot vib
- Cv,i + Cv,i + Cv,i

ree 1R

4 The gas constant R in the above equation is a result of the defintiion of H = U + pV,
which for an ideal gas gives us H'9 = U9+ (pV)'9 = U9+ NRT. If we then differentiate
with respect to temperature we get c,j/i =c,+ R.
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Euler integration

El It is easy to lose one’s way in the details of these calculations.
It is therefore worth reiterating that using Euler’s theorem to integrate
euqations 7.8 and 7.9 always works, and that the Helmholtz energy of
the gas can be expressed in the following general form:

AS(T,V,n) =9V + ¥ N
]
= — X NiRT + X Nigg (T, po) + X NiRT In ()
i i !

N—— ———
G°(T.p.)

EH Note that, in this expression, the standard state term is a conven-
tional Gibbs energy function, because T and p, have been selected as
the state variables of u?, rather than T and V..
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Note 7.10

Kl In summary, the following equations apply to ideal gas mixtures:

A9(T,V,n) = ; N2 (T, po) + ; N;RT [In (FAT) — 1] (7.15)

~S'9(T,V,n) = L Nis;(T, ps) + £ NiR In (25T (7.16)
U9(T,n) = H9(T,n) — NRT (7.17)
H9(T,n) = £ N;h(T). (7.18)
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u(T,p,n)

Bl In our case, it is possible to calculate Gibbs energy by using the
Euler method to integrate the chemical potential in Eq. 7.9, and substi-
tuting in the ideal gas law from Eq. 7.7

u(T,p,m) = (T, po) + RTIn () , (7.19)
which gives us:
n n n
G9(T,p,n) = Y, uN;= Y, uiN;+RT Y, Niln(}) + NRTIn(2) .
i=1 i=1 i=1
(7.20)

El Alternatively, we can calculate the Gibbs energy as a Legendre
transform of Helmholtz energy (or vice—versa).

This significantly complicates the practical application of Legendre
transforms.
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n(r,V,u)
El An alternative way of expressing Eq 719 is:

NS(T,V,u) = Boily (7.21)

I Substituted into the ideal gas law, Eq. 7.21 gives us an adequate
equation of state for the grand potential Q(T, V, u):

po(T, u) =57 z N = p z exp (Ut (7.22)

A The total differential of Q for a one-component system was derived
in Chapter 4, see Paragraph 24 on page 136.

For an n-component system, we can state that

(dQ)7, = —pdV . (7.23)
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n(T,V,u)(2)

Bl The differential (dQ)r, can be integrated directly, as long as the
function of state p(T, V, u) is expressed explicitly. Eq. 7.22 is explicit,
and if we integrate using Euler's method at a given T and u we obtain

Q9Y(T,V,p) =-p'9V =—-p,V z exp (Uoht (7.24)

El It may at first sight appear that p, is a free variable in the above
equations, but if we change p., then u?(T, p,) varies accordingly, always
keeping the value of Q'9 unchanged (show this).

Bl The intensive state is evidently given when n + 1 intensive vari-
ables have been determined, while the extensive state requires n + 2
variables.

B Thisis a general result, which is not limited to ideal gases®.
5 In contrast to e.g. U'9 = U(T,n), which only applies to ideal gases.

KP8108 Advanced Thermodynamics



{@ Ideal gas law @L

§040

Derive the partial derivatives of Q'9(T, V, u;) with respect
to T, V and u;. Show that the results can be interpreted
as -S'9, —p'9 and —N]'.g, without discussing the properties
of the Legendre transform.
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§ 040 Grand canonical potential

Kl Instead of differentiating p'9V in Eq. 7.24 we will use the fact that
-Q9 = p9V = ¥;NIRT = N9RT. If we differentiate N.*(T, V, ) in
Eq. 7.21 we get:

oINS a9 RTS-R(ui-p2) N NP /g P>
G, =N (RTY T — ®T (Si - )
G, =%
IV /T,u - v
IN? L
ay, T,V,Hk# - RT
El Here we have made use of the relationship —s? = —(du?/dT)

pn’

which also means that —s;? = - (ayf/ar)vy.
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§ 040 Grand canonical potential (2)

EH Apart from this fundamental observation, the simplification of
RTs? — R(u; — u7) in the first partial differential equation relies on an
understanding of certain principles of thermodynamics.

[ In the general case, y; = hi — T5;. In the special case of ideal
gases, h? = h?, and hence Ts? — (u; — u7) = T5°.

We are now ready to derive the partial differentials of Q'9

Pve = AT LGPy, ~NR=- L N(5° -R)-NR =-8%,
. IN® N
399)_’_“ RTZ (QV)Ty RTZ1— :_p|9,
299 IN? 9 _ N9
3PI)T,V,‘uk¢ -RT Z (9#1 TV ik 21 Ni ? =N,
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Molecular contributions

Kl Without further introduction, let us assume that the relationship
between the particles’ microstates and Helmholtz energy is

war =-hQ,
where Q is the total partition function of the system®”.

The molecular partition function g approximates to the product of
q ~ gansqvbgrt... over the (assumed) number of independent terms.

Bl In principle, this is all we need to know about the gas, but in order
to calculate the necessary properties, we must first know the quantum
mechanical description of each individual input to the model.

6 D. F. Lawden. Principles of Thermodynamics and Statistical Mechanics. John Wiley
& Sons, 1987.

7 Robert P. H. Gasser and W. Graham Richards. An Introduction to Statistical Thermo-
dynamics. World Scientific Publishing Co. Pte. Ltd., 2nd edition, 1995.
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Free translation

Kl A particle-in-a-box has three identical degrees of translational free-
dom.

Kl In a cubic box, each direction will have its own quantum number jy,
jy and j,, which is given the same unit of energy ¢ = h?/8m/?.

B The associated partition function® can be written

trans _ Z Z Z exp( (]x""]y'Hz) ) .

Jx=1jy=1jz=1

H For high quantum numbers 2 = j2 + j2 + jZ > 0 is a virtually
continuous function over (an eighth of) the surface of a sphere with a
radius of j.
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Free translation (2)

A The surface area of the octant of the sphere is 7j2/2, which leads
us to the integral

(o)
trans s
Jim g =3 [ exp (49 dj
0
n T 2 —x 2 ~ 12_6
=309 f X X" =%T
%/_/
Vri/4
(2nmkT)%2v
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)
Free translation (3)

<« 7 Equations ...

When going from summation to integration, it has been assumed
that kKT > ¢,. Combining this with j2 > 0 gives us j2¢/kT < 1 over

much of the area of integration, which ensures that the integral is a
good approximation of the sum.

8 Per Chr. Hemmer. Statistisk mekanikk. Tapir Forlag, 1970. In Norwegian.
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§ 041

Calculate the typical translational temperature ¢/k =
h2/8ml?k for the light gases hydrogen, helium and
neon. Assume that the lengths of the sides of the box
are > 1 nm. Comment on the answer.
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§ 041 Particle-in-a-box

%

El The table below gives the values for ¢/k and the standard boil-

ingpoint of these three low-boiling-point compounds.

My elk I
g/mol K K

2.0159 1.19 20.39
4.0026 0.60 4.224
20.179 0.2 27.09

E The length of the sides of the box is | = 1 nm (which is right at the

limit of the range of validity of classical thermodynamics).

El Except in the case of He, ¢/k is reassuringly far below the boiling
point of the compounds, and in practice all gases have a virtually con-
tinuous spectrum of translational energies®.
9 Note that ¢ « |2, If the length of the box is changed to e.g. 10 nm, then ¢/k will be

reduced by a factor of 100. This means that even He behaves in the classical manner
KP8108 Advanced Thermodynamics
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Sackur-Tetrode S

<« 7 Equations ...

El For an ensemble of n particles-in-a-box without fixed locations, the

total partition function becomes QU'a"s = I (qgtrans)n,

B This results in a function for communal entropy that only depends

on the system’s volume and the mass and number of particles, while
the geometry and bonds are irrelevant:

t n t
Qrrans _ (qr:r!‘s) n—eo e"(qnj‘”s) e<kT

() [ 2nka)3/2]

E Letus substitute in n = NaN, m = N;'My, k = N,'Rand Ine = 1.
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Sackur-Tetrode S (2)

B Differentiating gives us a set of canonical equations of state for
Helmholtz energy:

ptransv . 1

NRT < 1
trans 3/2
i ] [V(2nMWRT)

RT — NNZh3

which is also known as the Sackur'%Tetrode'" equation.

10°Q. Sackur. Ann. Physik, 36:398, 1911.
' H. Tetrode. Ann. Physik, 38:434, 1912. Correction in 39 (1912) 255.
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) Molecules ®
§042

Use the Sackur—Tetrode equation to estimate Syqq <« 1 par
for all of the noble gases. Compare your answer with

experimental values.
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§ 042 Sackur-Tetrode

Kl A convincing comparison of measured and calculated values is
shown in Table 7.1.

B These calculations are more precise than experimental results, but
the theory cannot be tested on multi-atomic molecules, because the
internal degrees of freedom of the molecules also contribute energy.
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Figure 7.1: Comparison of experimental standard entropies with the Sackur—
Tetrode equation (the margin of error for R, Ny, h and M, is less than
0.01 cal/mol K).

My s 129 strans My s 139 strans
g/mol cal/Kmol cal/Kmol g/mol cal/Kmol cal/Kmol
He | 4.0026 - 30.11 | Kr | 83.80 | 39.17+0.1 | 39.18
Ne | 20.179 | 35.01 £ 0.1 | 3493 | Xe | 131.29 | 40.70+0.3 | 40.52
Ar | 39948 | 36.95+0.2 | 36.97 | Rn | 222.0 - 42.08

142 Gilbert Newton Lewis and Merle Randall. Thermodynamics. McGraw-Hill Book
Company, Inc., 2nd edition, 1961.
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Free vibration

El The atoms in a molecule are held together by forces which, when
subjected to small perturbations, allow the atoms to vibrate as if their
centres of were connected by elastic springs.

EH The partition function for a harmonic oscillator of this kind, with a
characteristic frequency v, quantum number j and energy factor ¢ =

hv = hw/21 £ fiw, is
0" = ¥ o [5] = e ) T op G
j:

E The summation can be written as a geometric series g"° = u
Y2 = Vu/(1—u) where u= e™* = exp(—¢/KT).
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Free vibration (2)

B |f we divide the numerator and denominator by ve—*, we get

wb_ﬂ_> ye* __ 1
q T 1-u 1-e™ 7 eX—ex °

H We can obtain a canonical equation of state if we substitute

2sinh(x/2) = Vex — Vex,
A Wheninserted into x = ¢/kT this produces

L2 = —Ing"® = In[2sinh (£%)] -

Differentiating twice with respect to temperature gives us
o ()
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§043

The heat capacity of a harmonic oscillator has an
upper temperature limit of lim7_,., ¢/'® = R. Show this.
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§ 043 Harmonic oscillator

El The power series expansion of sinh(x) = x + %x3 +O(x°) applied
to KT > hv gives:

Cwb
v

lim S = lim —X _ —1.
kT>hv x<1 (x+4x3-)
EH A harmonic oscillator has two equally important energy contribu-
tions (kinetic and potential energy), which givesus ¢, - R/2+R/2=R
as the upper temperature limit.

E In a multi-atomic molecule with many vibration frequencies, the
contributions of each individual oscillator must be summed (linearly) in
accordance with the equipartition principle.
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Einstein Co

El The table below shows the characteristic vibrational temperatures
e/k = hv/k = hc/Ak for a few di- and multi-atomic molecules.

H Unlike the contributions from translation and rotation, the vibra-
tional state is only fully developed at high temperatures:

Al .
91,23, ;,12131 %k
Hs 1 4162 ca. 3000
CH, | 3,2,1,1 1306,1534,2916,3019 900—2200
HCl 1 2885 ca. 2100
HO | 1,1,1 1595, 3657, 3756 1100—2700
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Einstein Cp (2)
El One of the striking features of the oscillator equations is that the

ground state (with the quantum number j = 0) makes a positive contri-
bution to the total energy.

B If we ignore the ground state, the partition function simplifies to
Einstein 1
q - 1-exp( %)

1
1-e~x

H The heat capacity can then be expressed as Einstein’s'® equation:

) ) P
CElnsteln _ _X%e

E =2 . (7.26)
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Einstein Cp (3)

A Our intuition tells us that the Eqgs. 7.25 and 7.26 are equiva-
lent, because the ground state only makes a constant (temperature-
independent) energy contribution. The explanation for this is by no
means obvious at first glance, but if we compare the equations, we can
see that it is the case (show this).

15 Albert Einstein, 1879-1955. German physicist.
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Free rotation

Kl A rotating system with a fixed distribution of mass is called a rigid
rotor. The moment of inertia of the rotor determines how much kinetic
energy it stores at any given frequency.

H In quantum mechanics, the moment of inertia of isolated atoms is
zero, whereas diatomic (linear) molecules have degenerate moments of
inertia about two of their axes of rotation and a zero moment of inertia
about the third axis.

E In multi-atomic (non-linear) molecules, the moments of inertia
about each axis of rotation are different, unless the symmetry of the
molecule dictates otherwise.
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Free rotation (2)

B The partition function for a linear molecule with a moment of inertia
I, quantum number j and energy factor ¢ = #?/21 = h?/8n?/ can be
expressed

b 1)e
g% =1 X2+ )exn [H5r ],
j=
where ¢ corrects for any rotational symmetry of the molecule (o0 = 2,
2
GNH3 = 3, OCHy = 12)

A There is no analytical limit to the above summation, but expanding
the power series'® gives us g = &L (1 + 2= + £ (75)? + 555 (35)% +
-+ ) provided that 0.3KT > «.
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Free rotation (3)

The rotational behaviour of multi-atomic (non-linear) molecules is
more complex than that of linear molecules, and we will therefore simply
state the partition function without further explanation’”:

lim g0 — ETKT)?
KT>e ah’

M= M (y]yil - yiy[) ~QnQ’.

]
B Here y; = x; — X represents the molecular coordinates of each of
the atoms i measured in relation to the molecule’s centre of mass X =
Z,- M\;J M,'X,‘.
16 Gilbert Newton Lewis and Merle Randall. Thermodynamics. McGraw-Hill Book
Company, Inc., 2nd edition, 1961.
7 Note the close analoav between a™'?P and a@"s. Both of the terms include a kinetic
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§044

Determine the moment of inertia of an H>O molecule
if the bond angle is 104.5° and the O—H distance is
0.958 A.
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§ 044 Moment of inertia

El Let us number the atoms H(1), H(2) and O(3).

B Their respsective atomic weights are M; = 1.00794gmol', M, =
1.00794 gmol" and M3 = 15.9994 gmol'.

El The molecule can be oriented in an infinite number of ways, and

the coordinates given below are simply based on an arbitrary choice
(origin at O(3) and H(1) along the x axis):

_ 958 0.958 - sin(1432%) = 0.240 "

X1 _ X2 _ 1452n X3 _

A 0 |, 7% =|0958-cos(1355") =0927 |, x=|0
0 0 0
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§ 044 Moment of inertia (2)

Bl From this information, the inertia tensor follows

0818 -262 0
m: -262 0954 0
0 0 1.772

B Diagonalising M ~ QAQT gives us the eigenvalues Ay = 0.615,
Ao = 1.156 and A3 = 1.772, which have the same units as M itself.

@ The moment of inertia can now be calculated as |/
¥/0.615-1.156-1.772 = 1.080 g mol-’ A = 1.794.1047 kg m?.
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Non-linear molecules

El Finally, the canonical equation of state describing the rotation of
non-linear molecules can be written
2 3/2
Hrot,SD — _RTIn (SZI\IEIQ ,
as long as we understand that | = VY1113 represents the molar mo-
ment of inertia.

EHF Most molecules, with the exception of hydrogen (isotopes), there-
fore have a relatively high moment of inertia, which means that the up-
per temperature limitis as low as T < 50K:
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©
Non-linear molecules (2)
Ref.!® | o Aa07 STANT S
' kg m2 kg m? K K
Hy, | 2 [0460 0460 0 [0460 876 20.39
CHs |12 |5.313 5313 5313|5313 76 111.66
HCl | 1 [2641 2641 0 |2641 153 188.15
HO | 2 [ 1.022 1920 2942 | 1.794 225 373.15

El This gives us the classical heat capacity values of R and 3/2R for
linear and non-linear molecules respectively.

8 G. M. Barrow. Physical Chemistry. McGraw-Hill, 3rd edition, 1979.

KP8108 Advanced Thermodynamics

L



{@ Molecules @L

Internal degrees of freedom

Bl Vibration and rotation are the “classical” contributions to the intra-
molecular energy function.

EH For simple molecules, these contributions can be added together,
provided that the amplitude of vibration is small and doesn’t disturb the
molecule’s centre of mass (harmonic oscillator).

El However, the general description of the molecule is far more com-
plex, and must take into account anharmonic vibration or internal rota-
tional and torsional fluctuations.

B In hydrocarbons, e.g. CHs, groups will rotate freely around the
bond axis, whereas double bonds such as CH, = CHy only allow tor-
sional fluctuations.
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Electron excitation

El Electron excitation is a phenomenon that typically occurs at high
temperatures, and the outer electrons in a stable molecule will (gradu-
ally) be excited at temperatures > 3000 K.

H In radicals, excitation can occur at < 1000 K, because their elec-
trons are more weakly bonded.
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Quantum spin

El The spin of elementary particles can also contribute to the energy
state of a molecule.

E In the case of hydrogen, nuclear spin (cf. parahydrogen and ortho-
hydrogen) plays a key role at temperatures < 400 K.

El Similarly, electron spin is significant if the molecule has unpaired
electrons (cf. NO, Oz and NO»).
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Photon gas

Kl Thermal radiation (in a closed control volume) can be treated as a

thermodynamic system, provided that we're not interested in the spec-
tral distribution'® of the radiation.

H |nthis case it is actually possible to set up the canonical equations
of state®? for internal energy

13 4
pd = Z\/—fiy @
d_ 3/3s
T = 43be

b= 80k —756591...- 1076

m3 K4 °
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Photon gas (2)

A Using Euler's method to do a simplified integration with respect to

only S and V gives us the internal energy of the radiation space:
Urad(S, V) — Trads_pradv _ % 3 %'

By eliminating S we can obtain the Stefan?'-Boltzmann?? law of

radiation U@ = pVT*. Alternatively, we can replace T with p, which

gives us U = 3pV.

8 An energy distribution function which has frequency as a free variable.

20 Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley,
2nd edition, 1985.

21 Jozef Stefan alias Joseph Stefan, 1835—-1993. Slovenian physicist and poet.

22 | udwig Boltzmann, 1844—1906. Austrian physicist.
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§ 045

One of the most important fission reactions in a uranium
H 1 235 142 91 1
bomb can be written ; n +55° U = ga- Ba+3. Kr+gn.
The energy released is 3.5- 10" J per fission event.
Calculate T and p"@9 if 1% of the atoms take part
in the fission reaction.
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§ 045 Atomic bomb
El The density of the 235 uranium isotope is 19.1 gcm™ and its molar
mass is 235.04 gmol'.

H |f 1% of the mass is involved in the reaction, the energy density will
be u = V-'U = 0.01-6.0221-10%2-35-10"" . 19.1 - 108/235.04 =
1.71-10"%Jm3,

H Fromu = bT* = 3p we can obtain T = 6.9- 10K and pd =
5.7-10"par.

Bl These figures are representative for the uranium bomb Little Boy,
which was dropped on Hiroshima on 6 August 1945.
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Debye A

Kl At each lattice point there is a particle (atom, group of atoms or
molecule) oscillating in the force field of the neighbouring particles.

H Together all of the particles vibrate within a wide spectrum of fre-
quencies (called phonons), right up to the critical frequency wmax, Which
is an indirect measure of the total number of degrees of freedom in the
system:

@Wmax

f g(w)dw = 3n.
0

[ The function g(w) indicates the multiplicity for each frequency, and
the next important assumption in the Debye model is g(w) « w?.
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Debye A (2)
Bl The partition function can now be expressed in a modified Einstein
model
Debye _ ©max 1
Q H [1-exp(F ]g“ ’

where the w represent all of the discrete frequencies in the crystal.

) At the limit value n — oo there will be a continuum of frequencies,
and the Helmholtz energy can be expressed as

Wmax

lim ADebye — SNAT [, In[1—exp( h“’] W .

n—oo @max 0
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Debye Cp

<« 7 Equations ...

Kl When expressed in the dimensionless form it makes sense to in-
troduce a characteristic vibrational temperature 6p = fiwmax/k also re-
ferred to as the Debye temperature. The chemical potential then be-
comes

QD/T
Debye
y 2 -X
=9(%) fxln1—e ydx ,
0

where x = liw/kT = 6p/T.
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Debye Cr (2)

E [If we differentiate the partition function twice with respect to tem-
perature, it gives us

Debye 6p/T

\4 3 X
— =9 [ X&5dx,
0

(ex-1)?

but note that these expressions are two independent approximations of
the partition function.

B This introduces a thermodynamic inconsistency where CVDebye #
T 52uPebve /9T IT.
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Debye C- (3)

H Thereis no analytical solution to the above integral, but at the upper
temperature limit 6p/ T — 0 and expanding the power series e* = 1 +
x + O(x?) gives us
cDebre Op/T . Op/
lim o =9 (L)’ { LU gy = 9 (L) { x2dx = 3.

T—oo

A This result shows that each atom (molecule) in the lattice oscillates
in 3 independent directions if the temperature is sufficiently high.

Many metals (Pb, Sn, Cd, Ag, ...) are essentially in this state at
room temperature. The limit value is also referred to as the Dulong—
Petit?3 law.

Bl For the lower temperature limit, Op/T — oo and the integral is a
constant.

KP8108 Advanced Thermodynamics



#@ Phonons @L

Debye Cr (4)

El This has a practical application in the proportional relationship
Debye
. v 3
#Lno T

when determining the entropy of a substance by calorimetry.

il Instead of the highly time-consuming and difficult process of mea-

suring near 0K, all you need to do is measure the heat capacity down
to 15 -20K.

23 Alexis T. Petit and Pierre L. Dulong. Ann. Chim. Phys., 10:395, 1819.
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Fermions in metals

El One of the characteristics of fermions is that they cannot share the
same one-particle state (the Pauli®* exclusion principle).

Kl |n a metal, the electron energy levels will therefore be filled up from
the lowest level up to the Fermi level equivalent to the chemical potential
(uo) of the electrons in the conduction band.

B The internal energy of these electrons can be expressed

elec Us n_zﬂ
NRT —RT T 4wt

H The chemical potential of electrons is a relatively abstract concept,
and an alternative to this value is the Fermi temperature T¢ = £, which
for normal metals is approximately 10° K.
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Fermions in metals (2)

A Differentiating U®'*® gives us the lower temperature limit for the
electronic contribution to the heat capacity of metals:
elec
. v 2T
#Lno oo

This is in contrast to crystalline phases with covalent bonds where
limr_o(c,) o T2 due to the phonon contribution.

Bl The practical implication of this is that the heat capacity of met-
als is dominated by the fermion contribution at sufficiently low tempera-
tures (T < 5K).

KP8108 Advanced Thermodynamics
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Second virial coefficient

El The virial equation relates to ideal gases. Expand the power se-
ries p/RT in molar density p = N/ V:

vir & k—
:atkd = X B(T)() BTN (7.27)

El This is the normal way to express the virial development of gases,
but it is also possible to invert the series from p(p) to p(p) as shown
below.

1 Here the series has been truncated after the second term, which
means that the index » can be left off the symbol B:

_ o Bp
NET _1_|_7_|_..._1_|_W_|_...

KP8108 Advanced Thermodynamics

L



{@ @L

Second virial coefficient (2)

EH Multiplying both sides by NRT/p gives the volume-explicit form
V2Y" — NRT/p + BN, which reveals that B is a correction factor for
the molar volume of the gas.

A Experimentally B = lim,_o(V — RT/p) is used, but this limit tells us
nothing about how B varies with temperature.

In practice B < 0 for T < Tg = 6T, where Tg is known as the
Boyle?® temperature.

KP8108 Advanced Thermodynamics



o —

©
Second virial coefficient (3)
El Statistical mechanics explains the theoretical relationship between

B and the associated pair potential ¢(r) for the interaction between two
molecules in the gas phase:

o0

B(T) = 21Ny f(1 - e%) Rdr . (7.28)
0

25 Robert Boyle, 1627—1691. English chemist and philosopher.
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Hard spheres

Let us assume that ¢ = 0 forr > oand ¢ = o
forr<o.

E That means viewing the molecules as hard
spheres, with no pairwise interaction.

El Substituting this into the integral for B gives
us

o

3

B"S = Ny [r2dr = 2Z0ac
0

B The hard sphere potential produces a reasonable approximation
of a real system at high temperatures, but it doesn’t explain why B is
temperature-dependent.
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Potential well
1
Let us assume that ¢ = 0 for r > ao, ¢ = —¢ for
¢ o<r<acand¢ =ooforr<o.
— - E That means viewing the molecules as hard
—¢ | J spheres with pairwise interaction within the po-

tential well.

El Substituting this simple potential into the integral for B (where
a > 1), demonstrates that B(T) is a strongly temperature-dependent
function with the hard-sphere potential as its upper temperature limit:

B = B +27INAafG(1 e ) P dr

=B™[1+(a® - 1)(1 - e¥)].
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Potential well (2)

Bl Another connection between ¢, Tg and a is revealed if you solve
the equation BSV(Tg) = 0:

. 3
£ _ar —
e =g o o= e
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Figure 7.2: The second virial coefficie’h?/&f methane calculated using the hard
sphere, well and Lennard-Jones 6:12-potential where ¢ = 3.85A and ¢ =
1.96 - 102! J. Both BS" and B" satisfy the lower temperature limit limr_o B =
—o0, whilst the upper temperature limit limr_., B = 0* is only fulfilled for B~
(this can only be seen once you reach T 3 10*K).
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Virial ©
Lennard-Jones?®
1]
" Let us assume that ¢ = 45[(%)12—(%)6] forr > 0.
‘ El The exponent 6 has a theoretical basis in
the London?® theory of dispersion forces involv-
. | SV

ing instantaneous dipoles, whilst the exponent
12 is empirical.

B B" cannot be determined analytically, and numerical integration is
therefore required.

A typical temperature progression is shown in Figure 7.2 along with
the experimental data for methane?’.

25 John Edward Lennard-Jones, 1894—1954. English mathematician and physicist.
26 Fritz London, 1900—1954. German—american physicist.

27 J. H. Dymond and E. B. Smith. The Virial Coefficients of Pure Gases and Mixtures.

NfavAd | lniviavaihe Dracs 100N
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The van der Waals equation

Kl For a given vector x consisting of the mole fractions xy, o, ..., Xn
the van der Waals?® equation of state can be expressed as

pYIW(T,v,x) = ;AL - 20 (7.29)

v—b(x) vz 7/
where a(x) = }; ¥; axix; tells us something about the attractive forces

between the molecules and b(x) = }_; bjx; represents the hard-sphere
volume.

EH This means that there must be a relationship between the van der
Waals equation and the virial equation in Section 7.6. We can demon-
strate this relationship by expanding the power series pV9WV/NRT at
the limit V — oo (ideal gas):

pYaWy 1 a (N)
NRT — 1—b(%) RT \V
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The van der Waals equation (2)
=1+b@+02E) + "G - & W)

K |If we compare the coefficients in this series with the ones in
Eq. 7.27, we find that By = b — a/RT, By™ = b2, By™ = b3 ec.

A It is beyond the scope of this chapter to discuss all of the impli-
cations of the van der Waals equation here, but we will at the very
least note one important property: the parameters a; and b; can be
obtained by measuring the critical point of each individual compound
experimentally.

29 Johannes Diderik van der Waals, 1837—1923. Dutch physicist.
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§ 046

Show that the parameters b = RT./8p., v = 3b and
a = 27(RT.)?/64p. meet the criteria for a mechanical—
critical point defined by (dp/dv), = 0, (9®p/dvov)y , =
0 and p(Te, V) = Pe-
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Cubic equations of state

El |f you multiply both sides of the equation by v?(v — b) you can
rewrite the equation of state 7.29 in the form p(v—b)v? = RTv2 —a(v —
b), or as

vi-vA(b+E8l)4va-a—p. (7.30)

Kl This shows that (at constant pressure) the van der Waals equation
can be treated as a cubic equation with volume as a free variable. From
the problem statement, we know that the pV isotherm has a degenerate
extreme point®° as its critical point.

B This implies that the equation of state must have three coincident
roots (v — v¢)® = 0, or in its expanded form:

v — 23y, 4+ v3VZ - v3 = 0. (7.31)

30 Both a maximum and a minimum (a horizontal point of inflection).
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§ 046 Critical points

El The two Egs. 7.30 and 7.31 have the same algebraic structure,
which allows us to compare the coefficients term by term.

B This gives rise to the following set of equations:

RT,
3VC:b+p_cC,
2 _ a
3VC_E'
3 _ ab
VC_E’

which must be solved with respect to a, b and v..
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§ 046 Critical points (2)

H The solution to the above set of equations can be expressed

=3, (7.32)
b=1v, (7.33)
a=3p;vZ, (7.34)

which can in turn be rewritten in the form used in the problem statement.

A We should note that the critical compressibility factor zYdW =
pcVe/RT, = % behaves as a universal constant because v, is a de-
pendent variable in the solution.

Experimentally this is no more than a rough approximation as
0.25 < z; < 0.35 for most molecular compounds.
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§ 047

Pressure is an intensive property (homogeneous function
of degree zero), which implies that p(T, v, x) = p(T, V,n).
Rewrite the van der Waals Eq. 7.29 in this form.
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©
§ 047 VDW in the extensive form

<« 7 Equations ...

El Dimensional analysis shows thatif v — V and x — Nxin Eq. 7.29,
then homogeneity will be preserved.

EH Consequently, the equation of state can be written in the form

pVW(T, v, n) = _NAT N?a(x)

V=—Nb(x) V2 (7.35)
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§048

Show that, in its reduced form, the van der Waals
equation can be written as pr = 8T,/ (3v; — 1) — 3/v2.
Draw the function for T, € {0.75, 1, 1.5}. Identify all of

the asymptotes to the graph. Specify the physical

range of the function.
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§ 048 Corresponding state

Kl Rewrite the van der Waals equation in its reduced form by substi-
tuting Eqs. 7.33 and 7.34 into Eq. 7.29:

3pcv2
deW: R1T _% ] (736)

V—§ Ve

BE Then divide by p. and define reduced pressure as p; = p/p. and
reduced volume as vy = v/v.:

_RT
pyaw _ (pcv% ) _3 (7.37)

2
Vi— § Vi

E Finally substitute in R/(pcve) = 1/(2z.Tc) = 8/(3T¢) from Eq. 7.32
and define reduced temperature as T, = T/ T.
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§ 048 Corresponding state (2)

B This gives us the van der Waals equation as formulated in the
problem statement:

prow = 2L - 5 (7.38)

H The physical range is defined by v; €
pr <%, oo>. Note that the equation contains no
arbitrary model parameters.

For the lowest isotherm (T, = 0.75)

c.p
there are up to three possible solutions for
y— pr = pr(v%). This results in a phase transi-
V Vi tion for the system as described in Chap-

ter 14 on vapour-liquid equilibria.
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Condensed phases

Bl According to Murnaghan3®'’s equation, isobaric expansivity a« and
isothermal compressibility § are two independent state functions of tem-
perature and pressure respectively. also see Section 8.6 on page 385.

B Two commonly used functions for « and B are:
oT)=ar+aT+ %,
B(P) = T2 -
I Let us start by integrating «(T) at a given reference pressure p,
between the reference temperature T, and an arbitrary system temper-

ature T. This gives us: In[v(T, po)/v(Ts, po)] = a1(T - To) + %ag(T'2 -
T2)—ag(T' - T") = (T - To)lar + 3a(T+ To) + as(TT.) "]
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Condensed phases (2)

@ Next we integrate B(p) at constant T between the reference pres-
sure p, and an arbitrary system pressure p. This gives us: In[v(T,p)/
V(T,p.)] = —b; by In[(1 + bz2p)/(1 + bzps)].

We can now integrate (du)r n = vdp between the two states T, p

and T, p,. This produces u™"(T,p) = uo(T,p.) + f v(T, p)dp which
with a little bit of effort can be rewritten as

—bq /b
U™ (T, p) = po(T, o) + (T, po) f () " dp

1+bop.
= uo(T,po) + 525 2 |5 2 - 1],

B Vo
where B, = B(p.) and vo = v(T, p.).
31 F. D. Murnaghan. Proc. Natl. Acad. Sci. U. S. A., 30:244-247,1944.

1-b4/b.
— MO(T,po) + V(T,po) 1;2-?%}:‘)0 [(1+b2p) 1 2 ]

KP8108 Advanced Thermodynamics



{ L
() Murnaghan ©

§049

Murnaghan’s equation is derived by integrating the
expansivity with respect to T at a given p,, and then
integrating the compressibility with respect to p at
constant T, but this provides no guarantee that our
starting point was thermodynamically consistent. Use
differentiation to show that « = f(T) and = g(p)
genuinely represent a consistent basis for a model.
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§ 049 The Murnaghan model

Kl For the model to be consistent, the third-order Maxwell equation

2%v 22v

aTdp — IpaT

must hold. Substituting in (dv/dT), = vf(T) and (dv/dp)r = —vg(p)
gives us

?
-G, 9(p) = (g f(T),
where f(T) and g(p) are functions of different state variables.
B If we rewrite the last equation slightly we get
?
vi(T)g(p) = va(p)f(T).

Here the right-hand side is identical to the left-hand side, so the test has
been satisfied.
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§ 050

Assume that thermal expansivity is constant, i.e. that
ap = 0K? and a3 = 0K. Find an expression for
(8cp/8p)T,N that is true for this simplified Murnaghan
model. What is the sign of the derivative?
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§ 050 Murnaghan Cp

El The fact that ¢, is pressure-dependent can be derived as shown
below.

EH Note the Maxwell relationship used at the start of the equation:

acmur

( a’jo )T,N [ (3T pN]TN_ T ; [(9P TN]

[(aT P, N]p N
_ T(ﬁ(va )

>

= — Tva?
< 0
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§ 051

For a one-component system to be thermodynamically
stable, it must satisfy the conditions g > 0 and ¢, > 0.
Are these conditions (always) met for Murnaghan’s
equation?
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§ 051 Thermal instability

El The first condition is satisfied for all T and p if by > 0 and b, > 0.

BH With respect to the second condition, in Paragraph 50 we showed

mur
that (80p /8p)T,N <O0forall V>0.

EF Since ¢, < o, there will always be a pressure p < oo at which
(o)
cg‘“r =0, unless

[v™rdp S,
Po
B It can be demonstrated that this is not the case, and that Mur-

naghan’s model therefore does not satisfy the requirement for thermal
stability at all T, p.
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Departure Functions

< see also Part-Contents
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Multicomponent thermodynamics

El From a thermodynamic point of view, it makes little difference
whether a system is composed of one, two or many components, pro-
vided that their relative proportions are constant in time and space.

B The situation becomes much more complicated, however, if the
components that vary with mass are included in the system description.

EH The number of degrees of freedom increases, and the thermody-
namic functions describe abstract hyperplanes in more than three spa-
tial dimensions.

A This makes it difficult to visualise the mathematical description, and
as we do not want to restrict the theory to any specific chemical system,
we shall hereafter use generic indices i € [1, n] instead of component
names.
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Multicomponent thermodynamics (2)

Bl |n ideal gases, the composition dependence is relatively simple,
and by referring to the Egs. 8.40—8.42 on 390 we can write:

n

AHO(T,n) = ¥ NiAth? (T), (13.1)
i=1
n
G/ (T,n) = L Niey(T), (13.2)
C(T,n) = Y Nics (T), (13.3)
=1
n n
S9(T.,po,n) = ¥ Nis?(To,po) = R X Niln(R) - (13.4)
i=1 i=1

I Note that Afh;”, c‘j i c;l. and s are contributions from the standard

state of the same kind as u; in Eqg. 7.19 on page 262.
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§ 103 G®» Gz

Express the Gibbs energy of an ideal gas based on
Egs. 13.1-13.4. Calculate the standard state contribution
of G'9 by using s7, Ath? and c;,,.(T). Show by differentiation
that the chemical potential can be expressed as y}g(T,
p,n) = u(T,p.) + RTIn[Njp/(Np.)]. Identify the
function p7.
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§ 103 Ideal gas Gibbs energy

El  The Gibbs energy G = H — TS of an ideal gas mixture can be
derived from Eqgs. 8.41 and 8.42:

)
GY(T,p,n) = AHO(T,,n) + [ C(T,n)dT - T{S'g(To,po,n)
TO

T C'Q T,
+Tf . n)dT—NRIn(%)}. (13.5)
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§ 103 Ideal gas Gibbs energy (2)

H Let us substitute Egs. 13.1, 13.3 and 13.4 into Eq. 13.5 and differ-
entiate with respect to N;:

u2(T,p,n) = (50

T,0,Njzi

A T)+f (T)dT - T{ °(To, po)

~RiIn(R) - kz1 Ny R AL il

T 0

5)}- (13.6)

TO

El The above equation contains Kronecker’'s delta, which has the
value 1 if i = k and 0 in all other cases.
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§ 103 Ideal gas Gibbs energy (3)

B By simplifying Eq. 13.6 we can state the chemical potential as
uf(T,p,n) = 13 (T,p.) + RTIn(2) , (13.7)
where the standard chemical potential y:? is defined as:

. . T oo . Tco(T)
P (T) = A (To) + [ e (T)dT = Tsp(To, po) = T [ 23—dT  (13.8)
To To
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§104

Use a specific example to show that U'9 — TS'9 +
PV = 1, 9N,
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§ 104 Ideal gas internal energy

Kl It provides valuable experience to know that the general relations

we meet in thermodynamics are valid under special circumstances as
well.

Kl First, Eq. 13.7 is substituted into the right-hand side of the equation
given in the paragraph text.

B The left-hand side then follows by inserting H'9 = U'9 + NRT.
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Gibbs residual G"P

< 13 Departure ...

El The canonical variables of Gibbs energy include temperature and
pressure.

Kl Using what we already know about G'9 allows us to define the
residual Gibbs energy: as

G"P(T,p,n) = G(T,p,n)— G'9T,p,n). (13.9)

B Asp — 0, all fluids have virtually ideal properties.

EH This approximation means that

Im {6 ~0, (85, B .. &), - (=18,

(13.10)
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Gibbs residual G"P (2)

< 13 Departure ...

@ Thisis consistent with the virial theorem in Chapter 7 on page 242,
and with the Legendre transform in Chapter 4, from which it follows that

(dG/dp) 1, is the system volume regardless of whether the fluid is ideal
or real.

By taking the limits from Eq. 13.10 it is possible to rewrite Eq. 13.9
|

as’':
Gr’p(T,p,n):?(V— vlg)dn:}(V(n)—@)dn. (13.11)
0 0

! Note that 7 is used as the integration variable in order to avoid confusion with p,
which appears in the upper limit of the integral.
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Residual chemical potential

El An equivalent expression for the chemical potential p; =
(QG/QN,-)T,p,N#i is true for all conceivable Gibbs energy functions, in-

cluding G"P.
B This allows us to define the residual chemical potential as y;° =

P p
:f[(%)r N‘%Jdﬂéf@i—%)dn, (13.12)
0 717 N

where v; = (8V/8N,-)T,nr,\,#i is the partial molar volume of the component

I.
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The derivative of an integral

Kl Since the system pressure is only present in the limit of the integral,
we need only worry about the derivative of the kernel, but there the
pressure does vary (locally) throughout the integration!

B This is an unusual situation, and it is important to realise that the
corresponding differential of V(n) is defined locally as

_ (v ,
(d V) T/TLIN[# - (a_Ni)T,ﬂ,Nj#:,‘ dN’
for all pressures 7 € [0, p].

El What is unusual in this respect is that there are two different phys-
ical interpretions of pressure —one being the system pressure in the
upper limit of the integral and the other being the integration variable 7.
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The derivative of an integral (2)

Bl However, there is a given local pressure 7t at each stage of the in-
tegration, so the only remaining degree of freedom comes from varia-
tion in the composition of component i.

H Hence, the chemical potential must be integrated over the volume
derivative as shown in Eq. 13.12.

A For historical reasons it is customary to rewrite the residual poten-
tial as

RTIng; = u*(T,p,n), (13.13)

where @;(T, p,n) is the fugacity coefficient of component i.
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§105 GG Cz®

Show that pj = pf + ui® = uf + RT In[Njpip/(Np.)].-
Verify that the lower limit limp_,q p; = 1. What is ¢; for
a component in the ideal gas state?
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§ 105 The fugacity coefficient

El The chemical potential can be derived by combining Egs. 13.7 and
13.12.

B The latter equation gives us limp_o ¢1;° = 0 and hence limp_o ¢; =
1.

B For anideal gas v° = RT/n, which means that ;1;>'® = 0 regard-
less of the pressure.

B Hence g =1.
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§106 GG® Gz

Derive G"P for the 2nd virial equation if pV2¥'" = NRT + Bp.
Differentiate to find RT In 2", Use the quadratic
mixing rule for B = N} ) x;x;B;; where B;; = B;.

i
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§106 Virial Gibbs energy |

El The residual Gibbs energy can be determined by directly substi-
tuting the 2nd virial equation into Eq. 13.11:

p
GrP2vIr _ f(% +B- @)dn =Bp. (13.14)
0

B In order to find RT In ¢, we must differentiate G, and hence B,
with respect to N, but differentiating with respect to (mole) fractions
has an unfortunate tendency to cause what is known as “code bloat” in
computing.
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§106 Virial Gibbs energy | (2)

El We can considerably reduce the amount of writing that we need
to do by using NB = }; }'; N;N;B;;, which, even though it is an implicit
expression, is much better suited for differentiation:

INB INiN;
INK/ T Nk Z Z ( Nk )N ;tk

Il Differentiate both sides and substitute in Kronecker’s delta, where
oi=1ifi=jand 6; =0ifi#j:

B+ N(aNk)TN,qtk = ;;(2 N; + N,'j(?() Bj = ; N;By; + Z,‘ N;Bi .

EH We can simplify the right-hand side considerably by substituting
Byxj = Bjx and simultaneously changing one of the summation indices
from jto i.
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§106 Virial Gibbs energy | (3)

A This gives us two identical terms on the right-hand side, so the
partial derivative of B can now be written

S _ Np _B
by (8NkTN¢k Z;NB”‘ N -

The residual potential can be calculated from Eq. 13.14 on
page 671, as shown below:

2.vIr oG" p,2.vir _ -
RTIn@F" = (P55, vk = PR npek = PDx-

Bl Alternatively, we can achieve the same result by substituting the
partial derivative of B into Eq. 13.12 on page 665 and integrating?.

2 |tis worth noting that b; is the (pressure-independent) departure function of the partial
molar volume from the 2nd virial equation: V" — RT /r = bi(T).
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Helmholtz residual AP | | |

Kl Our goalis to describe the difference in Helmholtz energy between
a real fluid and an ideal gas at a given temperature and pressure.

El We can simplify our task by splitting the expression into two terms:
The first term compares the two functions in the same state, while the
second term compares the ideal gas in two different states:
A™R(T, V(p),n) =A (T,V(p),n) - A®(T, V¥(p),n)
=A (T,V(p),n)—A9T,V (p),n) (13.15)
+A9(T, V(p),n) - A%(T, V'%(p),n).

B It should be emphasised that volume is a function of pressure p.

It implies, however, that the two fluids have different volumes, since
V # V9 at a given p.
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Helmholtz residual AP | (2)

A From Chapter 4 we know that (JA/dV)r, = —p. Analogously to
Eqg. 13.11 on page 664 we can therefore write®

V(p) V(p)
A"P(T, V(p),n) = f (1'% — ) dv — f '9dv
oo V'9(p)
V(p)
= [ (M - n)dv- NRTInz(p), (13.16)

where the ideal gas volume is given by V' = NRT/p, and the com-
pressibility factor z is defined as z = V/V'9 = pV/(NRT).

3 This follows from lim {A A9 =0, (4582, =0, ..., (55 ), = 0} in accor-

dance with the virial theorem
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Problems

El The implicit form of the function A"P(T, V(p), p, n) prevents us from

calculating the chemical potential by differentiation with respect to the
canonical variables T, V, n*.

EF so we mustinstead use

_ (9A 9 _ (A
Hi =Gy T,V,Nji = B = )T VI9,Nji

B If we substitute this into the residual chemical potential u® = u; -
u? we get

P = (%), QA

=G ~ G v
(8A'F’ _
P),V'9(p),Njxi
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Problems (2)

< 13 Departure ...

H Note that V(p) is constant in one of the partial derivatives, while
V'9(p) is constant in the other one.

[ This means that both V(p) and V'9(p) must be kept constant when

differentiating A"P, which in turn implies that z(p) = V(p)/V'9(p) is a
constant factor.

The residual chemical potential can therefore be expressed
) V(p) e
WRT VL = [ | Z -G, |dv-RTInZT, Vip) ).

” (13.17)
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D)
Problems (3)

Bl Although this derivation is mathematically correct, it is hard to ex-
plain logically, as it relies on there being two different volumes (both of

which remain constant, in line with the definition) during the same dif-
ferentiation.

4 If we redefine the fugacity coefficient to mean the difference between an ideal gas
and a real fluid at a given volume rather than a given pressure, it becomes easier to
derive the chemical potential; see Section 13.3 on page 689.
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® A%P(T,p,n) D)

§107 GG® Cz®

Find A"P for the 2nd virial equation if pV?¥'" = NRT + Bp.
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) A"P(T,p,n) ©

%

§107 Virial Helmholtz energy

El The residual Helmholtz energy is calculated by inserting the
2nd virial equation into Eq. 13.16, which gives us this surprising re-
sult:

v

v
Arp2vr — [(NAT _ BBL)dv — NRT In (¥5) = 0. (13.18)
v-B V-B

EH So there is no difference between Helmholtz energy for the
2nd virial equation and that for an ideal gas at the same pressure.

E In other words: The volume term in A2V happens to be equal to
RT In z2Vrr,

A Moreover, even though A"P2V'" is zero, this does not imply that

P2 is also zero.

Bl Itis important to remember that A"P is a non-canonical function.
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® A%P(T,p,n) D)

Helmholtz resdiaul AP Il

Kl At this point it may be helpful to offer an alternative, more intuitive
derivation of A"P.

H Let us first differentiate Eq. 13.15 with respect to the mole number
N,'Z

JA™P — ;- (2AS
N; )T,V,N#,- — M 3Ni)T,V,N#,- ’ (13.19)

El This time we face the problem that constant V does not necessarily
imply constant V'.

B In fact, in order to differentiate A'9 with respect to N;, we need to
know how V'9 varies with N; when V is kept constant.
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® A%P(T,p,n) D)

Helmholtz resdiaul A"P Il (2)

E At a given temperature and at fixed amounts of all components j,
except i, the differential of A'9 is

(AN = Ry oy, BN+ (§) 7,08V = i AN — POV,
(13.20)
where '9 is stated explicitly in order to make the next step a little bit

clearer.

A |f we bear in mind the condition p'9 = p, we can simplify Eq. 13.20
to

Mlg)TVN =4 _p(aVIQ)TVN (13.21)

j#i

Combined with Eq. 13.19 this gives us:
aArp av'g
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® A%P(T,p,n) D)

Helmholtz resdiaul A"P Il (3)

Bl Finally, Eq. 13.16 is differentiated:

8A"’ — NRT 9V'9 _
VN f[ )TVN ]dv +ve GON 1w, RTInz.
(13.23)
El You will recognise NRT/V'9 = p'9 = p in Eq. 13.23.

I This means that the term (8V'9/8N,-)T,V,,\,j¢i disappears when the
Egs. 13.22 and 13.23 are combined.

[l The residual chemical potential 17 = ; — u? is thus the same as
in Eq. 13.17 on page 677.
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Helmholtz residual AP llI

Kl A third option is to use Gibbs energy as our starting point, which is
a natural thing to do, since the residual chemical potential has the same
canonical variables as Gibbs energy.

B Substituting G = A + pVinto G"P = G — G'9 gives us:

G"P = A(T, V(p),n) +pV(p) - [A(T, V¥(p),n) + pV(p)] . (13.24)
El Furthermore, pV = zNRT and pV'9 = NRT. When we substitute
these into the above equation, and combine it with Egs. 13.15and 13.16
on page 674, we get:

G"P =A"" + NRT(z-1)

V(p)
= fp (@ - “) dv—-NRTInz(p) - NRT[z(p) - 1].  (13.25)

[o¢]
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Helmholtz residual A"P Il (2)

B Our one remaining task is to differentiate this expression with re-
spect to the mole number of component |.

I It is evident that we will need to obtain the partial derivative of
z = pV/NRT, so let us start by doing that:

( _ PV __pvV PV z
IN/Tp,Ny — NRT ~ N(NRT) — NRT ~ N °

A Thisis where things start to get tricky: how can we differentiate the
integral?

The upper limit clearly depends on the composition at fixed pres-
sure, while the differential of 7 at a given volume v is:

(dm)TuN, = (aN TN dN; .
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D) AP(T, p,n)

©
Helmholtz residual A"P Il (3)

Bl Itis important to note that v is an integration variable in Eq. 13.25,
and that it remains constant during the above differentiation.

< 13 Departure ...

El Partial differentiation therefore gives us:

V(p)
: RT _ (2 NRT -
wh=J [7 -GN T,v,N#,-]dv + (W - p) Vi

~RTInz-2MRT L RT(z-1)+ zNRT.

M If we substitute in z;, most of the terms cancel, and the final result
is identical to Eq. 13.17 on page 677.
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§ 108 GG Gz

Show that G"P2V'" = NRT(z—1) = Bp when pV2V'" = NRT + Bp.
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§ 108 Virial Gibbs energy Il

El From Eg. 13.25 we know the general expression G"P = A"P +
NRT(z-1).

EH Combined with A"P2V'" = 0 from Eq. 13.18 on page 680 this gives
us G"P2V" = NRT(z - 1).

E Substituting in 22" = 1 4+ Bp/NRT gives G"P2V'" = Bp in accor-
dance with Eqg. 13.14 on page 671.

Bl The results from the various sections are thus internally consistent.
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(T,p,n) vs (T, V,n)

El The problems we experienced in the previous section were caused

by the disastrous decision to use pressure as a free variable in the
Helmholtz function.

H If we redefine the residual Helmholtz energy as

A™(T,V,n) = A(T,V,n)- A'9(T, V,n)

we are back into the world of canonical variables, and we can use the
same approach as the one used for residual Gibbs energy on page 663.
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(T,p,n)vs (T,V,n)(2)

El The alternative departure function can be written

_f(NRT )dv

while the associated chemical potential is

I’V ~ 3Arv
= V.
Hi TVN f[ IN/T v,Nj, ]d
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§109 GG® Gz

Derive an expression for A"V and the first derivatives
dA"/d(T, V,n) for a fluid that conforms to the Redlich—
Kwong equation of state pRX = RT/(v—b)—a/VTv (v + b).
Use the mixing rules b(x) = ¥; bix; and a(x) = ¥; . /aia;
Xix; where b; and g; are component-specific parameters.
Finally, state b; and a; as functions of T, and pc; also
see Paragraph 46 on page 319.
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§109 Redlich—-Kwong®

Bl Let us first estimate a and b for a pure fluid. For this purpose we
will rewrite the equation of state as a cubic polynomial of volume:

3 _RT ,2 2 RTb
OB (- ) 2

=0.

pT172

B At the critical point this equation must fulfil (v — v¢)3 = 0, or v® -
3w +3v3v2 - v3 =0.

Kl |f compared term-by-term (see Paragraph 46 in Chapter 7), the two
polynomials can be used to produce three equations, which can then
be solved for a, b and v;:

3VC:ﬂ, 3V§:

_ b2 RTcb 3 ab
Pc

L S
B Combining the middle equation with the other two yields 2v3 — (v +

<‘ b)3 = 0, which can be solved for the positive root b = (273 — 1)y,
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§109 Redlich—-Kwong?® (2)

B |If expressed in terms of the critical temperature and pressure (for
any component i), this is equivalent to:

215/2
R RTc,i A R Tc,i
bl - Qb Pe,i ai = Qa Pe,i
~ 2181 ~ 1
Qp = 3 Qa = 9(273 1)

A We can now choose whether to express the rest of the derivation
in terms of extensive properties (mole number and volume) or intensive
properties (mole fraction and molar volume).

Here, the extensive properties have been chosen, in order to em-
phasise the homogeneity of the thermodynamic functions.
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§109 Redlich—-Kwong’ (3)

< 13 Departure ...

El The total Helmholtz energy of the fluid is thus

v
AMVRK _ f(@ _ pRK)dv = NRT In (VTVB) + % In (WVB) ’

and the associated first derivatives are:

r,v,RK A
(v n =NR'n(v—VB)+ FInGs)
aArvRK A
(*5v)rn =NRT (v By T V(v+B) /
(aArvRK

bj Ab
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) AW(T,V,n) D)

§109 Redlich—-Kwong? (4)

El The coefficients of the equation are defined below (note that a; has
the same units as ad"%):

= L biN;,
=2 N = (Ta N

AT = - ZA;T ’
A = 2a}/22a}/2Nj = 2(iA)'2,
j

>
K

Qi = T2

4 Otto Redlich and J. N. S. Kwong. Chem. Rev. (Washington, D. C.), 44:233-244,
1949
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Simple vapour-liquid equilibrium

< see also Part-Contents
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Phase equilibrium [ |

El Most of the above-mentioned processes require complex descrip-
tions of multicomponent systems involving various phases, but we can
nevertheless study the typical characteristics of vapour—liquid equilibria
based on the behaviour of a realistic one-component system.

El How to go about that is precisely what this chapter is about. The
conditions for thermodynamic equilibrium along a continuous phase
boundary curve in the T, p, u space are:

TV =T dT" =dT"
pv — pllq N dpv — dp|lq
[uv — y“q —sVdTV + v dpv — _Sllq dTIlq + vllq dpllq
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Clausius—Clapeyron equation

Kl tis normal to combine the three differentials into a single equation,
which is referred to as the Clapeyron' equation

sV=s"d . Avaps _ Aygph

)
dT/Apu=0 = w-via T Ayappv ~ TAygpV ’

Bl At low pressures the volume of liquid is negligible, since
limp—o(TAvapv) = Tv'9 = T AL This means that

ap pAyaph
(W)Ay:o,pﬁo = “Rrz (14.1)

i’ If we integrate we get the Clausius®~Clapeyron vapour pressure
equation, where b = Ayaph/R is assumed to be constant over the
relevant temperature range:

n@)*=a-2. (14.2)

' Emile Clabevron. 1799—1864. French enaineer and mathematician.
KP8108 Advanced Thermodynamics
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Measured vapour pressure

Kl !f p > 0then we cannot assume ideal gas behaviour, and if p — p.

then the volume of liquid is no longer negligible. This undermines the
theoretical

<14 Simple ...

1 1.2 1.4
1/Te

Figure 14.1: Vapour pressure of CO,, where o is the measured value and x
is the deviation.
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Measured vapour pressure (2)

basis for the Clausius—Clapeyron equation, but the non-linear contribu-
tions largely cancel each other out, so Eq. 14.2 still gives a reasonable
approximation of the vapour pressure.

B To begin to understand why the vapour pressure can be plotted as

a straight line even at high pressures, let us look at the van der Waals
equation of state

VAW _ NRT _ aN2
p = V-Nb ~ V2
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{@ ©
Measured vapour pressure (3)

B The chemical potential can be expressed as uYdW = p'9 +
where the residual term is defined as being

"4
uf“f( - @B ,)dv

_ ((BT _ _RT__ _NRTb_, 2aN
= (v V-Nb ~ (V- Nb)2+V2)dV

_ % NRTb _ 2aN
= RTIn(v=rp) + vonp — <7

and the ideal gas contribution is
w9 = p(T,p°)+ RTIn(BFD) .
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Van der Waals equation

El Combining the equations gives us the following expression for a
van der Waals fluid:

W (T, )+ AT )+ 40— 28

B If we use the generalised parameters 3b = v, a = 3p.v2 and
8p:vc = 3RT, from Section 46 on page 319, we can express the pres-
sure and chemical potential in dimensionless form:

pY™ . vdw _ 8T, _ 3

P T T T R (14.3)
Vdw “ . . 8Tr Tr
#RTC :Hydwzlur—TrInpr+Tr|n(3w__1)+3‘/_1 _4%' (14.4)
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Van der Waals A
Kl tis worth noting that these two equations represent a complete set
of equations of state for Helmholtz energy.

H Integration using the Euler method gives us A = —pV + yN which
expressed in dimensionless form becomes A+ =

ing this in reduced variables:

VAW ~ AVW 3 vgw Vdw
& " =NRT, = 8P Vit (14.5)
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Vapour-liquid equilibrium

Kl Atthermodynamic equilibrium, T, p and u have the same values in
both the vapour and liquid phases.

BH Since the van der Waals equation is expressed in terms of

p(Tr, vi), the equilibrium equations have to be solved simultaneously
in T, v, coordinates.

B The fact that the pressure is the same in both phases means that
8T, 3 8T, 3

391 (92 T 3% IR

which can be solved for temperature:

8T, =62 _ (14.6)

3-x 3-y

H Here x €[1,3)and y € (0, 1] are reduced (molar) densities defined
by x = (v9) " and y = (v)".
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Vapour-liquid equilibrium (2)

@ Similarly, the fact that the chemical potential is the same in both
phases means that

Tein (S 8T, )+

— 8T Ik 9
"q 1 "q Trin (3 1) + 3vy-1 vy -

3v"q 1 4

If we substitute in the temperature from Eq. 14.6 and rewrite the
equation in terms of molar density, the equilibrium equation can be
expressed as

In(;E

3-y) 6 3(x=y)
=9 (1= 235) wad s =0 (14.7)
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Pressure—potential diagram

Bl In order to determine the saturation state of the fluid, we need to
solve Eq. 14.7 for y = y(x) or x = x(y).

El The solution is shown graphically in Figure 14.2 on the next page
along with a parametrised pr(v;), r(v;) diagram?.

A Note that the slope of the graph asymptotically approaches —1 as
it nears the critical point, where x; = y. = 1. The average density of
the two phases therefore has the constant value & (x +y) = 1.

Bl Experimentally it has been demonstrated that the value of x + y is
not quite constant, but nevertheless it is virtually a linear function of T,
(hence it is also referred to as the rectilinear density) over a wide range
of temperatures.

3 The volume increases from the top right corner down to the bottom left corner of the

figure.
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Molar density

Pressure—chem.pot.
3 T 3 j j
cp.
25N S P R D s
e b W 5 b
LSp NeC Op————"
1 : © -1
0 0.5 1 -1 0 1 2
pr pr

Figure 14.2: py, p','q saturation graph, with the associated isotherms, ex-

pressed in py, ur coordinates (drawn with volume as the parameter).
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Limit pYW(T, < 1)

El At low temperatures the reduced densities can be expressed as
x =3 -aandy = B, where @ and g are small positive numbers. When
substituted into the equilibrium Eq. 14.7 this gives us

(3-0)(3-p) 3(3-a-f)
In( o )+(1 - 3—2+ﬁ) a(3-p) ~1In (ﬁa - E ’

if only the dominant terms are included.

H The asymptotic solution lim,_o(8) = 2exp(=2) shows that the
vapour density declines exponentially with falling temperature.

H Combining these latter two equations allows us to eliminate a, giv-
ing us the temperature-explicit form lim7,_InpYdW = In27 — &2 T;1,
which conforms to the Clausius—Clapeyron vapour pressure Eq. 14.2,

. _ 27 __ Avaphr
with a slope of -b = -4 = ——¢—.
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Limit p/d%(T, — 1)

<14 Simple ...

El Near the critical point, the reduced densities can be expressed as
x=14+aandy=1-p, where a and  are small positive numbers. If
we substitute these values into the equilibrium Eq. 14.7 we get

(14+a)(2+p) 6 3(a+p)
I”( A-p)2-a) )+( 2+a—ﬁ) ey — 0

E We can ignore all higher order terms of the kind a, a? and 2:
g p p

0=a+3p~(-p-}a)+(1 - =2p) wrzpom:

2+a-p ) 4+26-2a—-af
-~ 6 1
=1+ (1 - 2+a—ﬁ) 24p-a
—(f-a)*+2+(B-a)-6
~f—a. (14.8)
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Limit pY™W(T, - 1) (2)

B This implies that limr_,1(a) = B, which shows that the vapour and
liquid densities are symmetrical about the point xc = y. = 1.

By substituting into the temperature Eq. 14.6 we can obtain the

limit value
, 1+ 1
lim 8TY — 6 00 _ 2(4-a?), (14.9)
r 2—-a 2+a
which can in turn be substituted into the van der Waals equation, to give
us

TI|m1deW ST _3x2 = 2= “1)—3(1+0¢)2:1—0¢2. (14.10)

T+a +a

><IQ)
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Limit p/d(T, — 1) (3)

If a2 is eliminated from the last two equations, the saturation pressure
can instead be written as a logarithmic function with temperature as its
free variable:

lim In(pYdW

r—1

)=1In(4T, - 3) ~4(T, - 1).

i} If we combine this with the Clausius—Clapeyron vapour pressure
Eq. 14.2 we get the slope limr._1 dInp/d(1/T) = —4T2 > 4.
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Vapour pressure curve

El The conclusion is that the slope of the vapour pressure curve varies

; 27
inthe range -4 < -b < - §-.

El The van der Waals equation therefore gives us a qualitatively ac-
curate representation of the vapour pressure curve, although from ex-
perience we know that the model is insufficiently accurate for quantita-
tive purposes.

A The one-phase region is not adequately represented either, but
once again it is qualitatively accurate, as seen in Figure 14.3%.

4 W. Duschek, R. Kleinrahm, and W. Wagner. J. Chem. Thermodynamics, 22:841—
864, 1990.
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(G saturation pressure
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T
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%
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x/ _x)(—x
1r : f
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0.5 1 1.5 2 2.5
Pr

Figure 14.3: The saturation pressure of CO, along with selected isotherms
in the one-phase region (280 K, 313 K and 330 K respectively). Note the sym-

metry of the saturation pressure p$ around the critical density prc = 1.
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@ Saturation volume @

Critical phenomena

Bl At sufficiently low temperatures, the molar density of a liquid ap-
proaches a constant value of limr_,o(x) = 3.

B As the temperature increases, the liquid phase gradually becomes
less significant, until it ceases to exist entirely at the critical point where
lim7,1(x) = lim74(y) = 1.

Kl |n this state there is no fundamental difference between a gas and
a liquid.

B This idea is supported by Eqg. 14.8, which shows that the density
of the two phases is symmetrical about x; = y. = 1 close to the critical
point.
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@ Saturation volume @

Limit v/9W(T, < 1)

El As previously mentioned, when the temperature approaches zero,
the specific volume of the liquid tends to a ratio of limr,_,o(vY9W) = 1.
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@ Saturation volume @

Limit vVW(T, — 1)
Kl Close to the critical point, the reduced density of the liquid can be
expressed as x = (V') = 1 + o« where « is a small number, and from
Eq. 14.9 we can then derive the asymptotic temperature function:

; g\ Vdw ; 1 1
lim (v, =lm—=——>1-2+1-T,.
Tr—>1( r ) 7,1 1+a 1+ \4—4T, r
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@ Enthalpy of vaporization @

Enthalpy of vaporization

El The enthalpy of the van der Waals fluid can be expressed as
HYIW — H'9 1 H"V where the residual term is

H™Y = f[v(av TN+T(8T VN] dv

v

NRT . 2aN?
= f[v((v N6y T V3 )+ T(v= Nb] dv
N2RTb _ 2aN?
V-Nb ~ V-

E We can substitute in the generalised parameters 3b = v, a =
3pcv§ and 8p.v. = 3RT,, and then rewrite the enthalpy expression in
dimensionless form:

thW ~ H94HY _ hlg + T 9
r = =

NRT. 3v—1 4y *
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@ Enthalpy of vaporization @

Enthalpy of vaporization (2)
El The ideal gas contribution cancels out when calculating the en-
thalpy of vaporization:

VAW _ Tr _ 9 __T 9
Avaphy™™ = 57 — 257 39T + 2

= (y - x>(% 2)-
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@ Enthalpy of vaporization

©
Limit Ayaph/®(T, < 1)
El In practice, the low-temperature limit limr._o(AvaphY®™) = 2/ can
never be reached, because most liquids freeze at a temperature of
T, = 0.7. Table 14.4 on the following page therefore gives a comparison
with the heat of vaporization® measured at the normal boiling point.

5 Robert C. Reid, John M. Prausnitz, and Thomas K. Sherwood. The Properties of
Gases and Liquids. McGraw-Hill, 3rd edition, 1977.
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Figure 14.4: Enthalpy of vaporization at the normal boiling point compared
with AygphYdW = &7 = 3.375 calculated from the van der Waals equation.

Enthalpy of vaporization

To T Avaph Dvaph | Ayaph¥?W

T T« [cal/mol] RT. [cal/mol]
N» 77.35 | 126.2 1333 5.32 846
Ar 87.27 | 150.8 1560 5.21 1011
O, 90.17 | 154.6 1630 5.31 1037
CHy | 111.66 | 1904 1955 517 1277
Kr 119.74 | 209.4 2309 5.55 1404
H,O | 373.15 | 647.3 9717 7.55 4341
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@ Enthalpy of vaporization @

Limit Ayaph/@(T, - 1)
Kl Close to the critical point, the reduced densities can be expressed
asx=1+aandy =1-p, where a and g are small positive numbers:

8T,
Dvaph'™ = ~(a + B)( e — §)-

B Now let us substitute in limr._,1(8) = @ and limr._,1(4T,) = 4 — a?
from Eq. 14.9:

.Il_im1 AvapthW 20(( 3Tr — %) =6+y1-T,.
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Critical exponents

Kl In Section 48 on page 325 we showed that the van der Waals equa-
tion can be written in its reduced form without the use of any arbitrary
model parameters.

H This results in a useful form of the equation of state, which we
have used in this chapter to analyse the fluid’s behaviour in a number
of interesting limit cases.

B Nevertheless, Figure 14.3, to give a specific example, shows that
the theory is by no means universally applicable.

In this section we will look in greater detail at what happens close to
the critical point, and quantify to what extent the van der Waals equation
fails to predict experimental results.
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Critical exponents (2)

Bl It has been theoretically proven—and experimentally confirmed —
that the energy surface close to the critical point of a vapour—liquid
equilibrium is of a universal form, which is parametrised by what we call
an order parameter.

B For vapour-liquid equilibria, it is natural to use |pr — 1| as an order
parameter, provided that it produces symmetrical phase transitions®,
which it indeed does.

Outside the two-phase region (using values along the fluid’s critical
isochore moving towards the critical point) it is possible to observe a
gradual phase transition in the fluid.

[ The closer we get to the critical point, the more anomalous the
behaviour of the fluid.
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Critical exponents @
Critical exponents (3)

B In the literature for this field, which incidentally covers a large and
exciting range of research’, the critical anomalies of the fluid are ex-
pressed using divergence formulae:

One phase, pr =1 c o (Tr—1)1, (14.11)
One phase, pr =1 (g—f): T (T, -1)7, (14.12)

Critical, T, =1: |p —1] « [pr = 1], (14.13)
Two phases, T, <1: |pr—1] o« (1= T;)™. (14.14)

6 The theory applies to all phase equilibria that have a single (scalar) order parameter.
For example, ferromagnetic materials display relatively analogous behaviour, which
is described by the order parameter |M; — 1|, where M is the magnetisation of the
substance.

7 Kenneth G. Wilson received the Nobel prize in 1982 for his contribution to the devel-
nnment nf rennrmalicatinn arniing annlierd tn amnnanst nther thinns critical nhace tran-
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Isochoric heat capacity («)

El Eliminating s gives us ¢, = —RT;, (82ar/8Tr8Tr)vr. In other words,
the heat capacity of the fluid gives us the second derivative of Helmholtz
energy.

B For a van der Waals fluid, we can obtain the Helmholtz energy by
combining Eq. 14.5 with equations 14.3 and 14.4.
H Double differentiation of a, with respect to T, gives us
Pue o °
ey = -AT{(G75m)+ £) = ¢ R = (7).

%

B We can therefore conclude that VW = 0 in Eq. 14.11.
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%

Bulk modulus ()

El The van der Waals equation expressed in reduced T, v; coordi-
nates was discussed in Section 48. Here we need the same equation,
but this time as a function of T, and p,:

VdW _ 8T, _ 3 ~ 8Tipr 2
P = 3u=1 ~ v T 3=p, — SPr

B Let us differentiate the pressure with respect to density, and rear-

range the resulting equation in such a way as to isolate T, — 1 in one of
the numerators:
vdw

apr Pry _
m Gy, = 24(@5e + war ~ ) =6 1)
~——
0

El The exponent of the expression on the right side of the equation is
1 which means that VW = 1 (not —1) in Eq. 14.12.
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Critical isotherm (6)

E We will start out from the van der Waals equation expressed as a
function of T, and py, just as we did for the bulk modulus.

B Along the critical isotherm, the equation of state can be factored as
follows:

Jim (Y = 1) = 52 (pe = 1)°

H That gives us 6Y9W = 3 in Eq. 14.13. In other words, the critical

isotherm describes a third-degree curve with its origin at the critical
point.
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Phase envelope (p)

El Based on our discussion of phase equilibrium problems in Sec-
tion 14.1, and with particular reference to Eq. 14.10, it follows that:

2(pr—1)=+(1-T)%°.

B The vapour pressure curve describes a parabola with the order
parameter p; — 1, which means that VW = 0.5 in Eq. 14.14.
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Figure 14.5: Critical exponents measured experimentally for selected com-
pounds compared with the classical values calculated from the van der Waals
equation of state.

System a Y 0 B

Van der Waals 0 1 3 0.5

Ising 3D 82 0.110(1)  1.237(2)  4.789(2) 0.326(5)
Heisenberg 3D %2 —.1336(2) 1.3960(9) 4.783(3) 0.3689(3)

( ( (
Ni, Fe, Gd2BrC, GdoIC, | —.1336(2) 1.3960(9) 4.783(3) 0.3689(3)
TlgMngO7, RPN 102
3 He, * He, Xe, COp, 0.10(0)  1.19(0)  4.35(0) 0.35(5)
H,0, O, 112
122 J. M. H. Levelt Sengers and J. V. Sengers. Phys. Rev. A, 12(6):2622-2627, 1975.
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Critical point measurements

El Table 14.5 gives a summary of what we have learned so far about
phase transitions and how they relate to the van der Waals equation.

El What is surprising is that the experimental values do not diverge;
instead they suggest that physical quantities exhibit certain universal
behaviour during phase transitions.

Bl What we can say for sure is that there is no equation with an an-
alytical solution that accurately describes critical phenomena in nature.
In other words, the critical exponents are neither integers (z € Z) nor
simple fractions (q € Q).

B The simplest special case is a gas in which the molecules are con-
stantly moving around without colliding or interacting with each other in
any way. That is what we mean by an ideal gas.
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Critical point measurements (2)

B The second special case is a system in which the molecules (or
atoms) are arranged in a repeating lattice with long-range order. That
is what we mean by a crystalline structure.

The third special case only arises in conjunction with phase transi-
tions.

i Here the correlation length varies over several orders of magnitude,
which means that this phenomenon is much more significant than the
contributions from the intermolecular forces in the fluid.

i At the critical point, the correlation length is of the same order of
magnitude as the system itself, or at least big enough to interfere with
the wavelength of visible light.
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Critical point measurements (3)

The conclusion is that theory and practice agree, but that the van
der Waals equation (like other equations of state with analytical solu-
tions) produces inaccurate estimates of the critical exponents.

B However, the principle that the critical phenomena display universal
scaling behaviour holds true, and there is in fact a general rule that
applies to phase transitions in all substances, as stated in equations
14.11-14.14. Moreover, we also know that

a=2-p(6+1)
y= B6-1)
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§110 GG® Gz

At 101 K nitrogen has the following saturation state: p = 8.344
bar, p"% = 24.360 moldm and p¥ = 1.222moldm3. The
critical point exists at p; = 34.000 bar, p; = 11.210 moldm™3
and T, = 126.2K. Calculate the saturation state
expressed in reduced coordinates and draw your result
onto the graph pYW = f(T,, v;); also see Section 48
on page 325. Comment on the discrepancy between
the calculated volumes of vapour and liquid and the
experimental values.
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§ 110 Maxwell equal area rule |

El The results calculated from the Van der Waals equation have been
drawn in reduced coordinates in Figure 14.6 on the following page using
the Matlab program 30:1.8.

EH Note that the equation overestimates the volume of N in the liquid
phase.

H Also note that the areas above and below the phase boundary line
(T, = 0.8) based on experimental values are roughly equal.
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Figure 14.6: The van der Waals equation of state expressed in py, v; coordi-
nates for T, = {0.8,1.0, 1.2}. The horizontal line shows the experimentally es-
tablished two-phase region for nitrogen at T, = 0.8.
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§111

The Maxwell equal area rule can be expressed as
fv\f;(p — psat)(dV) 7 n = 0 and be plotted on a figure
equivalent to 14.6, but with the ordinary volume and

pressure along the axes. Show that this equation

actually holds for a one-component phase equilibrium.
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§ 111 Maxwell equal area rule Il
El The integral along this isotherm can be expressed as follows:
vy %
[ (= psa) @)1 = = [ [G0)7p + Psat] AV
Via vha
_ Allq —AY— psat(vv _ Vllq)
20. (14.15)

El Since the system only has one chemical component, it must also
be true that A = —pV + uN. Moreover, when the vapour and liquid
phases are in equilibrium, p"9 = p¥ = psa. Hence the equality in 14.15
can be simplified to

(uN)"" < (uN)” . (14.16)
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§ 111 Maxwell equal area rule Il (2)

It then follows that

th — yv,
which is identical to the phase equilibrium criterion for a one-component
system.
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§112 GG G

The necessary conditions for thermodynamic equilibrium
in a closed system with only one chemical component,
at a given temperature T, total volume V = V¥ + V'a
and total composition N = NV + N9, are

Aeq = rv,innA(T,v,n),
ev=1V,
en=N.

Heree = [1 1], vT = [V V9] and nT = [NV N'9]. As
was mentioned at the start of this chapter, p¥ = p"
and p¥ = "9 are necessary conditions for equilibrium.
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Show that this is the case. lllustrate the energy surface
using a p, A diagram where p; = v;! € (0, 3).
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A/RT.

0 1 1
0 1 2 3

Figure 14.7: Helmholtz energy for the ?srotherms shown in Figure 14.2 on
page 708. The equilibrium state (the tangent plane at minimum energy) is
given for the second lowest isotherm. Note that the standard state has been
chosen for the purposes of clarity, and varies for each isotherm. The parabolic
curve indicates the system’s phase boundaries.
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§ 112 Minimum of Helmholtz energy

El A necessary—but not sufficient— condition for thermodynamic
equilibrium is that (dA)r = 0 for variations in the extensive variables
VY, N¥ and V"9, N"9. Taking the total differential for both phases gives
us
(dA)7 = (dA)} + (dA)
— _pvdvv + [uv dNY — pllq dvhq + [uhq dNIlq
=0.

EHF The limits on the volume and mole number of the closed system
mean that dV"9 = —dV" and dN"9 = —dN". Substituted into the differ-
ential of A that gives us

(dA)T = —(p" = p"N)dV¥ + (u — u"¥) dN¥ = 0.
B
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§ 112 Minimum of Helmholtz energy (2)

E Since dVV and dN' are independent variables, then it must be the
case that p¥ = p"9 and p¥ = "9, which is what we needed to show.

B Figure 14.7 shows selected isotherms in the requested p, A dia-

gram, along with the saturation curve of the fluid (see Matlab-program
30:1.10).
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Tangent plane

Kl Note that the minimum free energy along each isotherm is not in
any way related to the equilibrium state.

EH Helmholtz energy is a function of the standard state of the fluid,
and since standard state properties do not have absolute values, the
minimum of the function won’t be an absolute value either.

B The equilibrium state is therefore characterised by having two
points on a single isotherm that can be connected by a line that is en-
tirely below the rest of the function surface (the graph).

H From a geometrical point of view, this condition will be met if the
two points have a common tangent.
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Multicomponent Phase Equilibrium

< see also Part-Contents
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Minimum energy
Kl At thermodynamic equilibrium the system has reached a state of
minimum energy.

E In Chapter 16 on page 820 it is for example proved that Gibbs
energy of a closed system decreases (due to chemical reactions) till
the minimum value Geq = miny G(T, p, n) is reached.

B |If the volume is kept constant and the pressure is varied the
Helmholtz energy will be minimised.

A Chapter 14 on page 698 illustrates this for the case of a simple
vapour—liquid equilibrium.
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@ phases

Kl Ingeneral we shall investigate a closed system consisting of 7 = a,
B,..., ¥, phases' and a set of i = 1,2,...,n components which are
common to all the phases.

El For the special case of constant temperature and pressure

(dG)Tpon = Lj—a Liiq u[dNT = 0 is a necessary condition for ther-

modynamic equilibrium.

Bl From the mass balance it follows that }.7_, N* = N; and even
n—a ANT = 0 because the total moles N; are constant.
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w phases (2)

@ The thermodynamic equilibrium criterion is then simplified to:
n n
(dG)rpn = X pf dN? + ¥, uf dNF =0,

i=1 i=1

dN® 4 dNf = 0.
Elimination of dNf makes (dG)71,pn = XL (u® — uf)dN® = 0.
In the vicinity of an equilibrium point all the dN;* are independent
quantities® and the equilibrium relationship is equivalent to:

=y,  Vie[t,n. (15.1)

! Phase a is usually the low temperature phase and §, . . ., 1, w are phases that become
stable at successively increasing temperatures.
2 At equilibrium dN: are fluctuations beyond our control. These fluctuations are quite
inevitable from the laws of quantum mechanics and will be observed in every physically

acceptable system. Thermodynamic equilibria are in other words dynamic, not static.
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§113

Show that the necessary criteria for multiphase equilibrium
at given total entropy S, total volume V and total
composition N; for each component i, are T% = TF =
=To,pr=pf=_..=pYand p* =pf =... = p°.

It is assumed that all the components i € [1, n] are
present in all the phases a, §, ... w. Hint: start from

Ueq = min U(s,v,nq,---,Np),

s,v,n;
es =S,
ev =V,

en,-:N,-, Vie[1,n],
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§113 &® & (2)

wheree = [11...1],8"T 2 [S* SF... S|, vl 2 [Vv* VP . V¥]
andn = [N;*N,.ﬁ ... N*] are phase vectors with as
many elements as there are phases in the system.

KP8108 Advanced Thermodynamics



o -

§ 113 Phase equilibrium

El The internal energy of the system is minimised in the equilibrium
state. In this (stationary) state the differential of U must be zero for all
feasible variations in S™, V™ and NI?T:
[ [ n
(dU)syn= Y dU™= ¥ (T"dS™ - p"dV™+ ¥, u"dNI) =0.
= =ua =1
B The variations in S™, V™ and NT must therefore be constrained
such that the total entropy, volume and mole numbers (of each compo-
nent) are conserved:
[
Y, dS™ =0,
=
[

), dvT™ =0,

=
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§ 113 Phase equilibrium (2)
i) dN" =0, Vie[1,n].
A Substituted into the differential of U:

0.

4 n
(@U)syn= L [(T"=T)dS™ = (p"~p*)dV"+ . (] - ) AN
=

m=x

B If (dU)svn = 0 then it must be true that:

TO=TP=... =TV =T¢,
p“:pﬁ:...:pwzp“’,
===l =y,
Hh = ==y =
<‘ KP8108 Advanced Thermodynamics
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§ 113 Phase equilibrium (3)
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Gibbs’ phase rule

Kl Despite the fact that temperature, pressure and chemical poten-
tials are uniform at thermodynamic equilibrium we cannot specify these
variables directly.

H The Gibbs—Duhem’s equation
sdT —-vdp+[nynz --- nyJdu=0.
removes one degree of freedom per phase.

El The number of independent intensive variables in a system is
therefore F = dim(n) + 2 — dim(e), or in other words F = N+ 2 - P,
also known as the Gibbs phase rule for un-reacting systems.
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K-values
Kl Vapour-liquid equilibria are frequently calculated by an iterative
method which is due to Rachford and Rice®.

EH Thisis also known as the K-value method because the equilibrium
relations are solved as a set of K-value problems on the form

xf=Kix®,  Vie[1,n], (15.2)

where x{* and xf are the mole fractions of component i in a (liquid) and
B (vapour) respectively.

El We shall later learn that there is a one-to-one relationship between
K; and the chemical potentials of component i in the two phases.

E The total mass balance is N* + N = N and the component bal-
ances can be written x*N* + xPNF = N;.
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K-values (2)
[ Elimination of Nf produces x*N* 4+ xf(N — N*) = N; and a subse-
quent substitution of x from Eq. 15.2 yields:

a N; _ Zj
X; = N TR (N-NT) — 70 K2 - (15.3)

8 H. H. Rachford and J. D. Rice. Trans. Am. Inst. Min., Metall. Pet. Eng., 195:327-328,
1952.
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Rachford—Rice

El The corresponding expression for x,.ﬁ is
K,‘N,‘ K,‘Z,‘

o = i = 2 (15.4)

where z* = N*/(N*+NF) and zf = NP /(N*+NP) are the phase fractions
and z; = N;/N is the total (feed) mole fraction of component i.

EH Note that the right hand sides of Egs. 15.3 and 15.4 contain a single
unknown variable z%, or equivalently zf = 1 — z°.
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Rachford—Rice (2)

Bl Summing up x* and x,.ﬁ from Egs. 15.3 and 15.4 yields

n
f(zt) = ¥, 4z z fiz;=0,

which is easily solved with respect to z* using a Newton—Raphson iter-
ation:

n -1
£k ok _ 2y p gk (i; fl.zz,-) fl (15.5)

H The recursion formula makes a new z**+! available, which on
back-substitution into Eqgs. 15.3 and 15.4 produces new values of x?*
and x.
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Rachford—Rice (3)

A These updates (hopefully) improve the Kj-values, and subsequent
iterates in Eqg. 15.5 converge finally to the equilibrium state.
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§114

Computerise the function [x*, x#, z*] = TpKvalue(n, k)
using Eq. 15.5 as your reference algorithm.
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§ 114 Rachford—Rice

El See Matlab function 2.6 in Appendix 30.

E The syntax has notably been extended to TpKvalue(n, k, u, U, v, V)

where U and V are data structures transmitting model specific parame-
ters used by u and v.

H The update of K; assumes for each iteration that Inkk*! = Ink +

u(x*,U) — v(x#,V). Constant K; values will be assumed if the functions
u and v are expelled from the argument list.
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Algorithm
Kl A fixed derivative sign means that there is at most one solution in
the domain z¢ € [0, 1].

A First, Eq. 15.5 is solved with respect to z* at given or estimated K;
(inner loop).

@ The phase compositions are then updated by the Egs. 15.3 and
15.4 before new Kj-values can be calculated (outer loop).

The double iteration procedure is repeated until the phase compo-
sitions x* and xf have converged.
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Newton—Raphson
El Contrary to the K-value method of Rachford—Rice, the Newton*—
Raphson®s method fulfills the mass balance in every iteration.

E This requires a feasible starting point where n® + nf = n is fulfilled.

El The Newton—Raphson iteration of Eq. 15.1 is then,

oub B
u+2(a) ANG =i+ T Q) AN,
! aNI ,P,N/# ! j=1 aNlﬁ T/PrNI#-j g
—ANjﬁ:ANj“,

or on matrix form:
”a + GYAn® = ‘uﬁ 4 G.BAnﬁ,
—-Anf = An“.

4 Sir Isaac Newton, 1642—1727 by the Julian calendar. English physicist and mathe-

matician.
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©
Algorithm

< 15 Multicomponent ....

El The matrix G = {(826/8N,-8N,-)T,p} is the Hessian® of Gibbs energy

and An = nk*' —nk is the composition difference between two (subse-
quent) iterations k + 1 and k.

EH The Newton—Raphson equations can be combined into

(G* +GP)An® = —(u* — pf),

or even better: An® = —-H'Ap where H = G* + G and Ap = p® — pf.

B In particular the mole number updates must be checked for
n®k+1 — nek L An® > 0 and nfk+! = nfk — An® > 0.
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Algorithm (2)

H |f the relations are violated it is mandatory to shorten the step size
according to
An® = —tH Ay, (15.6)

where 7 € (0, 1] is calculated such that all the updated mole numbers
are positive.

@ Inthis way we can ensure that the mass balance is fulfilled in every
iteration.

The Newton—Raphson method converges to a state where Ay = 0,
but note that the phase models have not been taken into account yet.

KP8108 Advanced Thermodynamics
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Ideal mixture Hessian

Kl Insummary it means that ideal mixing is assumed in the calculation

of H while Ay is calculated rigorously. From the definition of an ideal
mixture we can write,

< 15 Multicomponent ....

ay'.d el N:
GY = (3 = 5% (ur +RTINR)
i NN o N NJT p,Nesj
_ NRT (3(N/N))
N Niczj

_ RT(@ _ N)'

where the Kronecker’ delta function 6; = 1 if i = j and 6; = 0 else.
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Ideal mixture Hessian (2)

Bl On matrix form this formula is written — see also Paragraph 12 on
page 81 in Chapter 3 on page 56:

GY=RT(n? - N'ee'),

e =(1,1,..., 17,
H Here, nC is an (inverted) diagonal matrix having 1/N; along the
main diagonal.

From the definition H = G* + G# it follows:
HY = RT [(n®)® + (nf)y® — (N*)" + (NF)")eeT] .

7 Leopold Kronecker, 1823—1891. German mathematician.
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Sherman-Morrison

Kl The matrix (n%) P+ (nf)P has diagonal elements (N%)" -+ (NF) ! =
N;/(N*NF) and the factor (N*)" + (NF)™ can be rewritten to (N* +
NP)/(N*NF).

B This makes the following factorisation of H'® possible:

Hld — RT N34 NP [dlag (N“Nﬁ N; )_ eeT] ,

N NB NENP (N2 +NF)
or,
N4NFpaid 1 -1 T
5 HY = -5 (D7 —ee’),
D' = diag ((Zy) , (15.7)
[

where z% and zf are phase fractions, xl.“ and

K Asusual xf are component mole fractions, and z; is the feed mole
fraction of component i.
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©
Sherman-Morrison (2)

< 15 Multicomponent ....

B Eq. 15.7 indicates that H is a rank one update of D.

H The inverse of H can then be calculated from the Sherman-

Morrison formula (D'1 - eeT)_1 = D+ (1 —e'De)'Dee'D, or, equiv-
alently, if we define d = De:

AT (HY)' = 2228(D + (1 - &7d) " dd"). (15.8)
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Simplified algorithm
El From Egs. 15.6 and 15.8 it is possible to express the simplified two-
phase Newton—Raphson method as

o . T Ay
s = —2°2K(D + s ddT) F (15.9)

B Note that z%, zf, d, D and Au/RT are dimensionless variables.

Kl This makes the iteration sequence independent of the system size
for a given total composition z.

B We may therefore scale the system® such that N* 4+ Nf = 1 without
affecting the mole fractions in the phases a and g.

8 This is just another example on the special properties of extensive functions.
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§115

The Sherman—Morrison formula is widely applicable
and not at all limited to thermodynamic problems.
Verify the formula by proving that H'H = I. Attempt
to find a more general formula valid for (A —uv')'.
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©
§ 115 Sherman-Morrison

< 15 Multicomponent ....

Bl Straightforward substitution.

Bl The general formula for rank one updates is: (A —uv’)' = AT +
Alu(1 —vTATu)'vTAT,
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§116

Computerise the function [x%, x#, z] = TpNewton(n, k)
using Eq. 15.9 as your reference algorithm.
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®
§ 116 Newton—Raphson iteration

El See Matlab function 2.7 in Appendix 30.

E The syntax has notably been extended to TpNewton(n, k, u, U, v, V)

where U and V are data structures transmitting model specific parame-
ters used by u and v.

Bl This makes it possible to iterate on non-ideal equilibrium states by
supplying two fugacity (activity) coefficient models u and v.
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Kiversus ; |

El The Rachford—Rice procedure spends time on calculating K-values
while the Newton—Raphson method deals directly with chemical poten-
tials.

EH However, because the two methods aim at solving the same prob-
lem there must be a rational connection between them.

El The purpose of this section is to show that (and how) Eq. 15.1 on
page 750 can be used to derive some useful relations between K; and
A[,l,'.
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Fugacity / fugacity

El For fluid p(V,T) equations of state u?(T,p.) is defined as the
chemical potential of a pure ideal gas at the temperature T and pres-
sure po.

EH The same standard state applies to both of the phases and from
u® = uf itis conventionally written

a ya B xB
up + RTIn(LE8) = up + RTIn (218,

where the left side stands for 1 and the right side stands for uf.
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Fugacity / fugacity (2)

E The quantity Au;/RT which appears in Eg. 15.9 is then
A‘u, N ‘ul Keosxa

= =In (= 7 L), (15.10)
where K*°° is defined as the ratio between the fugacity coefficients ¢¢
and ¢F:

Keos = ;’j; : (15.11)

B In the context of being an equilibrium constant the K-value is there-
fore quite misleading. Ki(T,p,x% xF) is in fact a non-linear function in
temperature, pressure and the compositions of both phases.
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§117

Find experimental data for a typical hydrocarbon vapour—
liquid system and see how close the RK equation
of state matches the measurements. Calculate the
phase diagram using TpKvalue or TpNewton.
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§ 117 Natural gas
El The phase diagram of a typical, albeit synthetic, natural gas® is
illustrated in Figure 15.1 on the following page.

E The calculations are shown in Matlab program 30:1.22.

El The plot is given a high colour density where the liquid and vapour
phases coexist in approximately equal amounts, and a light colour near
the single-phase region (vapour or liquid).

9 Mario H. Gonzalez and Anthony L. Lee. J. Chem. Eng. Data, 13(2):172-176, April
1968.

KP8108 Advanced Thermodynamics



') Chemical potential versus K-value ©
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Figure 15.1: Phase diagram of nitrogen—methane—ethane—propane—n-

butane put together from a total of 6093 triangular patches using a recursive
divide—and—conquer algorithm (each triangle is split into four smaller ones un-
til all the vertices are in the same phase domain).
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') Chemical potential versus K-value ©

§118 & ™ ||

Show that the Lewis mixing rule is exact if Amagat'%s
law V& = 0 is valid over the entire composition and
pressure [0, p] range.

10 Emile Hilaire Amagat, 1841-1915. French chemist.
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§118 Lewis'' mixing rule
EH V™ =0meansthat V=Y, v(T,p)N.

EH The fugacity coefficient is defined by the Egs. 13.12 and 13.13, see
page 665. Substituted for the Lewis rule we get

p
RTIn(p;‘eW'S _ f(Vi(T/P) - %)dp =f(T,p),
0

which shows that ¢; depends on temperature and pressure only be-
cause the partial molar volume is independent of composition.

10 Gilbert Newton Lewis, 1875—-1946. American chemist.
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Activity / activity

El InEqg. 15.11itis common that « is the liquid phase and 8 the vapour
phase, but this is just one out of many possibilities.

E We could alternatively assume that « and B are two near-critical
fluids being something in between a vapour and a liquid, or two well-
defined liquid phases.

If this is the case it is no longer necessary to integrate all the way
from the ideal gas in Eg. 15.11 but rather use the pure component
properties as a reference.

Bl |n practise this means that the fugacity coefficients can be replaced
by activity coefficients:

Keos _ P = Vi 9
' of e
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Activity / activity (2)

El Provided the same activity model is used to describe both phases
the Kj-values are

ax __ _Bx €0s __ ex_ﬁ
¢ =97 = KT=KT=3,
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§119

Find experimental data for a ternary liquid—liquid system
with known NRTL, van Laar or Margules model parameters.
Select a system which has a fairly large solubility region
and a critical end-point inside the ternary region. Use
TpNewton to calculate the phase diagram.
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@ Chemical potential versus K-value @
§ 119 Phase separation
El The phase diagram of cyclohexane—cyclopentane—methanol'? is
illustrated in Figure 15.2 on the next page.

El The diagram was successfully calculated using TpNewton, see
Matlab program 1.23 in Appendix 30.

A Still,the K-value method experiences serious problems close to the
critical point.

2 Ternary systems. In Liquid—Liquid Equilibrium Data Collection, volume V, part 2,.
DECHEMA, Frankfurt/Main, 1980. p. 115.
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0.6

Mole fraction of methanol

Figure 15.2: Phase diagram of cyclohexane—cyclopentane—methanol at
298.15K and 760 mmHg. The iterations are started at interpolated points
in the diagram (ensure safe convergence).
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Fugacity / activity
El nsome cases it may be appropriate to employ an equation of state
for the vapour phase and an activity model for the condensed phase.

EH The standard state of the two phases will be different and the phase
diagram will in general not be “closed” at the critical point.

B The starting point is Eg. 15.1 on page 750 which in this case gives:

ixP
ur(T,p) + RTIn(yix®) = ud(T, p.) + AT In (L2

5P (15.12)

[ The standard state of g is assumed to be pure ideal gas at the
temperature T and standard pressure p..
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Fugacity / activity (2)

The reference state of phase «a is in principle a function of temper-

ature, pressure and composition, but in most cases a pure component

reference is used where limy; = 1.0 as p — pisat, i.e. the reference

pressure is set equal to the saturation pressure of component i:

< 15 Multicomponent ....

sat 4sat
ur (T, P8 = uf + RTIn (B2 (15.13)
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Pure component reference

El In order to calculate yl?* atp # pl.sat it is necessary to integrate
(duj/dp), , = vi from the saturation pressure pl.Sat to the system pres-
sure p.

B The pure component volume v* is usually a weak function of pres-
sure, and it makes sense to use v* ~ v?!(T) or maybe v* ~ vi(T°, p°)
because most condensed phases (in the form of a liquid'3or maybe a
solid phase) are comparatively incompressible in this regard.

El A useful estimate of u*(T, p) is therefore

p
ur(T,p) = uf (T, PP+ [ v dp = uf (T, pp*) + v (p—p™). (15.14)

sat
b;

'3 Provided the state of the liquid is sufficiently removed from the critical point.
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Chemical potential

Kl which is substituted into Eg. 15.13 and finally combined with the
equilibrium relation in Eq. 15.12. The result is:

. ¢y ix; : PP
u7 4+ RTIn ((——5) + v?¥(p - pj*) ~ pj + RTIn () -

B Ayi/RT from the Newton—Raphson algorithm in Eq. 15.9 may now
be written on the same form as in Eq. 15.10 provided K is calculated
as

sat ~sat sat sat
Kye = LB exp (BP0 (15.15)

The exponential term is known as the Poynting'* factor of K;.

KP8108 Advanced Thermodynamics
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Chemical potential versus K-value ©

Raoult'®s law

El For an approximately pure liquid component i it is reasonable to set
¢i =@, yi=1andp = p}.

EF The mixture is by definition ideal and K; appears to be a simple
function of temperature and pressure:

K‘Raoult — lim Kyle — iat
! Xi—1 ! p

4 Francois-Marie Raoult, 1830—1901. French chemist.
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Henry'%s law

El Inthe same mixture it may also be appropriate to use a hypothetical
vapour pressure Hj; for all diluted components j, the value of which is
chosen such that the phase equilibrium is reproduced faithfully:

KjHenry — lim K.Vle _ i

xji—0 J P

15 William Henry, 1775-1836. English chemist.
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§120

Find experimental data for a close to ideal binary
vapour-liquid system with known NRTL, Wilson, van
Laar or Margules model parameters. Use TpKvalue or
TpNewton to calculate the phase diagram. Comment
on the practical applicability of Raoult’s law versus
the accuracy of pure component data.
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§ 120 Ideal mixture

El The phase diagram of hexane—toluene'” is illustrated in Fig-
ure 15.3 on the next page.

BH The calculations make use of the Matlab program 1.24 in Ap-
pendix 30.

B Correcting for non-ideality makes some improvement (compare o1
and o2 in the left subfigure), but the largest error is actually hidden in
the vapour pressure of toluene.

A By increasing the vapour pressure 2% the agreement is improved
even further (compare o3 and o4 in the right subfigure), while Raoult’s
law still shows a significant deviation from the measurements.

17 Aliphatic hydrocarbons: C4—Cs. In Vapor—Liquid Equilibrium Data Collection, volume
I, part 6a,. DECHEMA, Frankfurt/Main, 1980. p. 593.
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Antoine vapour pressure Corrected vapour pressure
120 T 120 T

o = 0.356 o3 = 0.265

5) o2 = 0.157 S o4 =0.095
: 100+ : 100+ :
5
I
3
e 80f 801
Q@
60 : 60 :
0 0.5 1 0 0.5 1
Mole fraction of hexane Mole fraction of hexane

Figure 15.3: Phase diagram of hexane—toluene at 760 mmHg. Calculated
curves show Raoult’s law (stipled) and van Laar activity (solid). The right
subfigure shows the effect of increasing the vapour pressure of toluene by
2%. The sum-of-squares are denoted 71, 02, 03 and o4.
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Acitivity / activity

El When a and g are condensed phases it is often appropriate to
neglect the influence of pressure on the system properties.
EH This is quite typical for metallurgical melts and refractory systems
where the process conditions are close to atmospheric. At the melting
point'® T; the following is true:

u (T = (T, (15.17)

18 Or phase transition point if the two phases are solid.
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Pure component reference

El In order to find y,?*fﬁ at T # T, it is necessary to integrate

(a,vl,.*fﬁ/ar)p,n = —s*F from the melting temperature T; to the system

temperature T.

E The molar entropy of phase change depends on the temperature,
but as a first approximation it can be assumed that As* = (h*# - h,.*'“)/
T; is approximately constant for the phase transition a« — f:

;
(1) =" (T) = [ 87T
Ti
T T T
=uo*(Ty) - [ dT + [s¥*dT - [s¥*dT
Tj Tj Tj

;
=p{*(T) - [ AsfdT
Ti
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Pure component reference (2)
o Ah*
= *(T) = == (T=Ty). (15.18)
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Chemical potential

Kl Note that Eq. 15.17 is used in the transposition from the first to the
second line.

EH The integral which is added and subtracted in the second line puts

the expression on the wanted form after it has been combined with
Eqg. 15.16:

u*(T) + RTIn(y§xt) =~ ul™(T) + RT In(y#xf) - (T T).

B Api/RT required by the Newton—Raphson algorithm in Eq. 15.9
can finally be written as in Eqg. 15.10 provided K; is calculated as:

h
Kee = 2 exp[A (Ti—%)]. (15.19)
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§121

Find experimental data for a binary alloy (or a binary salt)
with full solubility in the solid phase. Choose a system
with fitted Margules or Redlich—Kister model parameters.
Calculate the phase diagram using TpNewton or TpKvalue.
How important is the temperature dependency of As*
in this context?
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§ 121 Metallurgy

El Figure 15.4 on page 806 illustrates the high-temperature portion
of the gold—copper'® phase diagram, see Matlab program 30:1.25.

E The agreement between the measured and calculated values is
generally good even though it is not possible to calculate the entire
diagram — neither with TpNewton nor with TpKvalue.

El The problem is quite persistent, and although the starting values
are chosen judiciously there is a substantial region around the congru-
ence point where things go wrong.

Bl The Hessian matrix for the assumed ideal mixture will then over-
estimate the curvature of the energy surface and therefore yield a con-
servative step size in TpNewton (and a safe, albeit very slow, conver-
gence).
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@ Chemical potential versus K-value @
§ 121 Metallurgy (2)

El With negative deviations from ideality the curvature of the enrgy
surface is under-estimated and the step size may eventually grow so
large that the iterations start oscillating around the solution point2°.

8 H. Okamoto, D. J. Chakrabarti, D. E. Laughlin, and T. B. Massalski. Bull. Alloy Phase
Diagrams, 8(5):454—473, 1987.
20 An exactly calculated Hessian would stabilise the Newton—Raphson method.
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Figure 15.4: Phase diagram of gold—copper showing a negative deviation

from ideality. Both TpNewton and TpKvalue has convergence problems close
to the azeotrope.
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First order convergence | |

El The K-value method is typically of first order, but close to the critical
point the convergence factor h — 1 which means x*1 ~ xk.

El Thus, convergence is severely hampered and it may be difficult to
decide whether the sequence converges or not.

B To broaden the applicability of first order methods it has been sug-
gested to accelerate the iteration step along the strongest eigendirec-
tion of the Jacobi?! matrix. This is known as the Dominant Eigenvalue
Method, see Appendix 27.

KP8108 Advanced Thermodynamics

21 Carl Gustav Jacob Jacobi, 1804—1851. German mathematician.
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) Convergence properties ()
O 1 |
—— hy = 0675 |
_1 . . . o . each 4th IteratIOl"l ...... , ........... —
— h, = 0.965 :

—2[ v each24thiteration " _

log1o ||A”“k+1
&

Figure 15.5: Convergence properties of the quasi Newton—Raphson method
when using an ideal Hessian in the calculation of the bottom (h¢) and top (h;)
tie-lines in Figure 15.2. The latter is close to the critical point. Solid lines
illustrate 1st order convergence. Note that h — 1 for the near-critical point.
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Second order convergence
El The Newton—-Raphson method is of second order—details con-
cerning the convergence factor is discussed in Appendix 26.

EH This means that the number of significant digits will double in each
iteration provided that iteration k is sufficiently close to the solution
point.

B But, the simplifications in Section 15.2 makes m = 1 unless for
ideal mixtures where the Hessian is exact.

A Figure 15.5 illustrates what influence the simplification has on the
calculation of the bottom and top tie-lines of Figure 15.2.
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Second order convergence (2)

A The iteration sequence approaches a line with slope 1, which is
typical for first order methods, and for the near-critical point the conver-

gence factor also approaches 1, in the sense that h, = 0.965 is pretty
close to unity in this context.
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Material Stability

< see also Part-Contents
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Note 21.1

< 21 Material ...

El The question of material stability is crucial to the understanding
of complex phase behaviour, and, as an indispensable analytical tool,
to the calculation of thermodynamic equilibrium states. It turns out,
however, that the subject is quite complex, and that a full theoretical
treatment requires a rather abstract notation. In order to achieve a
good understanding of the basic concepts without sacrificing too much
physical insight, we will therefore restrict our analysis to U, and possibly
its Legendre transforms A, H and G, but it should be stressed that
similar analyses could be carried out based on S, V, etc.
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Note 21.2

Kl Let us start with a closed system held at constant entropy, volume
and composition, the internal energy of which is U(x), where xT = (S,
V,Ni,...,Np). It is perhaps easier to grasp the theory by looking at
a single-phase system. However, this is not a requirement, and no
changes are needed for multi-phase systems. Let us consider what
happens when a new phase, with state variablesy € Q |0 <y < x, is
formed within the system boundary. Of particular interest to us is the
change in internal energy AU(x,y) = U(y) + U(x —y) — U(x) caused
by the phase formation. A perturbation in U(x) combined with an Euler
integration of U(y) yields':

AUXY)=Uy y—Ux Y+ 2 U Y Y — 2 U Y Y Y + -
=0+ y Gk (21.1)
k=2 )
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Note 21.2 (2)
For convenience, the following shorthand notation has been adopted?:

5KUZU)I(('V Ux.x Yy = 21 Zax, gx}/""}/j
j=1 =1

' Direct Euler integration is also possible: AU = (Uy — Ux—y) - Y — (Ux — Ux—y) - X
2 The inner product - binds to the operand on the left, thereby avoiding nested paren-
theses.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1233 /1598
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Note 21.3

< 21 Material ...

El The tangent plane distance function U = (Uy — Uy) - y defined in
21.1 is fundamental to the global stability analysis set out below, while
the factors 6°U, 63U, etc. are closely related to the local instabilities
known as spinodal, critical, and tricritical points. The exact conditions

for these states are quite involved, and will be discussed in the next
section.
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Note 21.4

El To prove that the system is in global equilibrium it must be verified
that AU(x,y) > 0, Yy € Q, but it is not necessary to scan the entire
function domain; the system is globally stable if all the stationary values
of AU have a positive sign. A necessary condition for the stationary
state is (JAU/dy) = 0, which in the current context translates to Uy =
Ux—y®. Substituted into the integrated form of AU (see footnote on
page 1163 on Euler integration), this gives the final stability criterion
(Uy = Ux) - x > 0, which correctly identifies the equilibrium state as the
lowest of all feasible tangent planes. However, this does not give us
any clue as to how or where we should start our calculations. Note that
there may be several phases y; and in general each phase has a finite
region of attraction®.

3 Also referred to as the general condition for phase equilibrium.
4 The extent of the region also depends on the numerical algorithm being used.

KP8108 Advanced Thermodynamics
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Note 21.5

El To investigate this problem further let {yg,y1,...,Ym} be the set of
all stationary states®. But, how can we determine this set? There is
no definitive answer, so we shall specifically look for regions where the
stability criterion is violated. Let s; € [0, 1] be a distance parameter and
let AU(s;) = U(siy;) + U(x — sjy;) — U(x) be the parametrised internal
energy change. The values s; = 0 and s; = 1 correspond to the system
x and to the stationary state y; respectively. A Taylor series of AU in
the parameter s; can be written

AU(si) = si(Uy, — Ux) - Yi + 3 S°US_py, - V2
= siUj + § s2Q(x, ajy;)

where the quadratic Q represents Lagrange’s Taylor Series Remainder.
If the Hessian® UZ_, . is positive (semi)definite for all a; € [0, 1] it follows
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Note 21.5 (2)

that Q is non-negative. Hence, if AU(y;) < 0 it must be true that J; < 0.
The reverse is also true because lims_,o AU/s; = U.. The question of
global stability can therefore be resolved by calculating min U in each
region of attraction’:

stable U>0 Vy;eQ
metastable U<0 3Ty, eQ

If the tangent plane distance is everywhere non-negative, the system is
stable, and if this is not the case, the energy can be lowered by using y;
as an initial estimate for the new phase, see Section 21.3 on page 1185.

5 Any value y « x represents a so-called trivial solution and is excluded from the set.
6 Ludwig Otto Hesse, 1811-1874. German mathematician.

7 Normally unknown at the outset— global stability constitutes a difficult problem.
KP8108 Advanced Thermodynamics
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Note 21.6

El Assume that x is now a single-phase system in Eqg. 21.1 and that
U = 0 for some vector y — 0 describing a new incipient phase that is
formed within the system boundary. If moreover 52U — 07, the sys-
tem is stable to local perturbations, whereas if 52U — 0-, the sys-
tem is intrinsically unstable, and an increase in y will eventually lead to
U < 0. If 52U = 0 the system will be stabilised by the new phase y
when 63U — 01, and de-stabilised when 63U — 0~. This can obviously
be generalised, but it is not very conclusive, because y — 0 does not
tell us how far y is from x in a thermodynamic sense®. We shall there-
fore rewrite Eq. 21.1 as a Taylor series with one single reference com-
position x, rather than using two distinct compositions x and y. This is
to understand what happens if (or when) some of the lower order terms
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Note 21.6 (2)

in the series vanish, and to properly understand the zero phase fraction
lines. The total energy of the composite system is:

U(x,y) = U(y) + U(x-y) (21.2)

KP8108 Advanced Thermodynamics
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Note 21.7

El To proceed we need Taylor expansions for U(y) and U(x —y),
both starting at the same composition x, or, more precisely, somewhere
along vector x. The trial vector of state variables is first decomposed
into one component along x and another component x, defined such
that —ax; < Xj < —ax; + X;:

y=ax+X, ac(0,1)

Next, remember that U, Uy, Uxy, - . . are homogeneous functions of order
1,0,—1,... This means that the expansion can be started anywhere
along vector x provided that the derivatives® are properly scaled:

U(y):au(x)+a0UX'i+%a_1UXX')_(')_(+%a_zuxxx')_('X'i+...
=aU(x)+ ¥ a'kUg-x (21.3)
k=1 "

KP8108 Advanced Thermodynamics
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Note 21.8

El The expansion of U(y) is also valid for U(x — y) if the new variable
p is defined such that

X—y=X—(ax+X)=(1-a)x—-X=px-X
Hence, by replacing « — p and x — —X we get the expression
Ux—y) = BU(X) + T B Uy - (%) (21.4)

for free. From Eqgs. 21.2, 21.3 and 21.4 the expansion of the total energy
reads'®:
Uxy) = Ux) + L o™ - (-p) U - (21.5)
k=2
The first index k = 1 is skipped because a® — % = 0 for all a, g € (0, 1),
i.e. the Taylor series is independent of the slope of the energy surface".
Of particular interest here is the term a'~% — (=)', which is strictly
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) Local stability ©
Note 21.8 (2)

< 21 Material ...

positive for the even indices k = 2,4, ..., and of variable sign for the odd
indices k = 3,5, .... The sign of an odd-powered term can therefore be
switched by exchanging the values of @ and 3. Whenever the leading
terms of the series vanish, this implies that the even and odd terms
vanish in pairs. A concise explanation is given below.

10 Where « + g = 1, as defined above.

" The energy gained by one phase is, to a first approximation, the same as that lost
by the other phase.
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Note 21.9

El Consider a Taylor series where n is an odd, non-zero term, and
all the terms 2,3,...,n — 1 are zero. If the sign of the n'th term is
switched the value of the leading approximation changes from positive
to negative, or vice versa. This behaviour has no physical interpretation,
and it can be concluded that Uy - X" must vanish as well. However, as
illustrated in Figure 21.1 on the following page, exchanging the values
of « and g will in general change X to X + ex and it must be proved that
this change does not distort the lower order terms:
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A A
X
X
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/A eX
~/B¥_
X
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X1

Figure 21.1: The effect of exchanging the (Taylor expansion) phase sizes a
and g in a trial two-phase system. The overall vector of state variables x is
fixed (closed system). The difference between the two sub-figures lies in the
ex term.
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Proof

El Assume that nis an odd number 3,5, ... and that UX - Xk = 0 for
all k € [2,n). We shall prove that adding an arbitrary vector ex to X

does not change any of the terms UX - x¥ for k € [2, n]. Using binomial
coefficients we can write

- d k k gk
Ug - (ex+X)"= Y (e Uy -x""-x
k=0
The derivatives are known to be homogeneous functions of order
1,0,—1,... which implies the following reduction scheme:

Ug-x"k=@-n@-n-1)---(2-k-1)Uk
k+1

= U TI(2-1)

i=n
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Proof (2)
Combining the two equations yields the intermediate result

. ul K ok
Uy - (x+ex)"= Y cUy - X
k=0
where the ¢, have values: s
ck=e"*M I (2-1), kelo,n)
i=n
ch=1

Remember that UL - Xk = 0 for all k € [2, n). Furthermore, ¢y = ¢y = 0
for k < 2 because (2 — i) = 0 somewhere in the product. Hence, we
can conclude that only the n’'th term survives the summation:

Uy - (ex+Xx)"= Uy -x", Ve >0[0.8]
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@ Global stability Local stability The tangent plane test Intrinsic stability criteria @
Note 21.10

In retrospect it is easy to see that ex vanishes due to the first order
homogeneity of U when implemented in a Taylor series without any first
order term. Anyway, the conclusion is that U?~1 - x"~! and U7 - X" must
vanish in pairs of even and odd indices if the leading terms k € [2,n — 2)
are zero'?13,

2 Michael Modell and Robert C. Reid. Thermodynamics and Its Applications. Prentice
Hall, 2nd edition, 1983.

8 There is a textbook alternative'? to the analysis outlined above. Let « — 0 ip
Eq. 21.5. As B = 1 — a >> « the equation simplifies to lim,_o (&%) = ¥\, & Uk - (5) .

a

Here, AU(x,y) is a homogeneous function in a for a constant perturbation vector %,
and the original system x acts as a thermodynamic reservoir, making it possible to
study the properties of the new phase y in isolation. Consider again a Taylor series
where all the terms 2,3, ..., n— 1 (even number) are approaching zero. If the direction
of X is flipped, the sign of the n’'th term will also switch, and it can be shown that Uy - X"
must vanish. However, changing the direction of X severely changes the composition
of the new phase y, and it is not clear (to me) that this has been properly accounted

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1247 /1598
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Note 21.11

El Rather than U?-" - x"~" and U7 - X" we could just as well talk about
6"1U and 8"U, because they must also vanish in the same circum-
stances. Therefore, when 52U > 0 for all feasible y, the phase is in-
trinsically stable (but it can still be globally metastable). When 6°U < 0
for some vector y the phase is intrinsically unstable, and if 5°U = 0 the
phase is said to be at a spinodal point. If 53U = 0 for the same vector
y, the state is called critical. In the same manner, higher order critical
points can be defined where UZ~1.y"' = Ul.y" =0forn=5,7,...To
conclude this section we will summarise our findings:

unstable ®U<0 for some y
critical 0*U=0 for some
5°U =0 y

— PU=0 &*U=0
tricritical

S81=n" 8511=n0n
KP8108 Advanced Thermodynamics
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Note 21.11 (2)
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Note 21.12

El Intheory itis easy to set 62U, 63U, etc. to zero, but what about in
reality? Matrix algebra can be used to analyse 62U, but it is not helpful
for the higher order terms. To get an idea of the numerical complexity it
is useful to calculate the number of different terms involved. The partial
derivative U,’(‘ contains nk elements, but only a fraction'* of these are
independent. One obvious reason for this is the commutative symmetry
of the partial derivative:

kU _ kU
IXkOXjdX; — IXidXj Xk

4 E.g. for k = n = 10 there are 10'° elements, but only 43758 independent ones!
KP8108 Advanced Thermodynamics



{@ Local stability @L

Note 21.13

Kl Thus, the sampling of k indices without regard to order from a
population of n = dim(x) components (with replacement of the indices)
gives rise to

_ k—1)!
(n+;’<( = (;?!J(rn—n)!

potentially different terms in UX. However, the homogeneity of U re-
duces the number further because

UK. x = (2 - k)Ut!

For each derivative UX there exist as many relations as there are inde-
pendent terms in U=, hence the number of independent terms in UX
is limited to

- - k-2)!
N =D = Sy, konz2
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Note 21.14

< 21 Material ...

E From the numbers calculated in the table below we can immedi-
ately identify the 2-variable case as particularly interesting—only one
extra term is needed to describe each derivative, regardless of the value
of k. This finding becomes even more interesting in Section 21.4, where
we will find that the 2-variable case is sufficient in all but some highly
degenerate cases (e.g. critical azeotropes).

n=2 %
n=3 3 4 5 ... k1j
(k+1)(k+2)
n=4 6 10 15 R
(”—'1)n (n—1)r;(n+1) (”—1)n(n:|r1)(n+2) ' (n+;;_2);
n 5 5 .

24 . ki(n=2)!
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Note 21.15

Kl Intheory it is possible to formulate a tangent plane test based on
internal energy, but most models use the canonical variables T,V, N
or T,p,N, and it is more practical to formulate the test in terms of
Helmholtz energy or Gibbs energy. Assume therefore that we have
a phase (assembly) defined by

A=g'x
where A is the Helmholtz energy and x™ = (V, nT). The system tem-

perature T is constant. If the phase (assembly) is stable then A > 0 for
all feasible values of the vector of state variables y:

A(x,y) =[g(y) - g(x)]'y >0 (21.6)
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Note 21.15 (2)

< 21 Material ...

Note the difference in notation from Eq. 21.1. Here it is more natural to

use g for the gradient rather than Ay, in keeping with the notation used
in linear algebra.

KP8108 Advanced Thermodynamics



) The tangent plane test ©

Note 21.16

El To verify that A > 0 for all feasible y € Q our best option is to
investigate the outcome of the minimisation problem

myin(Z\)T v aly=c

for several trial values of y. This minimisation problem is linearly con-
strained'® and the method of Lagrange multipliers is the perfect tool:

L(x,y,A)=A-A(@'y -¢c)

5 The constraint specification a'y = c is arbitrary, but nevertheless crucial to the
formulation of the problem, because Aisa homogeneous function, and as such has a
singular Hessian matrix in the direction of y. Adding a rank-one constraint makes the
Hessian invertible (loosely speaking).
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Note 21.17

< 21 Material ...

El The stationary point of L is given by dL/dy = 0, or when written
out in more detail:

0=% _ JIA(aTy—c)

oy ay
= H(y)y +9(y) —g(x) - Aa
=g(y) —g(x) - Aa (21.7)

The stationary value of A can be calculated from Eqgs. 21.6 and 21.7:

A, =g(y)ly-g(x)'y=A1a'y = Ac (21.8)
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Note 21.18

Kl Hence, the phase is stable if Ac > 0 at every stationary point of
L(x,y,A), and metastable if Ac < 0. If metastability occurs, Helmholtz
energy can be lowered by including the new phase y at the expense
of x, but this begs the question: how big should we make this new
phase? The final answer lies, of course, in the subsequent equilibrium
calculation, but we have to start the iterations somewhere. It requires
only a minimum of effort to study the second order variation of A along
the (optimum) vector of state variables y,

Ax,y) = ag(y)Ty —ag(x)Ty + L yTHX)y + ...
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©
Note 21.18 (2)
where a € [0, amax) is a step length parameter under our control. A min-

imum in Helmholtz energy requires that dA /da = 0 and simple differen-
tiation gives the following phase size estimate

_aWy-9)y ~ -2
Mo = =gy © Qo) (21.9)
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Note 21.19

< 21 Material ...

Kl At the limit of phase stability a., will approach the true equilibrium
value, but deep inside the phase boundary we may expect @, > @max-
We must therefore keep a close eye on the estimate in Eq. 21.9 and
restrict a if appropriate. Also note that the estimate breaks down if the
phase (assembly) x is unstable in the direction of y, i.e. when Q(x,y) <
0. A more elaborate line search is then essential.
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Note 21.20

El This is as far as the general theory goes; the next question is how
to proceed with actual calculations. A Newton iteration starting at a
feasible point yg # x yields the recurrence formula,

( y] :(Hm a]*[g(x)—g(v)]
—A k41 al 0 k c k

but to continue we need the constraint vector a. The most intuitive
choice is to fix the volume of the new phase such thaty; = x4y = V
and to let the mole numbers vary freely. This correspondsto a’ = e1T =
(1,0,...) and A being a vector with one single element interpreted as
the difference in negative pressure © between the two states x and y.
Inserting a = e into Eq. 21.7 gives the solution

p(x)—p(y) =mn
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Note 21.20 (2)

p(x) —p(y) =0

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1262 /1598

.



L

) The tangent plane test ©
Note 21.21

El There is no mechanical equilibrium in this case, although the con-
ditions for chemical equilibrium are fulfilled'®. The stationary value of

A, in Eq. 21.8 simplifies to

A, = 7'ce1Ty =nyy =nV
because y1 = x4 = V. Knowing only one stationary point we can argue
that the phase (assembly) x is metastable if - > 0 and possibly'’
stable if -t < 0. Finally, for a = e the phase fraction estimate simplifies
to (see Eqg. 21.9 on page 1190)

_ —-nV
o = Qxy)

16 The situation will change if a different a is chosen. E.g. a" = (0,1,...,1) releases
the chemical equilibrium and fixes the mechanical equilibrium.
17 1f we are going to rely on a single solution point, we should really check for intrinsic

stability first. This topic will be covered in the next section.
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Note 21.22

El The Lagrange formulation is very neat in the general case, but if
the mixture is nearly ideal the direct substitution of variables becomes
a viable alternative. The minimisation problem can now be written

myin(é)T,p v oely=1

where y represents the mole numbers in the mixture. Lety; _,_1 be the

n — 1 first components of y and let S be a matrix that maps this vector
ontoy:

I .
y=en+ [ e )V1,...,n—1 =en+Sy1,.n-1
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Note 21.23

El The variation in y is easily calculated as 6y = Soy; _n-1, and
because e'S = 07 it follows that e"éy = 0. Clearly, this operation
conserves the total number of moles in the mixture and the minimi-
sation problem can de facto be written in an unconstrained form as
(G)Tp The chain rule of differentiation yields

G ) = (5207 (28) = ST[p(y) - u(x)] = 0

,,,,,,,,,,

KP8108 Advanced Thermodynamics



) The tangent plane test ©

Note 21.24

Kl If we can assume that the mixture behaves ideally then u(y) —
p(x) = Ap + In(y), where Au is a constant vector at the given
temperature and pressure. The condition for a stationary point is
ST[Ap + In(y)] = 0, or when written out in full: Apy g —Dpe+
In(y1,.,n-1) — In(yn)e = 0. Direct substitution of the first n — 1 variables
gives the update formula:

v = v em(ap,) exp(-Apy )

The calculation converges in one step for ideal mixtures, whereas the
Lagrange formulation would require several iterations (typically 5—10).
Another nice feature is that the mole numbers are always positive due
to the exponential on the right hand side.
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§153

Write a modified update formula for the direct substitution
of mole numbers in an ideal gas at fixed temperature.
The volume is a free variable and can be set to any value.
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§ 153 Ideal gas

< 21 Material ...

El Assume that, in the previous derivation, Helmholtz energy is used
to replace Gibbs energy and ST = [I 0], where the last column (of zeros)
corresponds to the (constant) variable V. Because the iteration is now
performed at constant volume rather than at constant pressure, all of the
mole variables will be updated simultaneously: n(<*1) = n(K) exp(-Ap).
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Note 21.25

Kl Intrinsic stability of a phase requires that the quadratic Uyx-y-y > 0
for all y € Q. This is a classical formulation of a problem familiar from
courses in linear algebra, the solution to which can be stated in several
equivalent ways:

The eigenvalues of Uxx are non-negative.

The pivots in the Cholesky factorisation of Uxx are non-negative.
The principal sub-determinants of Uxx are non-negative.

Uxx is a semi-definite matrix of rank n — 1.

(> Je g1
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Note 21.26

El The second formulation is suited to simple matrix algebra and for
this reason it is the route followed here. For a single-component system
a step-by-step elimination'® of the rows in Uyy yields

Uss Usy Usn 10 0)( Uss Usy Usn
UVS UVV UVN = a 1 0 0 AVV AVN (21.10)
Uvs Unv Unn p 0 1 0 Anv Aw
1 0 0 Uss Usy Usn
=la 1 0 0 AVV AVN (21.11)
By 1 0 0 GnN

where the following parameters have been used:

~ Uys ~ Uns ~ Anv
&= Tss’ ﬁ_Uss’ V= Aw

18 Because Uxx is @ symmetric matrix of rank n — 1 we can write the full Cholesky
[ PRI DR - R U N S R | I e A PR PN RPN TN e -1 00O o
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Note 21.27

Kl Note that the last pivot in the elimination (Gyy in this case) will
always be 0 due to the homogeneous nature of U. To prove that
Egs. 21.10-21.11 are correct, we must prove that the Cholesky'® fac-
torisation of a thermodynamic Hessian (in the extensive variables) is
equivalent to a series of Legendre transformations applied to the origi-
nal function®C. It is possible to prove this in general terms, but to make
the theory more accessible to the casual reader we shall carry out a
less general factorisation. From Chapter 4 we know that A(T, V,N) is
related to U(S, V, N) such that Ax = Uy, assuming constant temper-
ature and entropy respectively. This relation holds for any X € {V, N}.
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Note 21.27 (2)

The differentials of Ax at constant temperature, and of Uy with no re-
strictions on the variables, are:

(dAx)T: Axy dV + Axn dN (21.12)

dUx = UxsdS +UxydV + UxydN (21.13)

19 André-Louis Cholesky, 1875-1918. French mathematician.
20 The marvels of thermodynamics are quite fascinating!
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Note 21.28

< 21 Material ...

Kl Inorder to compare the two differentials it is necessary to eliminate
the (differential) entropy in the second equation such that the tempera-
ture is held constant. Using the definition T = Ug it follows that

0 = (dUs)T = UssdS + UsydV + UsydN (21.14)

From Eq. 21.14 it is straightforward to eliminate dS in Eq. 21.13, and
furthermore to collect similar terms into

(dUx)r = (va - Uxs Usv)dV + (UXN Uxs Uss)dN
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Note 21.29

El The above equation can be compared term-by-term with Eq. 21.12,
which yields

Axy = Uxy — Uxs g (21.15)

for any Y € {V, N}. Substitution of X, Y € {V, N} into the formula above
verifies the first step of the Cholesky factorisation 21.10-21.11. Further-
more, because the differentiation outlined in Egs. 21.12-21.15 is valid
for any Legendre sequence U(S,V,N) — A(T,V,N) — G(T,—-p,N)
etc., proof by induction verifies that the factorisation can be completed
as indicated?’.

21 The factorisation of positive semi-definite matrices has not yet been discussed.
The question is where the zero pivots of Uy appear when a stable phase changes
(continuously) into an unstable one. The outcome is that the last pivot changes its sign
before the second last pivot does, which in turn changes its sign before the third last
pivot, etc. This holds for all non-degenerate states. In the current case Gyy = 0 is the

laat nivint AanA thAa ainn ahift wiill thAavafara chAawiia in A firat hafara it AvAantiialhy Alaa

KP8108 Advanced Thermodynamics

SNOWS Up IN Uss. ﬁ



@ Intrinsic stability criteria @

Note 21.30

El The intrinsic stability of a phase can then be stated in terms of just
1 second derivative, rather than n(n + 1)/2 as would be expected from
matrix theory alone??. It should also be noted that the transformation
sequence is arbitrary, and that the factorisation could start with Uyy or
Unn rather than Uss. Thus, for a single-component system the stability
conditions can be written in 6 different ways,

Uss>0, Aw>0

Uss>0, Aw>0

Uyw >0, Hss>0

Uyw >0, Hyw>0

Uw>0, Xss>0

Uw>0, Xyv>0
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Note 21.30 (2)

where X denotes the unnamed energy function X(S,V,u). These
relations are equivalent to those derived from the principal sub-
determinants of the original Hessian. The left-hand column is clearly
related to the determinants of the submatrices of order one (main diag-
onal elements), and with the help of Eq. 21.15 the determinants of the
submatrices of order two can be written:

UssUyy —UsyUys = UssAyy = HssUyy > 0
UssUnn —UsnUns = UssAnn = XssUnn > 0
UvwvUnn —UynUny = UyvHnn = XyvUnn > 0

22 This does not imply that only 1 coefficient in the original matrix is needed for the
stability analysis. The Legendre transforms will effectively bring all of the coefficients

into action.
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Note 21.31

El There is also one final criterion relating to the whole matrix, and
several additional criteria from the Legendre transforms, but they are all
zero because the Hessian is singular for any values of S, V and N. The
criteria given in the right-hand column above are therefore conclusive
and are violated simultaneously at the limit of material stability. This
limit of stability is often referred to as the spinodal. The criteria derived
from the submatrices of order one define a new spinodal inside the
outer one.
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Note 21.32

Kl A final note on quadratic forms is appropriate. We know that for a
stable system the quadratic Uxx -y -y > 0 for all y € Q. This has been
stressed many times already, but so far it has only been a theoretical
result. To give a practical demonstration we can calculate the inner
product from the factorisation in Eq. 21.11:

2 2
Usun¥® = Uss (vs + G2 yv + B2 ) +Aw (v + 2% yn) +Giw (n)?
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Note 21.33

Kl Clearly, the quadratic is non-negative only if the leading factors Uss
and Ayy are positive. The Euler properties of U make Gyy = 0 so the
quadratic is always zero in the direction of x, but otherwise it should
be strictly positive. For a multicomponent system the quadratic can be
generalised to

2
L
U2 y - Z‘ U)((:XI1 (y’+2( XiXi ) U)((:XIUyI)

where U(-") is used to denote the (i — 1)’'th Legendre transform of
internal energy and U(® = U. With regard to the leading factors U)((f;i” in
this formula the picture gets quite complex, and even for a binary system
there are 24 different possibilities. The most common formulation is:

_ T AT
Uss = Galyn =T >0

KP8108 Advanced Thermodynamics



L

) Global stability Local stability The tangent plane test  Intrinsic stability criteria ©

Note 21.33 (2)

__(9p ~ 1
Aw == GV N~ V5> 0

3}11
GN N, = (Gr >0
[ (3N1 )T,p,N2
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