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Part 2

Thermodynamic concepts

see also Part-Contents
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2 Thermodynamic . . .Thermodynamics
The language
1 Language shapes our ability to think independently and to commu-

nicate and collaborate with other people.

2 It has enabled us to go far beyond simply meeting our basic needs
associated with survival and social interaction.

3 Our ability to observe, describe and record our thoughts about
physical phenomena is vital to a subject like thermodynamics.

4 For us it is particularly important to reach a common physical un-
derstanding of abstract concepts such as energy and entropya, but as
languages are always evolving, the premises for a shared conception
are constantly shifting.

5 All authors have to contend with that dilemma, and few of us have
the good fortune to be writing for future generations.

6 The benefit of writing about a phenomenological subject such as
thermodynamics is that as long as the observed phenomena remain
unchanged, the subject will endure.

7 The challenge you face with a classical subject is combining the
preservation of an intellectual heritage with the injection of new ideas,
and it is rather utopian to believe that the latter is possible in our case.

8 Since the rise of thermodynamics over the period 1840–1880, the
original beliefs have been replaced by a more (ope)rational interpreta-
tion.

9 Meanwhile, the content has become so well-established and thor-
oughly tested that there is little room for innovation, although there is
still scope to inject fresh life into old ideas.

24 / 1598

a As illustrated by Professor Gustav Lorentzen’s article: Bør Stortinget oppheve 2. hov-
edsetning? (Should the Norwegian parliament abolish the second law of thermody-
namics?), Ingeniør-nytt, 23(72), 1987 — written as a contribution to the debate on ther-
mal power stations in Norway.

Notation
1 Our understanding of thermodynamics depends on some vital, and

precisely defined, concepts that form part of a timeless vocabulary.

2 Accurate use of language improves our insight into the subject,
thereby reducing the risk of misunderstandings.

3 However, an exaggerated emphasis on precision may overwhelm
readers and thus be counterproductive.

4 In this chapter we will revise and explain the key concepts in ther-
modynamic analysisab in accurate, but nevertheless informal, terms.

5 Some of the concepts are concrete, whilst others are abstract, and
it is by no means easy to understand them on a first read-through.

6 However, the aim is to convince readers that a good grasp of the
basic concepts is within reach, and that such a grasp is a prerequisite
for mastering the remaining chapters of the book.

25 / 1598

a James A. Beattie and Irwin Oppenheim. Principles of Thermodynamics. Elsevier,
1979.
b Rubin Battino, Laurence E. Strong, and Scott E. Wood. J. Chem. Eng. Educ.,
74(3):304–305, mar 1997.

1 Thermodynamics describes natural phenomena in idealised terms.

2 The scope of the description can vary, and must be adapted to our
needs at any given time.

6 3 The more details we want to understand, the more information we
must include in the description.
4 The abstract concept of a “system” is at the heart of our under-

standing.
5 A thermodynamic system simplifies physical reality into a mathe-

matical model. We can then use the model to perform thought experiments that
reveal certain characteristics of the system’s behaviour.7 Note that the physical size and shape of the system is quite irrele-

vant — all simple thermodynamic systems have uniform properties and
can always be described by a single set of state variables regardless of
the actual geometry.
8 That is an absolute principle.
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2 Thermodynamic . . .§ 001 § 153 § 2
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Explain in your own words what is meant by the concepts:
system, boundary and environment or surroundings.
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2 Thermodynamic . . .§ 001 System

1 A system is a limited part of the universe with a boundary that
may be a mathematical surface of zero thickness, or a physical barrier
between it and the surroundings1.

2 A reservoir is a system that can interact with other systems without
undergoing any change in its state variables. 3 Our physical surroundings such as the air, sea, lakes and bedrock

represent unlimited reservoirs for individual human beings, but not for
the entire world populationa.
4 Similarly, a hydropower reservoir represents a thermodynamic

reservoir for the turbine, but not for the power company.
5 This may appear trivial, but it is still worth trying to justify the above

statements to yourself or a fellow student.

a The first proof that the oceans were polluted by man came from Thor Heyerdahl’s
Ra II expedition in 1970. These reservoirs, and

other simple systems, have properties that are spatially and direction-
ally uniform (the system is homogeneous with isotropic properties).

6 A real-world system will never be perfectly uniform, nor completely
unaffected by its surroundings, but it is nevertheless possible to make
some useful simplifying assumptions.7 Thus, a closed system, in contrast to an open one, is unable to

exchange matter with its surroundings.
8 An isolated system can neither exchange matter nor energy.
9 Note that the term control volume is used synonymously with open

system.
10 The boundary is then called a control surface.
11 In this context an adiabatic boundary is equivalent to a perfect in-
sulator, and a diabatic boundary is equivalent to a perfect conductor.

1 We must be able to either actively control the system’s mass and composition, im-
pulse (or volume) and energy, or passively observe and calculate the conserved quan-
tities at all times. All transport properties ρ must satisfy limx→0+ ρ = limx→0− ρ so that ρ
is the same for the system and the surroundings across the control surface. In physics,
this is called a continuum description. The exception to this is the abrupt change in
state variables observed across a shock front. Well-known examples of this include
high-explosive detonations and the instantaneous boiling of superheated liquids. It is
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2 Thermodynamic . . .Properties

1 The state of a thermodynamic system is determined by the sys-
tem’s properties — and vice versa.

3 2 The logic is circular, but experimentally the state is defined when all
of the thermodynamic properties of the system have been measured. For example, the energy of the system is given by the formula

U = (∂U/∂X1)X1 + (∂U/∂X2)X2 + · · · once the state variables Xi and
the derived properties (∂U/∂Xi) are known.

6 4 This determines the value of U in one specific state.
5 If we need to know the value of U in a number of different states, it

is more efficient to base our calculations on a mathematical model. (∂U/∂Xi) can then be calculated from the function U(X1,X2, . . .)

through partial differentiation with respect to Xi.

7 The measurements are no longer directly visible to us, but are in-
stead encoded in the shape of model parameters (that describe the ob-
servations to some degree at least).8 Normally it is only the first and secord derivatives of the model that

are relevant for our calculations, but the study of so-called critical points
requires derivatives up to the third or maybe even the fifth order.
9 Such calculations put great demands on the physical foundation of

the model.
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2 Thermodynamic . . .Variables

1 State variables only relate to the current state of the system.

2 In other words, they are independent of the path taken by the sys-
tem to reach that state.

7 3 The number of state variables may vary, but for each (independent)
interaction that exists between the system and its surroundings there
must be one associated state variable.
4 In the simplest case, there are C + 2 such variables, where C is

the number of independent chemical components and the number 2
represents temperature and pressure.
5 The situation determines the number of chemical composition vari-

ables required.
6 For example, natural fresh water can be described using C = 1

component (gross chemical formula H2O) in a normal steam boiler, or
using C = 5 components involving 9 chemical compounds in an isotope
enrichment planta.

a Naturally occurring water consists of a chemical equilibrium mixture of 1 H 1 H 16 O+
2 H 2 H 16 O = 2(1 H 2 H 16 O) and others, formed by the isotopes 1 H, 2 H, 16 O, 17 O

and 18 O. The state of the system can be changed through what we call a
process.

8 Terms such as isothermal, isobaric, isochoric, isentropic, isen-
thalpic, isopiestic and isotonic are often used to describe simple physi-
cal processes.
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2 Thermodynamic . . .Variables (2)

9 Without considering how to bring about these changes in prac-
tice, the terms refer to various state variables that are kept constant,
such that the state change takes place at constant temperature, pres-
sure, volume, entropy, enthalpy, (vapour) pressure or osmotic pressure
respectively.10 Generically the lines that describe all of these processes are some-

times called isopleths.
11 Another generic expression, used in situations where the proper-
ties of ideal gases are of prime importance (aerodynamics, combus-
tion, detonation, and compression) is the polytropic equation of state
p2/p1 = (V1/V2)γ.
12 Here γ ∈ R can take values such as 0, 1 and cp/cv , which respec-
tively describe the isobaric, isothermal and isentropic transformation of
the gas.
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2 Thermodynamic . . .§ 002 § 1 § 3

Explain in your own words what is meant by the terms:
state, property, process and path.
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2 Thermodynamic . . .§ 002 The state concept

1 A thermodynamic state is only fully defined once all of the relevant
thermodynamic properties are known.

3 2 In this context, a thermodynamic property is synonymous with a
state variable that is independent of the path taken by the systema.

a In simple systems, viscosity, conductivity and diffusivity also depend on the current
thermodynamic state, in contrast to rheology, which describes the flow properties of a
system with memory. Two examples of the latter are the plastic deformation of metals
and the viscosity of paint and other thixotropic liquids. In simple systems, the properties are (by definition) independent of

location and direction, but correctly identifying the system’s state vari-
ables is nevertheless one of the main challenges in thermodynamics.

9 4 One aid in revealing the properties of the system is the process,
which is used to describe the change that takes place along a given
path from one state to another.
5 In this context, a path is a complete description of the history of the

process, or of the sequence of state changes, if you like.
6 Thermodynamic changes always take time and the paths are there-

fore time-dependent, but for a steady (flow) process the time is unim-
portant and the path is reduced to a static state description of the input
and output states.
7 The same simplification applies to a process that has unlimited time

at its disposal.
8 The final state is then the equilibrium state, which is what is of

prime concern in thermodynamic analysis.

y

x

A cycle is the same as a closed path. The cycle can either be
temporal (a periodic process) or spatial (a cyclic process). 10 This choice greatly affects the system description. In a steady
state, the variables do not change with time, whereas in dynamic sys-
tems they change over time. Between these two extremes you have a
quasi-static state: the state changes as a function of time, but in such a
way that the system is at all times in thermodynamic equilibrium, as de-
scribed in greater detail in Paragraph 4.
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2 Thermodynamic . . .§ 002 The state concept (2)

11 A state that is in thermodynamic equilibrium appears static at the
macroscopic level, because we only observe the average properties of
a large number of particles, but it is nontheless dynamic at the molecu-
lar level.

14 12 This means that we must reformulate the equilibrium principle
when the system is small, i.e. when the number of particles n→ 0.
13 At this extreme, intensive properties such as temperature, pressure
and chemical potential will become statistical variables with some de-
gree of uncertainty.

1±ε kg

1 kg
+

−

In a theoretical reversible process, it is possible to reverse any
change of state by making a small change to the system’s interaction
with its surroundings.

17 15 Thus, two equal weights connected by a string running over a fric-
tionless pulley will undergo a reversible change of state if the surround-
ings add an infinitely small mass to one of the weights.
16 This is an idealised model that does not apply in practice to an
irreversible system, where a finite force will be required to reverse the
process. Let us assume, for example, that the movement creates friction in

the pulley. You will then need a small, but measurable, change in mass
in order to set the weights in motion one way or the other.
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2 Thermodynamic . . .§ 002 The state concept (3)

18 The total energy of the system is conserved, but the mechanical
energy is converted into internal (thermal) energy in the process — so it
is irreversible.19 If the friction is suddenly eliminated the weights will accelerate.

20 This change is neither reversible nor irreversible.
21 Instead, it is referred to as lossless, which means that the mechan-
ical energy is conserved without it necessarily being possible to reverse
the process.
22 For that to happen, the direction of the gravitational field would also
need to be reversed.
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2 Thermodynamic . . .Extensive / intensive

1 2 In thermodynamics there are usually many (N > 2) state variables,
as well as an infinite number of derived properties (partial derivatives). Experimentally it has been shown that the size of a system is pro-

portional to some of its properties. These are called extensive proper-
ties, and include volume, mass, energy, entropy, etc.

3 Intensive properties, meanwhile, are independent of the size of the
system, and include temperature, pressure and chemical potential.

8 4 Mathematically these properties are defined by Euler functions of
the 1st and 0th degree respectively, as described in the separate chap-
ter on the topic.
5 There are also properties that behave differently.
6 For example, if you increase the radius of a sphere, its surface area

and volume increase by r2 and r3 respectively.
7 This contrasts with the circumference, which increases linearly with

the radius (it is extensive), and the ratio between the circumference and
the radius, which always remains 2π (it is intensive). The system’s mass is a fundamental quantity, which is closely re-

lated to inertia, acceleration and energy. An alternative way of measur-
ing mass is by looking at the number of moles of the various chemical
compounds that make up the system.

12 9 A mol is defined as the number of atomsa which constitute exactly
0.012 kg of the carbon isotope 12 C, generally known as the Avogadro
constant NA = 6.022136(7)1023.
10 In this context, molality and molarity are two measures of concen-
tration stated in moles per kilogramme of solvent and moles per litre of
solution respectively.
11 These measures are not of fundamental importance to thermody-
namics, but they are important concepts in physical chemistry, and are
sometimes used in thermodynamic modelling.

a A mole is defined in terms of the prototype kilogramme in Paris and not vice-versa.
Atomic mass is measured in atomic mass units, where the mass of one atom of the
12 C isotope is defined as 12 amu. The 1 amu was originally defined as being equal
in mass to one hydrogen atom, which deviates a little from the current definition. The
deviation is due to a difference in nuclear energy between the two nuclei and is related
to Einstein’s relation E = ∆mc2. Systems of variable mass contain a minimum number of indepen-

dent components that together make up the chemical composition of
the system.
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2 Thermodynamic . . .Extensive / intensive (2)

14 13 A component should here be considered a degree of freedom in
Gibbs’ phase rule F = C+2−P, where C is the number of components
and P is the number of phases at equilibrium (see Paragraph 4). Only the composition at equilibrium can be described in these sim-

ple terms, which is because we are forced to specify as few as possible
variables that depend on mass or the number of moles.15 This restriction influences our choice of components, and in prac-

tice the question is whether chemical reactions are taking place in the
system, although the conventions of the applied discipline are equally
important.
16 Generally components are selected from the system’s chemical
constituents or species, or from its reactants, whereas for electrolytes
and salt mixtures it is natural to use the ions that make up the system’s
chemical composition as componentsa.

a Components do not necessarily represent physical constituents. One example is
ternary recipocral systems (salt mixtures) of the type NaCl+KBr = NaBr+KCl, which
have 4 possible substances (salts), but only 3 independent components. For example,
the salt NaCl can be described by the vector (1,0,0,0), or (0,−1,1,1), or any linear
combination of these two vectors. This illustrates the use of a seemingly non-physical
(in this case negative) number of moles for one of the components. The specification
does make sense, however, because the true amounts of each of the ions in the
mixture are non-negative, and hence real physical quantitites.
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2 Thermodynamic . . .§ 003 § 2 § 4

Explain in your own words what is meant by a property
being intensive or extensive. If you divide an extensive
property by the number of moles in the system or its

mass, you get a molar or specific property respectively.
Show that the property obtained is intensive.
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2 Thermodynamic . . .§ 003 Size

1 In thermodynamics, size is not only a measure of the volume of a
system, but also of any properties related to its mass.

3 2 This implies that two systems with identical state descriptions be-
come a system of double the size when combined. Properties that can be doubled in this way, such as entropy S,

volume V and the number of moles N, are proportional to the size of
the system, and are referred to as extensive variables.

10 4 This means that all of the extensive variables must be increased by
the same factor.
5 You cannot simply double the volume while keeping the number of

moles constant — entropy, volume and the number of moles must all be
doubled together.
6 At the same time, other derived extensive properties like energy,

total heat capacity, etc. are scaled the same amount.
7 Another group of properties is not affected by any change in the

size of the system.
8 These properties are referred to as intensivea properties.
9 Well-known examples include temperature T , pressure p and

chemical potential µ.

a The vague definitions of extensive and intensive used here will later be replaced by
ones involving Euler’s homogeneous functions of the 1st and 0th degree respectively. Certain pairs of extensive and intensive variables combine to form

a product with a common unit (most commonly energy), and feature in
important relationships such as U = TS − pV + µ1N1 + µ2N2 + · · · .

11 These pairs of T and S, p and V , and µi and Ni are called conjugate
variables.
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2 Thermodynamic . . .§ 003 Size (2)

15 12 A mechanical analogy is the flow rate ρ~V (extensive) and the grav-
itational potential g∆z (intensive) at a hydropower station.
13 The power generated by the turbine can be written g∆zρ~V , which
is the product of an intensive and extensive variable.
14 Equivalent analogies can be found in electrical and mechanical en-
gineering. Dividing one extensive property by another gives you a new, in-

tensive variable that represents the ratio between the two properties. 16 Let e.g. f = ax and g = bx be two extensive properties expressed
as functions of x.

Then ρ =̂ f/g = a/b is independent of x, in other words ρ is intensive.17 These kinds of variables are widely used to describe systems in a
way that does not refer to their size, but many fields have different prac-
tices, and it is often unclear whether the definition is being expressed
on a mass or mole basis (which is the most common source of misun-
derstanding).
18 The difference between a specific and a molar quantity is that one
is expressed per kilogramme and the other per mole of the substance
(or mixture).
19 Common examples include specific and molar heat capacity, spe-
cific and molar volume, etc.
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2 Thermodynamic . . .Degrees of freedom

1 Let us consider a thermodynamic system that does not change
with time, which means that it must be in equilibrium.

8 2 This minimises the degrees of freedom we have to specify.
3 At high temperature chemical equilibrium, for example, it is suffi-

cient to state the quantity of each of the atoms present.
4 The distribution of the atoms amongst the substances in the mix-

ture is determined by the principle of equilibrium (see below) and the
system’s equation of state.
5 In the case of phase equilibria, the chemical substances are sim-

ilarly distributed across the system’s phase boundaries and it is suffi-
cient to specify the total composition of the entire system.
6 As a rule of thumb these problems are easy to specifiy, but they

do nevertheless require numerical solution by iteration which in many
cases is a challenging task.
7 If the system has no internal degrees of freedom in the form of

chemical reactions or phase transformations, the equilibrium state will
be determined by an ordinary (but multivariate) function, generally with-
out iteration. The general principles of equilibrium mean that the energy of the

system will be minimised with respect to all the degrees of freedom that
form the basis for the system description.

10 9 Alternatively the entropy is maximised with respect to its system
variables. The degrees of freedom are at all times controlled by the physical

nature of the system, and this determines which extremal principle to
apply.11 The theorectical foundations for this topic are discussed in a later

chapter on Legendre transformations.
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2 Thermodynamic . . .§ 004 § 3 § 5
Kinetics
1 True equilibrium does not assert itself instantaneously, and from

our perspective it is not possible to judge whether equilibrium can be
attained, or whether the system has kinetic limitations that prevent this.

2 All that thermodynamics does is describe the state of the system
at equilibrium, and not how long the process takes.

3 To describe in detail how the system changes over time we need
an understanding of kinetics and transport theory.

4 Kinetics is the study of forces and the motion of bodies, whilst reac-
tion kinetics looks specifically at rates of chemical reactions and phase
transitions.

5 Transport theory is a concept taken from nonequilibrium thermody-
namics that can be used to describe the changes that take place in a
system until it reaches equilibrium.

6 As a general rule, all transport problems must be formulated as
partial differential equations, whereas thermodynamic equilibrium prob-
lems can always be expressed using algebraic equationsa.

7 This difference in mathematical treatment reflects the gradients in
the system.

8 If they are not significant, it is sufficient to determine one represen-
tative value for each of the scalar fields of temperature, pressure and
chemical potential.

9 This distinguishes a thermodynamic problem from a transport
problem, where the scalar fields must be determined simultaneously
throughout the space.
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a This is the difference between distributed and lumped description.
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Explain in your own words the following terms associated
with equilibrium and equilibrium states: phase, phase
boundary, aggregate state, equilibrium and stability.
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2 Thermodynamic . . .§ 004 Equilibrium

1
2 A phase is defined as being a homogeneous, macroscopic subsys-

tem separated from the rest of the system by a phase boundary.
3 It must be possible to separate a phase from other phases through

mechanical means alone.
4 This is an important prerequisite.
5 The system’s equilibrium phases are often designated by the Greek

letters α, β, γ, etc.
6 The entropy density, energy density and mass density are con-

stant within the phases, but they vary discontinuously across the phase
boundaries.
7 Temperature, pressure and chemical potential, meanwhile, are

constant throughout the entire system (assuming equilibrium).
8 Spatially a phase can be discretely distributed across the available

volume, cf. fog particles in air and drops of fat in milk.
9 If the whole system only consists of one phase, it is said to be

homogeneous.
10 Otherwise, it is heterogenous.
11 A phase is referred to as incompressible if the volume is dependent
on the pressure, but in reality all phases are compressible to a greater
or lesser extent (particularly gases).
12 In principle a phase has two possible states of matter: crystalline
and non-crystalline (glass and fluids).
13 For practical purposes a fluid may sometimes be referred to as
a gas without a specific volume, a liquid with surface tension, or an
electrically conductive plasma, but in thermodynamics there is a gradual
transition between these terms, and there are no strict criteria as to what
falls within which category.

stable

metastable

unstable

Equilibrium is the state attained by the system when t →∞.

14 If the system returns to the same equilibrium state after exposure
to a large random perturbation (disturbance), the equilibrium is said to
be stable.

15 A metastable equilibrium is stable when exposed to minor pertur-
bations, but it becomes unstable in the event of major displacements.

19 16 An unstable equilibrium is a mathematical limit case.
17 It describes a material state that breaks down if exposed to infinitely
small perturbations.
18 It is impossible to physically create this kind of equilibrium, but it is
nevertheless very important from a theoretical point of view, as it sets a
limit on what can physically exist based on simple laws of physics and
mathematics. If the stability limit is exceeded, the system will split into two or

more equilibrium phases (from the mechanical analogy in the figure it
is equally likely that the ball will fall to the right as to the left).
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2 Thermodynamic . . .(In)exact differential Surroundings
1 The assumptions and limitations set out in this chapter, and in the
book as a whole, in relation to thermodynamic system analysis, are
sufficient for the purposes of analysing the effects of a large number of
changes of state, but they do not tell us anything about how the system
relates to its surroundings.

2 In order to analyse that, we must introduce two further terms,
namely work W and heat Q .

3 These two properties control the system’s path as a function of its
physical relationship to its surroundings.

4 On the one hand you have the abstract analysis of the system,
which deals with state functions and mathematical formulae, and on the
other you have an equally idealised interpretation of the surroundings.

5 Within this context, heat and work are defined as two different
modes of exchanging energy.

6 It is important to note that heat and work are not state variables
of the system: they simply describe two different mechanisms for ex-
changing energy between the system and its surroundings.
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1 State variables are variables that form part of a state function.

2 A state function always produces an exact differential, but not all
differentials in physics are exact2.

3 One example from thermodynamics is (dU)n = δQ − δW , which
describes the energy balance for a closed system. Here the energy U
is a state function with the total differential (dU)n.

4 For any change δQ − δW there is a unique value of (dU)n.

6 5 However, the reverse is not true. For any change (dU)n there are in principle an infinite number of
combinations of δQ and δW , since only the difference between heat
and work is observable.
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2 Thermodynamic . . .(In)exact differential (2)

2 Let e.g. f(x , y) = xy + c be a state function with x and y as its state variables. Here
df = y dx + x dy is the total differential of the function. The right side of the equation
is then called exact. If as a pure thought experiment we change the plus operator on
the right side to minus, the differential becomes non-exact. It is possible to transform
the left-hand side into y2 dg = y δx − x δy, where y2 is an integrating factor for the
differential and dg is the total differential of g(x , y) = xy -1 + c, but the new differential
y δx − x δy remains non-exact, since it cannot be expressed as the total differential of
any known function.
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2 Thermodynamic . . .§ 005 § 4 § 6

δW

δQ

dU
=
δ

Q
− δW

Explain in your own words the meaning of the terms:
heat, work and energy. Are all three state variables?
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2 Thermodynamic . . .§ 005 Heat and work

1 Heat and work are two closely related mechanisms for transporting
energy between the system and its surroundings.

2 Transporting energy affects the state of the system, but the heat
and work are not themselves accumulated in the system.3 Work involves moving a macroscopic mass, or elementary parti-

cles, against an external force.
4 A moving piston, a rotating axle, electrons in an electric circuit and

water flowing through a turbine are all examples of this.
5 Heat results from large numbers of random, microscopic move-

ments that do not result in any net movement of mass.
6 For heat to be converted into work, the microscopic movements

must first be coordinated.
7 The 2nd law of thermodynamics then dictates that some of the heat

will be lost to a thermal reservoir of the same temperature as the sur-
roundings.
8 The term energy dissipation is used to emphasise the fact that

spontaneous processes always result in a reduction in available energy.
9 The convention is for work done and heat supplied to be expressed

as positive values.
10 Individually, neither heat nor work are state variables, but the differ-
ence between them gives us the change in the system’s energy, which
is a state function.
11 In other words, any given change in energy can be produced in an
infinite number of ways by varying the contributions made by heat and
work.
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2 Thermodynamic . . .Das Ding an sich

1 2 Having defined the fundamental concepts, what we now must do is
turn theory into practice.
3 That will require a good understanding of the physics involved in

the problems that we will be looking at, some mathematics and in par-
ticular differential equations and linear algebra, and a selection of rele-
vant descriptions of substances, known as equations of state. Last but not least, we need to know the purpose of our analysis.

7 4 It is often based in a wish to find a simple model to explain the
changes in the system’s state.
5 Thermodynamics is, in short, a subject that combines most of the

things taught in undergraduate chemistry, physics and mathematics at
the university.
6 However, it is somewhat optimistic to believe that mechanical en-

gineering, thermodynamics, electromagnetism and other calculation-
heavy subjects can fully describe the world we live in, and that we are
in a position to decide how detailed an answer we want. Mathematics provides us with a useful tool, but that does not mean

that models and reality are two sides of the same coin, and hence that
we, by carefully eliminating “all” assumptions, can reach an absolutely
true answer.

8 Mathematical descriptions allow us to understand some character-
istic events that surround us, but they do not give us the whole picture.
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2 Thermodynamic . . .Das Ding an sich (2)

Duck or rabbit ?

9 Immanuel Kant3 unified the most im-
portant strands of rationalism and empiri-
cism with his interpretation of das Ding
an sich. 10 He stressed that we can never be certain about the intrinsic, true

nature of anything, and that our understanding of the world is limited by
our subjective experiences in time and space. Science is based on observable

events taking place in a world where time
and space are assumed to be indepen-
dent of us, but from a philosophical point
of view Kant argues that we may be un-
able to see all the aspects of whatever we
are observing.

14 11 For example, does the picture on the left represent a duck or a
rabbit?
12 With a bit of imagination we can spot both animals, but we can only
see one of them at any given time.
13 The full picture is not available to us, and at first glance we don’t
even realise that there are two possibilitiesa.

b

b

b

bb
b

b

b

b

32 J mol-1

h

x

∆rxh or ∆mıxh ?

⊗

⊗

⊗⊗

⊗ ⊗

⊗

⊗

⊗

bC bC bCbC bC bCbC bC bC

a At first glance, around half of the population will see the duck, whilst the other half
will see the rabbit. Thermodynamics is really a subject that describes das Ding für

uns4 as opposed to das Ding an sich.
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2 Thermodynamic . . .Das Ding an sich (3)

16 15 The figure on the right illustrates this distinction in a rather subtle
manner. The solid circles show calometric readings for the mixing enthalpy

∆mıxh of the system H2O–D2O5 at varying compositions (mole fractions
x) of the two compounds.

18 17 The continuous line has been fitted using the semi-empiric model
ax(1 − x), which gives a first-order approximation of ∆mıxh. The line fits the data points very well, and we can therefore con-

clude that this simple model adequately represents the readings taken.

20 19 This posture is, in simple terms, what is meant by das Ding für uns. Based on our understanding of nature, isotopes are chemically
identical, but in this case the mixing enthalpy measured is equivalent
to a fall in temperature of 0.43 K for an equimolar mixture of the two
isotopes, which is much greater than expected.

27
21 The reason for this discrepancy is that the two components react
endothermically to form HDO.
22 The net reaction involves the protonation of H2O⇔ H++OH− and
the deuteronation of D2O⇔ D++OD− which are fast reactions.
23 The result is that H2O+D2O ⇔ 2 HDO reaches equilibriuma in a
virtually ideal mixture.
24 The last statement appears to be self-contradictory, as the compo-
nents react chemically at the same time as they take part in an ideal
equilibrium.
25 This apparent contradiction arises because of the unclear bound-
ary between a chemical reaction and a physical interaction.
26 For a thin gas there is an explanation for this, but for a liquid there
is no entirely satisfactory definition.

a In the system CD3OD–CH3OD, covalent bonds form between C–D and C–H, pre-
venting any isotopic reaction, meaning that the change in enthalpy is only 0.79 J mol-1

or 0.01 K; cf. T. Kimura et al. J. Therm. Anal. Cal., 64:231–241, 2001, shown as open
circles in the figure. Subsituting OD to OH changes the chemistry to CD3OD–CH3OH

which again allows for proton–deuteron exchange and the equimolar change in en-
thalpy increases to an intermediate value of 8.4 J mol-1 or 0.1 K. The reaction product HDO is not stable either since it decomposes

instantaneously to H2O and D2O, which prevents us from observing
the substance in its pure state.
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2 Thermodynamic . . .Das Ding an sich (4)

29 28 Our understanding of nature is, in other words, based on evidence
derived from indirect observations and mathematical models of the
physical properties in the water phase. In reality all scientific knowledge is based on theoretical models of

one kind or the other, and therefore does not imply that we have any
exact understanding of das Ding an sich.

30 The foundations of phenomenological thermodynamics are too
weak to state hard facts about the true nature of the systems it de-
scribes, but strangely enough thermodynamic theory can still be used
to falsify claims that break the laws upon which it is founded6.

32 31 The theoretical basis is also sufficient for deriving important rela-
tionships between the state variables, but it does not constitute inde-
pendent evidence in the mathematical sense. Thermodynamic analysis is capable of confirming prior assump-

tions, or of demonstrating new relationships between existing results,
but the calculations are not necessarily correct even if the model ap-
pears to correspond with reality.
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2 Thermodynamic . . .Das Ding an sich (5)

34 33 Firstly, the result is limited to the sample space for the analysis
and to the underlying assumptions and secondly, there may be several
equally good explanations for a single phenomenon (as shown in the
enthalpy example above). It is also worth remembering that even a small one-component

system has maybe 1015–1020 microscopic degrees of freedom that are
modelled with only three thermodynamic state variables7.

36 35 This means that a significant amount of information about the sys-
tem is lost along the way. It is therefore necessary to develop our ability to recognise what

is important for the modelling, so that we can perform the right cal-
culations, rather than trying to look (in vain) for the very accurate
description.37 In keeping with that principle, we will mainly be looking at simple

models such as ideal gas and the van der Waals equation, but that does
mean that we will be very precise in our analysis of the ones that we do
look at.

3 Immanuel Kant, 1724–1804. German philosopher and logician.
4 Referred to as Erscheinung in Kant’s thesis.
5 D. V. Fenby and A. Chand. Aust. J. Chem., 31(2):241–245, 1978.
6 The perpetuum mobile is the most famous example of this. In Norway it is in fact
impossible to apply for patent protection for a perpetual motion machine, cf. the Nor-
wegian Industrial Property Office’s Guidelines for processing patent applications. The
online (2010) version of Part C: Preliminary examination; Chapter II Contents of the
patent application, except requirements; 3.3.6 Insufficient clarity excludes inventions
that “. . . are inherently impossible to produce, as doing so would require accepted
physical laws to be broken — this applies e.g. to perpetual motion machines.”
7 Systems with many components are obviously even more complex.
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2 Thermodynamic . . .Looking back

1 System

2 State

3 Process

4 Extensive vs. intensive

5 Equilibrium

6 Heat and work
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

Part 4

The Legendre transform

see also Part-Contents
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Energy

1 2 The formal definition of the canonical thermodynamic potentials is
one of the three fundamental pillars of thermodynamic theory,a together
with the principle of equilibrium, and the somewhat opaque distinction
between heat and work.bc.
3 This is the background to what we will now discuss, but for the mo-

ment we will refrain from examining to what extent mathematical formu-
lae are of practical relevance to the applications of the theory.
4 Complications arise from the fact that there are several energy

functions to choose from, and it can be difficult to know exactly which
function is best suited for a particular problem.

a I.e. the functions U(S ,V ,N), H(S ,p,N), A(T ,V ,N), G(T ,p,N), etc.
b Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, 2nd
edition, 1985.
c Michael Modell and Robert C. Reid. Thermodynamics and Its Applications. Prentice
Hall, 2nd edition, 1983. From a pragmatic point of view it is convenient to remember that

U is useful for dynamic simulation, H for stationary simulation, etc. If a
feasible solution to the problem already exists then this is perfectly ad-
equate, but when seeking a new solution we need a deeper theoretical
understanding.

5 Here, the Legendre1 transformation is the key, as it provides a
simple formula that allows us replace the free variable of a function
with the corresponding partial derivative. For example, the variable
V in internal energy U(S ,V ,N) can be replaced by (∂U/∂V)S,N , see
Figure 4.1.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Energy (2)

H1

H2

H3

H4

Hi = Ui − (∂Ui
∂Vi

)Vi

= Ui + piVi

U1 U2 U3 U4

V1V2 V3 V4

Figure 4.1: Legendre transformation of internal energy to enthalpy.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Energy (3)

6 The new variable can be interpreted as the negative pressure π

and the resulting transformed function, called enthalpy H(S , π,N), is in
many cases more versatile than U itself. In fact, as we will see later, H
has the same information content as U.7 This is one of the key reasons why the Legendre transformation is

central to both thermodynamic and mechanical theory.

1 Adrien-Marie Legendre, 1752–1833. French mathematician.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Transformation rules

1 Mathematically, the Legendre transformation φi of the function f is
defined by:

φi(ξi , xj , xk , . . . , xn) =̂ f(xi , xj , xk , . . . , xn) − ξixi ,

ξi =̂
( ∂f
∂xi

)
xj ,xk ,...,xn

. (4.1)

2 As mentioned above, one example of this is the transformation of
internal energy to enthalpy:

H =̂ UV (S , π,N) = U(S ,V ,N) − πV

π =̂
(∂U
∂V

)
S,N = − p

Note that the volume derivative of U is the negative pressure π, because
U diminishes when the system performs work on the surroundings —
not vice versa.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Transformation rules (2)

3 To begin to get an understanding of the Legendre transform we
shall first write out the differential

dφi = df − xi dξi − ξi dxi ,

and then substitute in the total differential of the initial function f ex-
pressed as: df = ξi dxi +

∑n
j,i (∂f/∂xj)xi ,xk ,...,xn

dxj .

4 The simplification is obvious:

dφi = −xi dξi +

n∑

j,i

( ∂f
∂xj

)
xi ,xk ,...,xn

dxj .
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Transformation rules (3)

5 If we now consider φi as a function of the derivative ξi rather than
of the original variable xi, the total differential of φi can be written

dφi =
(∂φi

∂ξi

)
xj ,xk ,...,xn

dξi +

n∑

j,i

(∂φi

∂xj

)
ξi ,xk ,...,xn

dxj .

6 Comparing the last two equations term-by-term gives us the
important transformation properties (∂φi/∂ξi)xj ,xk ,...,xn

= −xi and
(∂φi/∂xj)ξi ,xk ,...,xn

= (∂f/∂xj)xi ,xk ,...,xn
=̂ ξj .
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Transformation rules (4)

7 The latter shows that further transformation is straightforward:

φij(ξi , ξj , xk , . . . , xn) =̂φi(ξi , xj , xk , . . . , xn) − ξjxj , (4.2)

ξj =̂
(∂φi
∂xj

)
ξi ,xk ,...,xn

=
( ∂f
∂xj

)
xi ,xk ,...,xn

.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Repeated transformation

1 Combining Eqs. 4.1 and 4.2 gives the alternative, and conceptually
simpler, expression

φij(ξi , ξj , xk , . . . , xn) = f(xi , xj , xk , . . . , xn) − ξixi − ξjxj , (4.3)

where the sequential structure of the Legendre transforms in 4.1 and
4.2 has been replaced by a simultaneous transformation of two (or
more) variables.

5 2 The two alternative approaches are equivalent because ξj is the
same regardless of whether it is calculated as (∂φi/∂xj)ξi ,xk ,...,xn or as
(∂f/∂xj)xi ,xk ,...,xn

3 This is clear from the differential equation above, and from Para-
graph 20 on page 122.
4 Knowing the initial function f and its derivatives is therefore suffi-

cient to define any Legendre transform. Moreover, as the Legendre transform is independent of the order
of differentiation, we know that φij = φji. Mathematically we say that the
Legendre operator2 commutes.

6 The three sets of variables (xi , xj , . . . , xn), (ξi , xj , . . . , xn) and (ξi ,

ξj , . . . , xn) are particularly important, and are often referred to as the
canonical variables of the functions f , φi and φij = φji.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Repeated transformation (2)

2 Mathematical operators are often allocated their own symbols, but in thermodynamics
it is more usual to give the transformed property a new function symbol.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .Canonical potentials

1 2 The legal system of the Roman Catholic Church, also called canon
law, has medieval roots, and is based on a collection of texts that the
Church considers authoritative (the canon).
3 Today the word canonical is used to refer to something that is or-

thodox or stated in a standard form.
4 The latter definition is particularly used in mathematics, where e.g.

a polynomial written with the terms in order of descending powers is
said to be written in canonical form. In thermodynamics, we refer to canonical potentials, meaning

those that contain all of the thermodynamic information about the sys-
tem.

5 Here we will show that the Legendre transforms of internal energy
give us a canonical description of the thermodynamic state of a system.

6 Essentially, what we need to show is that U(S ,V ,n), A(T ,V ,n),
H(S ,−p,n), etc. have the unique property that we can recreate all of
the available information from any single one of them.

7 This is not trivial, as we will see that U(T ,V ,n) and H(T ,−p,n), for
instance, do not have this property.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .§ 019 § 18 § 20

Derive all of the possible Legendre transforms of
internal energy. State carefully the canonical variables

in each case. Use the definitions3 τ =̂ (∂U/∂S)V ,N,
π =̂ (∂U/∂V)S,N and µ =̂ (∂U/∂N)S,V to help you.

3 Let τ and π denote temperature and negative pressure respectively. This is to em-
phasize that they are transformed quantities, like the chemical potential µ. In this no-
tation, all intensive derivatives of internal energy are denoted by lower case Greek let-
ters.
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .§ 019 Energy functions

1 2 For any given thermodynamic function with m = dim(n) + 2 vari-
ables there are 2m − 1 Legendre transforms. For a single-component system this means that there are 23−1 = 7

possible transformations.

3 By using Eq. 4.1 on each of the variables in turn we get three of
the transforms:

A(τ,V ,N) = U(S ,V ,N) − (∂U
∂S

)
V ,N S =̂ U − τS , (4.4)

H(S , π,N) = U(S ,V ,N) − (∂U
∂V

)
S,N V =̂ U − πV , (4.5)

X(S ,V , µ) = U(S ,V ,N) − (∂U
∂N

)
S,V N =̂ U − µN . (4.6)
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .§ 019 Energy functions (2)

4 By using Eq. 4.3 on pairs of variables we can obtain three more
transforms:

G(τ, π,N) = U(S ,V ,N) − (∂U
∂V

)
S,N V − (∂U

∂S
)
V ,N S

=̂ U − πV − τS , (4.7)

Y(S , π, µ) = U(S ,V ,N) − (∂U
∂V

)
S,N V − (∂U

∂N
)
S,V N

=̂ U − πV − µN , (4.8)

Ω(τ,V , µ) = U(S ,V ,N) − (∂U
∂S

)
V ,N S − (∂U

∂N

)
S,V N

=̂ U − τS − µN . (4.9)
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .§ 019 Energy functions (3)

5 Finally, by using Eq. 4.2 on all three variables successivly we can
obtain the null potential, which is also discussed on page 199 in Chap-
ter 5:

O(τ, π, µ) = U(S ,V ,N) − (∂U
∂V

)
S,N V − (∂U

∂S

)
V ,N S − (∂U

∂N

)
S,V N

=̂ U − πV − τS − µN

≡ 0 (4.10)
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Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

4 The . . .H A U G

1 Several of the Legendre transforms of energy have their own
names:

2 Internal energy U(S ,V ,N) is used when looking at changes to
closed systems, and is in many respects the fundamental relationship
of thermodynamics.

3 Helmholtz energy A(τ,V ,N) is central to describing the properties
of fluids.

4 Gibbs energy G(τ, π,N) has traditionally been the transform that is
of most interest in chemical thermodynamics and physical metallurgy.

5 Enthalpy H(S , π,N) is important for describing thermodynamic pro-
cesses in chemical engineering and fluid mechanics.6 The grand canonical potential Ω(τ,V , µ) is used when describing

open systems in statistical mechanics.
7 Meanwhile, the null potential O(τ, π, µ) has received less attention

than it deserves in the literature, and has no internationally accepted
name, even though the function has several interesting properties, as
we shall later see.
8 This just leaves the two functions X(S , π, µ) and Y(S ,V , µ), which

are of no practical importance.
9 However, it is worth mentioning that X is the only energy function

that has two, and always two, extensive variables no matter how many
chemical components there are in the mixture.
10 This function is therefore extremely well suited to doing stability
analyses of phase equilibria.
11 In this case the basic geometry is simple, because the analysis is
done along a 2-dimensional manifold (a folded x, y plane) where the
chemical potentials are kept constant.
12 This topic is discussed further in a separate chapter on phase sta-
bility.
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4 The . . .§ 020 § 19 § 21

The variable ξj in Eq. 4.2 can be defined as either
(∂φi/∂xj)ξi ,xk ,...,xn

or (∂f/∂xj)xi ,xk ,...,xn
. Use implicit differentiation

to prove that the two definitions are equivalent.
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4 The . . .§ 020 Differentiation I

1 2 Note that the variables xk , . . . , xn are common to both φi and f and
may hence be omitted for the sake of clarity.
3 We will therefore limit our current analysis to the functions f(xi , xj)

and φi(ξi , xj). It is natural to start with Eq. 4.1, which we differentiate with respect
to xj :

(∂φi
∂xj

)
ξi
=

(∂(f−ξixi)
∂xj

)
ξi
, (4.11)

where (∂ξi/∂xj)ξi
is by definition zero.

4 Hence, at constant ξi:

d(f − ξixi)ξi
=

( ∂f
∂xi

)
xj

dxi +
( ∂f
∂xj

)
xi

dxj − ξi dxi

=̂ ξi dxi +
( ∂f
∂xj

)
xi

dxj − ξi dxi

=
( ∂f
∂xj

)
xi

dxj
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4 The . . .§ 020 Differentiation I (2)

6 5 or, alternatively:
(d(f−ξi xi)

dxj

)
ξi
=

( ∂f
∂xj

)
xi
. (4.12) The full derivative takes the same value as the corresponding par-

tial derivative (only one degree of freedom). Substitution into Eq. 4.11
yields

(∂φi

∂xj

)
ξi
=

( ∂f
∂xj

)
xi
=̂ ξj (4.13)

leading to the conclusion that differentiation of φi with respect to the
untransformed variable xj gives the same derivative as for the original
function f .
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4 The . . .§ 021 § 20 § 22 Before or after?
1 It is a matter of personal preference, therefore, whether we want to
calculate ξj as (∂f/∂xj)xi

before the transformation is performed, or to
calculate (∂φi/∂xj)ξi

after the transformation has been defined.

2 Normally it is easiest to obtain all of the derivatives of the original
function first — especially when dealing with an explicitly defined ana-
lytic function — but in thermodynamic analyses it is nevertheless useful
to bear both approaches in mind.

3 The next paragraph shows the alternative definitions we have for
temperature, pressure and chemical potential.
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Use the result from Paragraph 20 on page 122 to
show that the chemical potential has four equivalent

definitions: µ =̂ (∂U/∂N)S,V =̂ (∂H/∂N)S,π =̂ (∂A/∂N)τ,V =̂

(∂G/∂N)τ,π. Specify the equivalent alternative definitions
for temperature τ and negative pressure π.
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4 The . . .§ 021 Identities I

1 Let f = U(S ,V ,N) be the function to be transformed. The question
asks for the derivatives with respect to the mole number N and it is
tacitly implied that only S and V are to be transformed.

2 From the Eqs. 4.4 and 4.5 we have φ1 = A(τ,V ,N) and φ2 = H(S ,
π,N), which on substitution into Eq. 4.13 give:

(∂A
∂N

)
τ,V =

(∂U
∂N

)
S,V , (4.14)

(∂H
∂N

)
S,π =

(∂U
∂N

)
S,V . (4.15)

3 The transform φ12 = φ21 = G(τ, π,N) in Eq. 4.7 can be reached
either via A or H.
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4 The . . .§ 021 Identities I (2)

4 Inserted into Eq. 4.13 the two alternatives become:
(∂G
∂N

)
τ,π

=
(∂A
∂N

)
τ,V , (4.16)

(∂G
∂N

)
τ,π

=
(∂H
∂N

)
S,π . (4.17)

7 5 Note that all the Eqs. 4.14–4.17 have one variable in common on
the left and right hand sides (V , S, τ and π respectively).
6 For multicomponent systems this variable will be a vector; cf. xk ,

. . . , xn in Paragraph 20. So, in conclusion, the following is true for any single-component
system:

µ =
(∂A
∂N

)
τ,V =̂

(∂H
∂N

)
S,π =̂

(∂G
∂N

)
τ,π

=̂
(∂U
∂N

)
S,V . (4.18)

8 By performing the same operations on temperature and negative
pressure we obtain:

τ =
(∂H
∂S

)
π,N =̂

(∂X
∂S

)
V ,µ =̂

(∂Y
∂S

)
π,µ

=̂
(∂U
∂S

)
V ,N , (4.19)

π =
(∂A
∂V

)
τ,N =̂

(∂X
∂V

)
S,µ =̂

(∂Ω
∂V

)
τ,µ

=̂
(∂U
∂V

)
S,N (4.20)
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4 The . . .§ 021 Identities I (3)
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4 The . . .§ 022 § 21 § 23 Freedom to choose
1 This shows very clearly that we are free to choose whatever co-
ordinates we find most convenient for the description of the physical
problem we want to solve.

2 For example, in chemical equilibrium theory it is important to know
the chemical potentials of each component in the mixture.

3 If the external conditions are such that temperature and pressure
are fixed, it is natural to use µi =̂ (∂G/∂Ni)T ,p,Nj,i , but if the entropy
and pressure are fixed, as is the case for reversible and adiabatic state
changes, then µi =̂ (∂H/∂Ni)S,p,Nj,i is a more appropriate choice.
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The Legendre transform was differentiated with respect
to the orginal variable xj in Paragraph 20. However, the

derivative with respect to the transformed variable ξi

remains to be determined. Show that (∂φi/∂ξi)xj ,xk ,...,xn

= −xi.
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4 The . . .§ 022 Differentiation II

1 2 As in Paragraph 20, the variables xk , . . . , xn are common to both f
and φi, and have therefore been omitted for the sake of clarity. Let us start with φi(ξi , xj) = f(xi , xj)−ξixi from Eq. 4.1 and differen-

tiate it with respect to ξi. Note that the chain rule of differentiation
( ∂f
∂ξi

)
xj
=

( ∂f
∂xi

)
xj

(∂xi
∂ξi

)
xj

has been used to obtain the last line below:
(∂φi
∂ξi

)
xj
=

( ∂f
∂ξi

)
xj
− (∂(ξixi)

∂ξi

)
xj

=
( ∂f
∂ξi

)
xj
− xi − ξi

(∂xi
∂ξi

)
xj

=
( ∂f
∂xi

)
xj

(∂xi
∂ξi

)
xj
− xi − ξi

(∂xi
∂ξi

)
xj
. (4.21)
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4 The . . .§ 022 Differentiation II (2)

3 From Eq. 4.3 we know that (∂f/∂xi)xj
= ξi, which can easily be

substituted into Eq. 4.21 to produce
(∂φi
∂ξi

)
xj
= −xi , (4.22)

which leads to the following conclusion: The derivative of φi with respect
to a transformed variable ξi is the original variable xi, but with the sign
reversed.4 In other words, there is a special relationship between the variables

xi in f(xi , xj) and ξi in φi(ξi , xj)a.
5 Due to the simple relationship set out in Eq. 4.22, the variables (ξi ,

xj) are said to be the canonical variables of φi(ξi , xj).

a The variables x and ξ are said to be conjugate variables.
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4 The . . .Non-canonical differentiation

1 The Eq. 4.22 is strikingly simple, and leads to a number of simplifi-
cations in thermodynamics.

2 The properties explained in the previous paragraph are of prime
importance. Before we move on, however, we should investigate what
happens if we do not describe the Legendre transform in terms of
canonical variables.

3 Differentiating φi = f − ξixi with respect to the original varibale xi

gives:
(∂φi
∂xi

)
xj,i

=
( ∂f
∂xi

)
xj,i
− (∂ξi

∂xi

)
xj,i

xi − ξi = −
( ∂2f
∂xi∂xi

)
xj,i

xi ,
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4 The . . .§ 023 § 22 § 24
Non-canonical differentiation
1 The expression on the right-hand side is not particularly complex,

but unfortunately it is not canonically related to f . It is nevertheless an
important result, because φi must by definition be a function with the
same variables as f itself.

2 The change in variable from xi to ξi is an abstract concept that will
only rarely produce an explicit expression stated in terms of ξi .

3 Hence, if we want to calculate the derivative of φi by means of
an explicit function, we have to go via f and its derivatives — there is
simply no way around it. A simple example shows how and why this is
the case:

(∂U
∂T

)
V ,N = − ( ∂2A

∂T∂T
)
V ,N T =

(∂S
∂T

)
V ,N T =̂

CV

T T = CV(T ,V ,N) .

4 Here the internal energy is, at least formally speaking, a function of
the canonical variables S, V and N, but there are virtually no equations
of state that are based on these variables.

5 T , V and N are much more common in that context, so to lure U
into revealing its secrets we must use T rather S.

6 Note, however, that in this case S = − (∂A/∂T)V ,N is a function to
be differentiated and not a free variable.

7 This illustrates in a nutshell the challenges we face in thermody-
namics: Variables and functions are fragile entities with changing in-
terpretations depending on whether we want to perform mathematical
analyses or numerical calculations.
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Use the results obtained in Paragraph 22 to prove that
the derivatives (∂H/∂π)S,N, (∂G/∂π)τ,N and (∂Y/∂π)S,µ

are three equivalent ways of expressing the volume V
of the system. Specify the corresponding expressions

for the entropy S and the mole number N.
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4 The . . .§ 023 Identities II

1 Let us start out once more from f = U(S ,V ,N) and define4 the
transform φ2 = H(S , π,N) = U − πV . Inserted into Eq. 4.22, this gives
us (∂H/∂π)S,N = −V .

2 Systematically applying Eq. 4.22 to all of the energy functions in
Paragraph 19 on page 117 yields5:

−V =
(∂H
∂π

)
S,N =̂

(∂G
∂π

)
τ,N =̂

(∂Y
∂π

)
S,µ , (4.23)

−S =
(∂A
∂τ

)
V ,N =̂

(∂G
∂τ

)
π,N =̂

(∂Ω
∂τ

)
V ,µ , (4.24)

−N =
(∂X
∂µ

)
S,V

=̂
(∂Y
∂µ

)
S,π

=̂
(∂Ω
∂µ

)
τ,V

. (4.25)
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4 The . . .§ 023 Identities II (2)

4 The symbol π =̂ −p is used here as the pressure variable. This is quite deliberate,
in order to avoid the eternal debate about the sign convention for p. As used here,
τ, π and µ are subject to the same transformation rules. This means that the same
rules apply to e.g. (∂H/∂π)S ,N = −V and (∂A/∂τ)V ,N = −S, whereas the traditional
approach using (∂H/∂p)S ,N = V and (∂A/∂T)V ,N = −S involves different rules for p
and T derivatives. Note, however, that it makes no difference whether −p or p is kept
constant during the differentiation.
5 Sharp students will note the absence of −S = (∂O/∂τ)π,µ, V = (∂O/∂π)τ,µ and −N =

(∂O/∂µ)τ,p . These relations have no clear thermodynamic interpretation, however,
because experimentally τ, π, µ are dependent variables, see also Paragraph 26 on
page 157.
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4 The . . .§ 024 § 23 § 25 Systematics
1 Knowing the properties of the Legendre transform, as expressed

by Eqs. 4.13 and 4.22, allows us to express all of the (energy) functions
U, H, A , . . . O that we have considered so far in terms of their canonical
variables.

2 The pattern that lies hidden in these equations can easily be con-
densed into a table of total differentials for each of the functions (see
below).
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Use the results from Paragraphs 21 and 23 on pages
125 and 133 to find the total differentials of all the

energy functions mentioned in Paragraph 19.
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4 The . . .§ 024 Differentials I

1 The total differentials of the energy functions can be stated by tak-
ing the results from Eqs. 4.18–4.20 and 4.23–4.25 as a starting point:

dU (S ,V ,N) = τ dS + π dV + µ dN , (4.26)

dA (τ ,V ,N) = −S dτ + π dV + µ dN , (4.27)

dH (S , π,N) = τ dS − V dπ + µ dN , (4.28)

dX (S ,V , µ) = τ dS + π dV −N dµ , (4.29)

dG (τ , π,N) = −S dτ − V dπ + µ dN , (4.30)

dY (S , π, µ) = τ dS − V dπ −N dµ , (4.31)

dΩ (τ ,V , µ) = −S dτ + π dV −N dµ , (4.32)

dO (τ , π, µ) = −S dτ − V dπ −N dµ . (4.33)
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4 The . . .Manifolds

1 In what has been written so far we note that all of the state variables
τ, S, π, V , µ and N appear in conjugate pairs such as τdS, −S dτ,
πdV , −V dπ, µ dN or −N dµ.

3 2 This is an important property of the energy functions. The obvious symmetry reflects Eq. 4.22, which also implies that
the Legendre transform is “its own inverse”.

4 However, this is only true if the function is either strictly convex
or strictly concave, as the relationship breaks down when the second
derivative f(xi , xj , xk , . . . , xn) is zero somewhere within the domain of
definition of the free variables (see also Section 4.3).
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4 The . . .Manifolds (2)

5 This is illustrated in Figure 4.2 based on the transformation of the
third order polynomial

f(x) = x(1 − x2) ⇒ ξ(x) =̂
(∂f
∂x
)
= 1 − 3x2 .

The Legendre transformation of f to φ =̂ f −ξx can be expressed in two
different ways:

φ(x) = 2x3 ⇒ φ(ξ) = ±2
(

1−ξ
3

)3/2
. (4.34)

6 Moreover, both x and f can be expressed as functions of the trans-
formation variable ξ:

x = ±
(

1−ξ
3

)1/2
⇒ f(ξ) = ±

(
1−ξ

3

)1/2 (
2+ξ

3

)
,

This means that in total we have to consider three functions involving x,
and three involving ξ: f(x), φ(x), ξ(x), f(ξ), φ(ξ) and x(ξ).
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4 The . . .Manifolds (3)

7 In order to retain the information contained in f(x), we need to know
either φ(x) and ξ(x), or f(ξ) and x(ξ), or simply φ(ξ). In principle, the
latter is undoubtedly the best option, and this is the immediate reason
why φ(ξ) is said to be in canonical form.

8 Nevertheless, there is an inversion problem when φ is interpreted
as a function of ξ rather than x.

10 9 This is clearly demonstrated by the above example, where x is an
ambiguous function of ξ, which means that φ(ξ), and similarly f(ξ), are
not functions in the normal sense. Instead, they are examples of what we call manifolds (loosely

speaking folded surfaces defined by a function) as illustrated in Fig-
ures 4.2c–4.2d6.

6 A function is a point-to-point rule that connects a point in the domain of definition with
a corresponding point in the function range.
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4 The . . .Consistency requirements

1 Finally, let us look at what differentiating φ with respect to ξ implies.
From Section 22, we know that the answer is −x, but

(
∂φ

∂ξ

)
= ∓

(
1−ξ

3

)1/2

initially gives us a manifold in ξ with two solutions, as shown in Fig-
ure 4.2.

2 It is only when we introduce x(ξ) from Eq. 4.34 that the full picture
emerges: (∂φ/∂ξ) = −x.

5 3 This does not mean that we need x(ξ) to calculate the values of
(∂φ/∂ξ).
4 However, the relationship between x, ξ and (∂φ/∂ξ) is needed for

system identification. If the three values have been independently measured, then the
relation (∂φ/∂ξ) = −x can be used to test the experimental values for
consistency.
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4 The . . .Consistency requirements (2)

6 The existence of these kinds of tests, which can involve a variety of
physical measurements, is one of the great strengths of thermodynam-
ics.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 153 / 1598



Canonical potentials Manifolds Inversion Maxwell relations Gibbs–Helmholtz equation

Figure a–b). The function f = x(1 −
x2) and its Legendre transform φ =

2x3 defined as the intersection of the
tangent bundle of f and the ordinate
axis. Note that f shows a maximum
and a minimum while φ has no ex-
trema.

x

f(x)

a)

x

φ(x)

b)

ξ

f(ξ)

c)

ξ

φ(ξ)

d)

Figure c–d). The same two functions
shown as parametric curves with ξ =̂

(∂f/∂x) = 1−3x2 along the abscissa.
The fold in the plane(s) is located at
the inflection point (∂2f/∂x∂x) = 0.

Figure 4.2: The Legendre transformation of f = x(1− x2) to φ = f − ξx where
ξ =̂ (∂f/∂x) = 1 − 3x2. The two domains of definition are x ∈ [−

√
2/3,

√
2/3]

and ξ ∈ [−1, 1]. Together, the four graphs demonstrate how an explicit function
of x, i.e. f(x) or φ(x), is turned into an implicit manifold when expressed in
terms of ξ, i.e. f(ξ) or φ(ξ).
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4 The . . .Vapour–liquid

1 2 The above example also has practical relevance.
3 Many equations of state, and particularly those for the fluid state,

are explicit equations of the form p = p(T ,V ,N).
4 These equations of state can be used to calculate the Helmholtz

energy of the fluid.
5 The problem in relation to manifolds becomes clear when this en-

ergy is transformed into Gibbs energy, which requires us to know the
term V = V(p) in the definition G(p) =̂ A(V(p)) + pV(p).
6 Along the sub-critical isotherms the relation V = V(p) is equivalent

to a manifold with 3 roots as illustrated in Figure 14.6 on page 736.
7 This results in a characteristic folding of the energy surface as ex-

amplified by the p, µ diagram in Figure 14.2 on page 708; where the
molar volume v is used as a parameter for p(v) along the abscissa and
for µ(v) along the ordinate axis. In view of these practical considerations, we cannot claim that Leg-

endre transforms are globally invertible, but it is true to say that they
are locally invertible on curve segments where the sign of (∂2f/∂x∂x)
remains unchanged. We shall therefore take the precaution of treating
each curve segment as a separate function.

8 For instance, in vapor–liquid equilibrium calculations we shall des-
ignate one of the curve segments as being vapour and the other as be-
ing liquid, although there is no thermodynamic justification for this dis-
tinction, other than the fact that (∂2A/∂V∂V)T ,N = 0 somewhere along
the isotherm.
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4 The . . .From φ to f ?

1 In this section we will explain how, and under what conditions, it
is possible to convert the Legendre transform φ back to the original
function f .

2 This operation will be based on the transformation rule set out in
Eq. 4.1

φ(y) =̂ f − (∂f
∂x

)
x , (4.35)

where the properties of the variable y are, as yet, unknown.
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4 The . . .From φ to f ? (2)

3 What we need to know is whether the same transformation rule
applies to the inverse transform of φ(y), such that

f ?
= φ − (∂φ

∂y

)
y , (4.36)

and, if so, what y is (we have an inkling that y = (∂f/∂x), but we need
to prove it).

4 Substituting Eq. 4.36 into Eq. 4.35, rearranging the expression
slightly, and applying the chain rule, gives us:

− (∂φ
∂y

)
y = − (∂φ

∂x
) (∂x
∂y

)
y ?
=

(∂f
∂x

)
x . (4.37)
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4 The . . .From φ to f ? (3)

5 Next we substitute Eq. 4.35 into Eq. 4.37:

−
((∂f
∂x
) − ( ∂2f

∂x∂x
)
x − (∂f

∂x
)) (∂x

∂y
)
y ?
=

(∂f
∂x

)
x

( ∂2f
∂x∂x

)
x
(∂x
∂y
)
y ?
=

(∂f
∂x

)
x

(∂x
∂y
)
y ?
=

(∂f
∂x

) ( ∂2f
∂x∂x

)-1
. (4.38)
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4 The . . .Integration

1 For the inverse transform to exist, it must be true that (∂2f/∂x∂x) ,
0. This is a necessary condition.

2 It is also worth adding that in general, partial differential equations
do not have an analytical solution. However, thermodynamic problems
are often unusually simple, and that is also the case here.

3 Let us define ξ =̂ (∂f/∂x), which gives us
(∂x
∂y

)
y ?
= ξ

(∂ξ
∂x

)-1
.
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4 The . . .Integration (2)

4 Introducing the logarithmic variables dln y =̂ dy /y and dln ξ =̂

dξ /ξ produces an elegant solution to the problem (note how the chain
rule is used in reverse in the second-last line):

( ∂x
∂ ln y

)
=

(∂ ln ξ
∂x

)-1
(∂ lnξ
∂x

) ( ∂x
∂ ln y

)
= 1

(∂ ln ξ
∂ ln y

)
= 1 (4.39)
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4 The . . .Solution criteria

1 The most general solution can be expressed as y = cξ =̂

c (∂f/∂x), where c is an arbitrary factor. It is natural to choose c = 1,
which means that y ≡ ξ, as we know from our earlier discussion of the
Legendre transform, but any value of c ∈ R+ will give the same result,
as the inverse transformin Eq. 4.36 is insensitive to scaling.

2 We say that x and ξ are the natural (or canonical) variables of the
functions f(x) and φ(ξ), as they allow transformation in both directions
without the loss of any information.

4 3 As an aside, it should be mentioned that the function φ(x) does not
have this property, because y = x is not a solution to Eq. 4.36. In the context of thermodynamics, this means that e.g.

A(T ,V ,n) can be inverse transformed to U(S ,V ,n), provided that
(∂2U/∂S∂S)V ,n , 0.
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4 The . . .Solution criteria (2)

5 However, the transformation rule is symmetrical, and the same re-
quirement must also apply in the other direction: U(S ,V ,n) can only be
transformed into A(T ,V ,n) if (∂2A/∂T∂T)V ,n , 0.

6 The two requirements may appear contradictory, but in actual fact
they are overlapping, because:

( ∂2U
∂S∂S

)
V ,n =

(∂T
∂S

)
V ,n =

(∂S
∂T

)-1
V ,n = − ( ∂2A

∂T∂T

)-1
V ,n

7 In states in which one of the derivatives tends to zero, and the other
one tends to infinity, the system is on the verge of being unstable.

8 Depending on the variables involved, this relates to either thermal
(T , S), mechanical (p, V ) or chemical (µi, Ni) stability.9 These kinds of states are always buried inside a region with two or

more phases, being found in what is referred to as the spinodal region
of the system (from the gr. spinode, meaning “cusp”).
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4 The . . .§ 025 § 24 § 26

Use the result from Paragraph 22 on page 129 to
show that performing two Legendre transformations
on f , first with respect to xi and then with respect to

ξi, returns the original function.
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4 The . . .§ 025 Inverse transform

1 Given Definition 4.1 and Eq. 4.22, the inverse Legendre transfor-
mation can be written

φi −
(∂φi
∂ξi

)
xj
ξi = φi − (−xi)ξi ≡ f , (4.40)

but it is not entirely clear what variable set should be used to define f .

2 To understand the nature of the problem, let us consider the follow-
ing example. From Eq. 4.4 it follows that:

U(S ,V ,N) − (∂U(S,V ,N)
∂S

)
V ,N S = U(S ,V ,N) − τS =̂ A(τ,V ,N) . (4.41)

3 To approach it from the opposite direction, we have to calculate the
Legendre transform of A(τ,V ,N) with respect to the variable τ:

A(τ,V ,N)−(∂A(τ,V ,N)
∂τ

)
V ,N τ = A(τ,V ,N)−(−S)τ ≡ U(−S ,V ,N) . (4.42)
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4 The . . .§ 025 Inverse transform (2)

4 This clearly returns the original function U, but the set of canonical
variables has changed from S ,V ,N to −S ,V ,N. In order to get back to
where we started, we must perform two further Legendre transforma-
tions:

U(−S ,V ,N) − (∂U(−S,V ,N)
∂(−S)

)
V ,N

(−S) = U(−S ,V ,N) − (−τ)(−S)

=̂ A(−τ,V ,N) , (4.43)

A(−τ,V ,N) − (∂A(−τ,V ,N)
∂(−τ)

)
V ,N

(−τ) = A(−τ,V ,N) − S(−τ)

≡ U(S ,V ,N) . (4.44)

5 In other words, performing repeated Legendre transformations re-
veals a closed cycle, where the original information contained in U is
retained, as shown in the figure below:7
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4 The . . .§ 025 Inverse transform (3)

U(S,V ,N)
S−→ A(τ,V ,N)

↑ −τ ↓ τ
A(−τ,V ,N)

−S←− U(−S,V ,N)

7 In practice it may be easier to use the canonical variables (x , y) = (− (∂g/∂z)y , y) for
the inverse transformation, rather than (x , y) = ((∂g/∂z)y , y) as has been done here.
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4 The . . .Invertibility

1 This example shows that the Legendre transform is (locally) invert-
ible, which means that we can choose whatever energy function is most
suitable for our purposes.

2 Moreover, Eq. 4.10 tells us that the Legendre transform of U with
respect to all of the state variables S, V and N is a function with very
special properties. The function, which is known as the null potential, is
identical to zero over the entire definition domain, and as such it has no
inverse.3 Our line of reasoning breaks down for this function, and we must

expect O(T , p, µ) to have properties that differ from those of U and the
other energy functions.
4 Note that this is not a general mathematical property of the Leg-

endre transform; rather it follows inevitably from the fact that U and all
of the other extensive properties are described by first-order homoge-
neous functions to which Euler’s theorem can be applied.
5 These functions display a kind of linearity that results in their total

Legendre transforms being identical to zero.
6 Hence, the differentials are also zero over the entire definition do-

main.
7 In thermodynamics, this is called the Gibbs–Duhem equation.
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4 The . . .§ 026 § 25 § 27

Show that performing a Legendre transformation of
internal energy U(S ,V ,N) with respect to all the canonical

variables S ,V ,N gives the null potential O(τ, π, µ) =

0. Next, show that the differential of O is identical to
the Gibbs–Duhem equation; see also Paragraph 34

in Chapter 5.
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4 The . . .§ 026 Null potential

1 2 The differential of the null potential in Eq. 4.10 is of course 0. However, since this result is valid for the entire domain of definition
it must have a bearing on the degrees of freedom of the system.

3 Mathematically, the O-function forms a hyperplane in dim(n) + 2
dimensions.4 This becomes clear if we differentiate O(τ, π, µ) in Eq. 4.10: dU −

τdS − S dτ − V dπ − πdV − µ dN − N dµ = 0.
5 If we spot that τdS +πdV +µ dN is the total differential of internal
energy, we can simplify the expression to:

S dτ+ V dπ+ N dµ = 0 . (4.45)

6 This result is identical to the Gibbs–Duhem Eq. 5.23, which plays
an important role in checking the thermodynamic consistency of exper-
imental data.
7 This is because Eq. 4.45 tells us about the relationship between τ,
π, µ.
8 If a series of measurements is taken in order to obtain experimental
values for all of the variables τ, π, µ, then the Gibbs–Duhem equation
allows us to check the quality of the measurements, given that Eq. 4.45,
or Eq. 4.10 for that matter, must be fulfilled.
9 In practice, this is possible because the chemical potentiala,

10 can be expressed as a function of temperature and negative pres-
sure, or alternatively as f(τ, π, µ) = 0.

a For single component or multicomponent systems at fixed concentration.
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4 The . . .Seven samurai

1 We have in this chapter introduced seven energy functions: U, H,
A , G, X , Y and O , and six state variables: S, V , N, t , p and µ.

2 On reflection it is clear that only four of these variables are inde-
pendent, because the discussion has relied entirely on the fact that in-
ternal energy U is a function of S, V and N.

3 All of the other varaibles have been defined at a later stage either
as partial derivatives or as transformed functions of U.4 There is therefore a substantial degree of redundancy in the vari-

ables that we are dealing with.
5 This redundancy becomes even clearer when the energy functions

are differentiated twice with respect to their canonical variables.
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4 The . . .§ 027 § 26 § 28

Set out all of the Maxwell relations that can be derived
by applying the Leibniz8 rule ∂2f/∂xi∂xj = ∂2f/∂xj∂xi

to the functions U,A ,H,Y ,G,Ω,X and O , restricting
yourself to single-component systems.

8 Gottfried Wilhelm von Leibniz, 1646–1716. German mathematician.
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4 The . . .§ 027 Maxwell relations

1 Let us begin by illustrating what is meant by a Maxwell9 relation
using U(S ,V ,N) as our starting point. From the definitions of τ and π it
follows that:

( ∂2U
∂S∂V

)
N =

( ∂2U
∂V∂S

)
N ⇒

[
∂
∂S

(∂U
∂V

)
S,N

]
V ,N

=
[
∂
∂V

(∂U
∂S

)
V ,N

]
S,N

⇒ (∂π
∂S

)
V ,N =

(∂τ
∂V

)
S,N .

2 Similarly, cyclic permutation of the variables S ,V and N yields:
( ∂2U
∂S∂N

)
V =

( ∂2U
∂N∂S

)
V ⇒ (∂µ

∂S
)
V ,N =

(∂τ
∂N

)
S,V ,

( ∂2U
∂V∂N

)
S =

( ∂2U
∂N∂V

)
S ⇒ (∂µ

∂V

)
S,N =

(∂π
∂N

)
S,V .

3 By systematically comparing the second derivatives of all of the
Legendre transforms mentioned in Paragraph 19 on page 117, we get
the results shown below.
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4 The . . .§ 027 Maxwell relations (2)

5 4 Also see Paragraph 24 on page 136 for a complementary table of
total differentials and first derivatives. Note that the Maxwell relations which are derived from the null

potential O(τ, π, µ) have no physical interpretation, as experimentally τ,
π, µ are dependent variables.6 This means that e.g. (∂τ/∂π)µ is unpredictable because Eq. 4.45

on integrated form is equivalent to a relation g such that g(τ, π, µ) = 0.
7 These relations have therefore been omitted from the table.

(∂π
∂S

)
V ,N=

(∂τ
∂V

)
S,N

(∂µ
∂S

)
V ,N=

(∂τ
∂N

)
S,V

(∂µ
∂V

)
S,N=

(∂π
∂N

)
S,V

− (∂S
∂V

)
τ,N =

(∂π
∂τ

)
V ,N − (∂S

∂N
)
τ,V =

(∂µ
∂τ

)
V ,N

(∂π
∂N

)
τ,V =

(∂µ
∂V

)
τ,N

− (∂τ
∂π

)
S ,N=

(∂V
∂S

)
π,N

(∂τ
∂N

)
S ,π=

(∂µ
∂S

)
π,N − (∂V

∂N
)
S,π=

(∂µ
∂π

)
S,N(∂τ

∂V
)
S ,µ=

(∂π
∂S

)
V ,µ − (∂τ

∂µ

)
S ,V

=
(∂N
∂S

)
V ,µ − (∂π

∂µ

)
S,V

=
(∂N
∂V

)
S,µ

(∂S
∂π

)
τ,N =

(∂V
∂τ

)
π,N − (∂S

∂N
)
τ,π =

(∂µ
∂τ

)
π,N − (∂V

∂N
)
τ,π =

(∂µ
∂π

)
τ,N

− (∂τ
∂π

)
S ,µ =

(∂V
∂S

)
π,µ − (∂τ

∂µ

)
S ,π

=
(∂N
∂S

)
π,µ

(∂V
∂µ

)
S,π

=
(∂N
∂π

)
S,µ

− (∂S
∂V

)
τ,µ =

(∂π
∂τ

)
V ,µ

(∂S
∂µ

)
τ,V

=
(∂N
∂τ

)
V ,µ − (∂π

∂µ

)
τ,V

=
(∂N
∂V

)
τ,µ

9 James Clerk Maxwell, 1831–1879. Scottish physicist.
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4 The . . .Alternative procedure

1 We are familiar with the key characteristics of Legendre trans-
forms, having looked at topics like transformation geometry, differen-
tiation rules, inverse transforms and Maxwell relations. We shall now
focus on the simple rule used in Figure 4.1, which shows that the Leg-
endre transform is equal to the intersection of the tangent bundle of the
original function and the ordinate axis.

2 The subject becomes even more interesting now, as we are going
to prove another rule, which is even simpler, although not so easy to
derive. The key to this is a simple change in variables from y and x in
(∂y/∂x) to y/x and 1/x in the expression (∂(y/x)/∂(1/x)).3 This relationship is generally known as the Gibbs–Helmholtz equa-

tion.
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4 The . . .§ 028 § 27 § 29

Verify the Gibbs–Helmholtz equation (∂(G/τ)/∂(1/τ))π,N ≡ H.
See if you can generalise this result.
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4 The . . .§ 028 Gibbs–Helmholtz

1 2 By differentiating and then substituting (∂G/∂τ)π,N = −S and G +

TS = H, we can confirm that the equation is correct, but there is more
to it than that. From the mathematical identity

∂(y/x)
∂(1/x) ≡ y + 1

x
∂y

∂(1/x) ≡ y − x ∂y
∂x

we can conclude that
(∂(f/xi)
∂(1/xi)

)
xj ,xk ,...,xn

=̂ f − ξixi =̂ φi , (4.46)

cf. the Legendre transform in Eq. 4.1. The identity applies generally,
including to φij and to any other derived transforms.

4 3 This means that Eq. 4.46 provides an alternative way of calculating
the value of a Legendre transform, without this changing the original
definition. One of the classic applications of the Gibbs–Helmholtz equation

is in calculating the temperature derivative of the equilibrium constant,
as shown in Chapter 16, where ln K =̂ −∆rxG◦/RT is shown to be an
almost linear function of 1/T with a slope of ∆rxh◦/R.5 An equally useful equation is (∂(A/τ)/∂(1/τ))V ,N ≡ U, and in fact

there are a whole series of similar equations that are based on the same
principle.
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4 The . . .Continued differentiation

1 It remains to be shown that it is straightforward to differentiate the
Gibbs–Helmholtz equation. To illustrate this, let us use the derivative of
the equation given in the worked example above:

(∂H
∂π

)
τ,N =

(
∂
∂π

(∂(G/τ)
∂(1/τ)

)
π,N

)
τ,N

=
(

∂
∂(1/τ)

(∂(G/τ)
∂π

)
τ,N

)
π,N

=
(∂(V/τ)
∂(1/τ)

)
π,N

.

Note that the enthalpy has been differentiated with respect to nega-
tive pressure, which is a canonical variable; the result follows an easily
recognisable pattern.

3 2 We will come back to this form of the Gibbs–Helmholtz equation in
Chapter 8, but there it will be used to integrate equations of state at a
fixed composition. Finally, it is worth adding that every time we derive an expres-

sion of the form y − x (∂y/∂x) we can choose to replace it with
(∂(y/x)/∂(1/x)).4 These two alternatives look different, but they are nevertheless

mathematically identical.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 177 / 1598



Part 5

Euler’s Theorem on Homogeneous Functions

see also Part-Contents

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 178 / 1598



Contents

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 179 / 1598



5 Euler’s . . .State description

1 The thermodynamic state of a so-called simple system is described
mathematically by the mapping f : Rn+2 → R where n ≥ 0 stands for
the number of chemical components1 in the system.

3 2 For the system to be physically realisable, it must be macroscopi-
cally uniform. Apart from this constraint, the domain of definition of a multicom-

ponent system is infinitly large, but the mathematical treatment is con-
siderably simplified by the fact that it can be verified experimentally that
f is linear along all state vectors starting at the origin.

4 The practical consequences of this linearity2 will be clarified when
we start investigating the mathematical properties of f , but let us first
formalise our statement by stating that the function f(x1, . . . , xn) is ho-
mogeneous of order k ∈ Z provided that the parametrised function
f(λx) is proportional to λk in the direction of x = (x1, . . . , xn).
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5 Euler’s . . .State description (2)

6 5 Here, the parameter λ ∈ R+ is a dimensionless measure of the
distance from the origin to the coordinate tuple λx ∈ Rn. More precisely, the function f(x1, . . . , xn, ξn+1, . . . , ξm) is homoge-

neous of order k in the variables x1, . . . , xn if the following criteria are
satisfied:

F(X1, . . . ,Xn, ξn+1, . . . , ξm) = λk f(x1, . . . , xn, ξn+1, . . . , ξm) , (5.1)

Xi =̂ λxi . (5.2)

1 An empty chamber has no chemical components, but it nevertheless constitutes a
thermodynamic system of electromagnetic radiation with two degrees of freedom.
2 Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, 2nd
edition, 1985.
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5 Euler’s . . .Homogeneity

1

X

F k=−1

k=0

k=1

k=2

Note that F has exactly the same function
definition as f . Hence, it is only by conven-
tion that we distinguish the two forms. We
may therefore write:

F
x
⇄
X

f

2 It is then assumed that ξn+1, . . . , ξm do
not take part in the homogeneity of f . 3 They are of course used in the function descriptions of F , and in

all the partial derivatives of F , but they do not take part in the scaling of
free variables in Eq. 5.2. That

means the scaling law in Eq. 5.1 is valid for
all choices of ξn+1, . . . , ξm.
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5 Euler’s . . .Homogeneity (2)

7 4 Strange at first sight, maybe, but the grouping of variables into dis-
joint subsets is quite natural in physics.
5 For example the kinetic energy of an n-particle ensemble EK (m,

υ) =̂ 1
2

∑n
i miυ2

i is homogeneous of order 1 with respect to the
masses mi and homogeneous of order 2 with respect to the veloci-
ties υi.
6 The same function is homogenous of order 3 if mass and velocity

are considered simultaneously as independent variables. Taking this a step further, one can say that f = xyz is homogeneous
of order 1 in x if y, z are taken to be constant parameters (the same
argument holds circularly for y and z), and homogeneous of order 3 in
x, y, z if all of the quantities are treated as free function variables.
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5 Euler’s . . .From our daily lives

1 Of particular interest to us are the energy functions3 U,A , . . . ,O
with state variables belonging to S ,V ,N or τ, π, µ.

2 The energy functions, and entropy, volume and mole number, are
homogeneous functions of order 1, while temperature, pressure4 and
chemical potential are homogeneous functions of order 0.

3 In the context of thermodynamics these quantities are referred to
as extensive and intensive state variables respectively5.
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5 Euler’s . . .From our daily lives (2)

3 In thermodynamics it is common to write F = X〈f〉 in this case, where X is a physical
quantity, i.e. a quantity with an associated unit of measurement. We could look, for
example, at the total number of moles for all components in the system while it is kept
at a constant composition (constant mole fractions). In this case F(X) = λf(x) where
X = λx and X = {X } [X]. Here, {} denotes the magnitude of X and [] denotes its unit of
measurement. Let us now choose x = X/{X } i.e. λ = {X }. It is then possible to write
F(X) = {X } · f(X/{X }) = {X } [X] · f(X/{X })/ [X] = X · f(X/{X })/ [X]. It is for instance
quite common to write the total Gibbs energy for the system as G(τ,π,N) = Ng(τ,π,x)
where x is a vector of mole fractions, or, alternatively, as G = Ng(τ, π) if x = [1]. The
function g = 〈f〉 denotes molar Gibbs energy in both cases. Correspondingly, we can
write U = Nu(s, v), H = Nh(s, π) etc. for the other molar energies.
4 Here, τ and π are used for temperature and negative pressure respectively, as al-
ready introduced in Chapter 4. In this context we want to stress that the properties (in
common with the chemical potential µ) are intensive quantities.
5 A physical quantity is extensive if it is proportional to the system size and intensive if
it is insensitive to the system size.
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5 Euler’s . . .Differential in X and ξ

1 We are not initially aiming to embark on a general discussion of
the multicomponent functions in Eq. 5.1. Instead, we will start with a
detailed analysis of the simpler two-variable functions f(x, ξ) and F(X ,
ξ).

3 2 The results will later be generalised in Chapter General Theory,
and we lose nothing by taking an easy approach here. In order to exploit the function properties, it makes sense to use

the total differential of F expressed in X and ξ-coordinates:

dF =
(∂F
∂X

)
ξ

dX +
(∂F
∂ξ

)
X

dξ .

4 The variable X is defined as a function of x and λ in Eq. 5.2, and
by substituting the total differential of X , or more precisely dX = λdx +

x dλ, we obtain

dF =
(∂F
∂X

)
ξ

x dλ+
(∂F
∂X

)
ξ
λdx +

(∂F
∂ξ

)
X

dξ . (5.3)
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5 Euler’s . . .Differential in λ and f

1 An alternative would be to make use of F = λk f from Eq. 5.1 as
the starting point for the derivation:

dF = kλk−1f dλ+ λk df .

2 Substitution of the total differential of f expressed in x and ξ-
coordinates gives:

dF = kλk−1f dλ+ λk (∂f
∂x

)
ξ

dx + λk (∂f
∂ξ

)
x

dξ . (5.4)

3 Note that Eq. 5.3 and Eq. 5.4 are two alternative expressions for
the same differential dF (λ, x, ξ).

4 Comparing the equations term-by-term reveals three relations of
great importance to thermodynamic methodology:
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5 Euler’s . . .Case dλ

1 Comparing the dλ terms reveals that (∂F/∂X)ξ x = kλk−1f . Mul-
tiplying both sides by λ gives (∂F/∂X)ξ λx = kλk f , which if we substi-
tute in Eq. 5.1 and Definition 5.2 can be transformed into:

(∂F
∂X

)
ξ

X = kF . (5.5)

3 2 The closed form of Eq. 5.5 indicates that there is a general solution
to the indefinite integral F(X , ξ) =

∫
(dF)ξ =

∫
(∂F/∂X)ξ dX . The result is known as Euler6s first theorem for homogeneous func-

tions, or simply as the Euler integration of F .

6 Leonhard Euler, 1707–1783. Swiss mathematician.
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5 Euler’s . . .Case dx

1 Comparing the dx terms reveals that (∂F/∂X)ξ λ = λk (∂f/∂x)ξ.
Dividing each side by λ leads to:

(∂F
∂X

)
ξ
= λk−1 (∂f

∂x
)
ξ
. (5.6)

3 2 Because F has the same function definition as f (it is only the
names of the free variables that differ) it follows that ∂F/∂X and ∂f/∂x
are equivalent functions. Hence, (∂F/∂X)ξ is a homogeneous function of order k − 1.

4 Differentiation with respect to X therefore reduces the order of ho-
mogeneity of F by one.
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5 Euler’s . . .Case dξ

1 Comparing the dξ-terms reveals that the homogeneity of the
derivative with respect to ξ is unchanged:

(∂F
∂ξ

)
X
= λk (∂f

∂ξ

)
x
, (5.7)

3 2 Using the same arguments as in the case above this implies that
the derivative of F with respect to ξ is a new homogeneous function of
degree k . Differentiation with respect to ξ therefore conserves the homogene-

ity in X .
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5 Euler’s . . .Note

1 It should be stressed that the Euler integration in Eq. 5.5 is not
limited to one particular interpretation of X .

2 In fact, any scaled variable x = λ-1X satisfies the equation:
(∂f
∂x

)
ξ

x = kf .

3 The validity of this statement is confirmed by first combining
Eqs. 5.5 and 5.6, and then substituting in Eq. 5.1 and Definition 5.2.
4 This result emphasises the practical importance of Euler’s theorem

as outlined in Eq. 5.5.
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5 Euler’s . . .Extended notation I

1 The general properties of homogeneous functions will be ex-
plained further in Chapter General Theory, but to get a sense of the
overall picture we shall briefly mention what changes are required in
Eqs. 5.5–5.7 to make them valid for multivariate functions:

n∑
i=1

Xi
(∂F
∂Xi

)
Xj,i ,ξl

= kF , (5.8)

(∂F
∂Xi

)
Xj,i ,ξl

= λk−1 ( ∂f
∂xi

)
xj,i ,ξl

, (5.9)
( ∂F
∂ξk

)
Xj ,ξl,k

= λk ( ∂f
∂ξk

)
xj ,ξl,k

. (5.10)
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5 Euler’s . . .§ 029 § 28 § 30

Internal energy U = U(S ,V ,N) is an extensive function
in the variables S ,V and N. The total differential of U
is dU = τdS +πdV +µ dN. Explore the homogeneity

associated with the functions for τ, π and µ.
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5 Euler’s . . .§ 029 Intensive functions

1 The variables τ, π and µ mentioned above must first be defined.
Mathematically, the total differential of U(S ,V ,N) is:

dU =
(∂U
∂S

)
V ,N dS +

(∂U
∂V

)
S,N dV +

(∂U
∂N

)
S,V dN .

3 2 Comparing this with the differential given in the text implies that
τ =̂ (∂U/∂S)V ,N, π =̂ (∂U/∂V)S,N and µ =̂ (∂U/∂N)S,V , see also Para-
graph 19 on page 117 in Chapter 4. Substitution of k = 1, Xi = S, Xj ∈ {V ,N} and ξl = ∅

7 in Eq. 5.9
yields:

τ(S ,V ,N) =̂
(∂U(S,V ,N)

∂S
)
V ,N = λ0 (∂u(s,v,n)

∂s
)
v,n = τ(s, v, n) . (5.11)

4 The function τ(S ,V ,N) is obviously homogeneous of order 0 in the
variables S ,V ,N because it is independent of the scaling factor λ.
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5 Euler’s . . .§ 029 Intensive functions (2)

6 5 The temperature is commonly referred to as an intensive variable
and is taken to be independent of the system sizea.

a Valid only when the system is sufficiently big i.e. when the number of particles is large
enough to fix the temperature. Similarly, differentiation of U with respect to V and N yields

π(S ,V ,N) =̂
(∂U(S,V ,N)

∂V
)
S,N = λ0 (∂u(s,v,n)

∂v
)
s,n = π(s, v, n) , (5.12)

µ(S ,V ,N) =̂
(∂U(S,V ,N)

∂N
)
S,V = λ0 (∂u(s,v,n)

∂n
)
s,v = µ(s, v, n) , (5.13)

where the (negative) pressure and the chemical potential are intensive
variables as well.

7 Actually an empty set. Here it is used to denote a missing variable or an empty
vector.
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5 Euler’s . . .§ 030 § 29 § 31

Internal energy U = U(S ,V ,N) is an extensive function
in the variables S ,V and N. The total differential of
U is dU = τdS + πdV + µ dN. What is the correct

integral form of U? Explain the physical significance
of this integral.
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5 Euler’s . . .§ 030 Euler integration

1 Substituting k = 1, Xi ∈ {S ,V ,N} and ξl = ∅ into Eq. 5.8, together
with the definitions from Paragraph 29 on page 182 i.e. τ =̂ (∂U/∂S)V ,N,
π =̂ (∂U/∂V)S,N and µ =̂ (∂U/∂N)S,V yields Euler’s equation applied to
internal energy:

U = τS + πV + µN . (5.14)

2 We are not being asked about multicomponent mixtures, but
Eq. 5.14 is quite general and can (by analogy with Eq. 5.8) be extended
to:

U = τS + πV +
n∑

i=1
µiNi =̂ τS + πV + µTn (5.15)
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5 Euler’s . . .Remark

1 The total differential of internal energy for a single component
system is dU = τdS + πdV + µ dN.

3 2 The differential can be integrated without actually solving any
partial differential equations because τ, π, µ are intensive (size-
independent) variables. Physically, this means that the system can be built up from zero

size8 in a manner that keeps τ, π, µ constant during the process.

5 4 This is achieved by combining a large number of small systems at
fixed temperature, (negative) pressure and chemical potential. When these subsystems are merged into one big system there will

be no changes in the intensive properties, because the requirements for
thermodynamic equilibrium are automatically fulfilled, see also Chap-
ter 21 on page 1162.

8 By definition, a system of zero size has zero internal energy, i.e. U = 0. In this
context, “zero size” refers to zero volume, zero mass and zero entropy. Note, however,
that it is not sufficient to assume zero mass, because even an evacuated volume will
have radiation energy proportional to T 4!
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5 Euler’s . . .§ 031 § 30 § 32

Gibbs energy G(τ, π,N) is an extensive function of
the mole number N at a given temperature τ and
(negative) pressure π. The total differential of G is

dG = −S dτ−V dπ+µ dN. Explore the homogeneity
associated with the functions S and V .
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5 Euler’s . . .§ 031 Extensive functions

1 2 We will apply the same procedure as was used in Paragraph 29 on
page 182. First of all the functions S ,V and µ must be defined. Mathemati-

cally, the total differential of G(τ, π,N) is:

dG =
(∂G
∂τ

)
π,N dτ+

(∂G
∂π

)
τ,N dπ+

(∂G
∂N

)
τ,π

dN .

3 Comparing this with the differential in the problem formulation
yields −S(τ, π,N) = (∂G/∂τ)π,N , −V(τ, π,N) = (∂G/∂π)τ,N and µ =

(∂G/∂N)τ,π.

5 4 From Eq. 5.10 we can deduce that both volume and entropy are
homogeneous functions of order 1 in the mole number at specified tem-
perature and (negative) pressure, i.e. they are extensive variables. From Eq. 5.9 it can be seen that the chemical potential is (still) a

homogeneous function of order 0, see also Eq. 5.13.
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5 Euler’s . . .§ 032 § 31 § 33
Non-canonical variables
1 Any further discussion of homogeneity should ideally be based on

the properly identified canonical state variables of the function.

2 However, this is not an absolute condition, as the thermodynamic
state of a system is uniquely determined when any of its independent
variable sets is fully specified.

3 For example U is extensive in S ,V ,N while G is extensive in N at a
given τ and π, but we can alternatively state the opposite and say that
U is extensive in N at a given τ and π and that G is extensive in S ,V ,
N.

4 There are plenty of alternative ways to describe the system, but a
combination of three arbitrary state variables is not always sufficient.

5 To demonstrate this, let us look at the specification H, τ,N.

6 For example, the ideal gas enthalpy can be written Hıg = H(τ,N).
At a given τ,N the system is underspecified, because there is no way
we can determine the pressure.

7 If we try to specify H in addition to τ and N, this will give us a
redundant (or even contradictory) statement.

8 To avoid problems of this kind we shall therefore make use of
canonical variables unless otherwise stated.
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The Gibbs energy of a binary mixture is given as a
homogeneous function of order 1 in the mole numbers
N1 and N2 (at fixed T and p). Make a contour diagram

illustrating the function G = aN1x2+N1 ln x1+N2lnx2 where
N2 is plotted along the ordinate axis and N1 along the

abscissa. Let x1 =̂ N1/(N1 +N2) and x2 =̂ N2/(N1 +N2).
Show that the isopleths corresponding to constant
G (the contour lines) are equidistant for a series of

evenly distributed Gibbs energy values. Use a = 2.4
in your calculations.
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5 Euler’s . . .§ 032 Gibbs energy I

1 The function is nonlinear in N1 and N2, and the isopleths must be
calculated iteratively using e.g. Newton–Raphson’s method: N2,k+1 =

N2,k − (Gk −G)/µ2, where µ2 = ax2
1 + ln x2 is the partial derivative of G

with respect to N2.

2 A fixed value is selected for N1, and N2 is iterated until Gk→∞ has
converged to G, see the Matlab-program 1.4 in Appendix 30.

4 3 The result obtained is shown in Figure 5.1 on page 193. Note that each isopleth defines a non-convex region, which can be
interpreted as a fundamental thermodynamic instability.
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5 Euler’s . . .§ 032 Gibbs energy I (2)

5 The corresponding two-phase region (the symmetry of the model
reduces the phase equilibrium criterion to µ1 = µ2) can be calculated
from the total differential of G, rewritten here into the tangent of the
isopleth:

(dN2
dN1

)
T ,p,G

= − µ1
µ2
.

7 6 It can be proved (do it!) that the tangent intersects with the y and x
axes at G/µ2 and G/µ1 respectively. This indicates that the phase equilibrium condition is fulfilled when-

ever two points on the same isopleth have common tangents (remem-
ber that G takes constant values along each isopleth such that the cri-
terion is reduced to µ1 = µ2).
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Figure 5.1: Contour diagram of Gibbs energy (solid lines). Equidistant values
(open circles) are made visible along 3 rays (dotted lines) from the origin.
The two-phase region is spanned by the two outermost rays. One of the
isopleths indicates the phase equilibrium condition in the shape of a convex
hull construction.
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5 Euler’s . . .§ 033 § 32 § 34

Homogeneity causes a whole range of remarkable
results. One formula obtained by differentiating Eq. 5.5

is:

X d
(∂F
∂X

)
ξ
− k

(∂F
∂ξ

)
X

dξ = (k − 1)
(∂F
∂X

)
ξ

dX ,

For k = 1 this implies that (∂2F/∂X∂X)ξ = 0 and
(∂F/∂ξ)X = (∂2F/∂X∂ξ)X . Verify these results and

give a physical explanation for them.
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5 Euler’s . . .§ 033 Homogeneity

1 The left-hand side of Eq. 5.5 is differentiated and the right-hand
side is replaced by the total differential of F :

X d
(∂F
∂X

)
ξ
+

(∂F
∂X

)
ξ

dX = k
(∂F
∂X

)
ξ

dX + k
(∂F
∂ξ

)
X

dξ .

2 For k = 1 the expression reduces to X d(∂F/∂X)ξ = (∂F/∂ξ)X dξ. 3 Note that X and dξ are arbitrary.

To proceed we need the differential of ∂F/∂X , and because F is a func-
tion of X and ξ it can be written as the total differential

d
(∂F
∂X

)
ξ
=

( ∂2F
∂X∂X

)
ξ

dX +
( ∂2F
∂X∂ξ

)
dξ ,

5 4 where dX is also arbitrary. Substituted into the equation above (letting k = 1), this yields the
intermediate result:

X
( ∂2F
∂X∂X

)
ξ

dX + X
( ∂2F
∂X∂ξ

)
dξ =

(∂F
∂ξ

)
X

dξ . (5.16)
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5 Euler’s . . .§ 033 Homogeneity (2)

7 6 The trick is to recognise that X , dX and dξ are independent vari-
ables. This implies that two non-trivial relations follow from Eq. 5.16 (one

equation in three variables gives two non-trivial relations), irrespective
of the actual values of X , dX , ξ and dξ:

( ∂2F
∂X∂X

)
ξ
= 0 , (5.17)

X
( ∂2F
∂X∂ξ

)
=

(∂F
∂ξ

)
X

(5.18)
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5 Euler’s . . .Parametric form

1 From a physical point of view any extensive function F(X , ξ) can
be expressed in the form F = β(ξ)X .

2 This stems from the fact that F(0, ξ) = 0 in addition to ∂2F/∂X∂X =

0, see Eq. 5.179 The derivative of F with respect to ξ is therefore an
extensive function β′(ξ)X where the second derivative of F with respect
to both X and ξ is equal to the intensive parameter β′(ξ).3 The numerical value of ∂F/∂ξ can easily be obtained by integrating

∂2F/∂X∂ξ using the Euler method as shown in Eq. 5.18.

9 It should be noted that it is the second derivative function which is zero. It is not
sufficient to say that the second derivative is zero at a given point.
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5 Euler’s . . .Extended notation II

1 2 In the general case, x and ξ would be vector quantities. If F(x, ξ) is extensive in x it can be shown that the differential in
Paragraph 33 on page 194 takes the form:

xT d
(∂F
∂x

)
ξ
− (∂F

∂ξ

)T

x
dξ = 0 , (5.19)

where the differential of ∂F/∂x is written:

d
(∂F
∂x

)
ξ
=

( ∂2F
∂x∂x

)
dx +

( ∂2F
∂x∂ξ

)
dξ . (5.20)

3 The two quantities dx and dξ are independent, and by substituting
the differential 5.20 into Eq. 5.19 it follows that:

( ∂2F
∂x∂x

)
ξ

x = 0 , (5.21)
( ∂2F
∂ξ∂x

)
x =

(∂F
∂ξ

)
x
. (5.22)

6 4 From a logical point of view Eq. 5.22 is a true generalisation of 5.18,
whereas Eq. 5.17 represents a specialisation of 5.21.
5 This means that the second derivative of F(X , ξ) with respect to X

is zero for all single-variable functions, while the corresponding Hessian
F(x, ξ) for multivariate systems is singular in the direction of x, where x

is proportional to one of the eigenvectors of the Hessian. This is Euler’s second theorem for homogeneous functions.
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5 Euler’s . . .§ 034 § 33 § 35

Substitute U = U(S ,V ,N) into Paragraph 33 on page 194
and show that S dτ+V dπ+N dµ = 0. Do you know
the name of this equation in thermodynamics? Does
it make any difference if you plug in G = G(τ, π,N)

rather than U(S ,V ,N)?
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5 Euler’s . . .§ 034 Gibbs–Duhem

1 Substituting F = U(x, ξ) into Eq. 5.19 where xT = (S ,V ,N) and
ξ = ∅, reduces the expression to xT d(∂U/∂x) = 0. From the definitions
of τ, π and µ in Paragraph 29 on page 182 we can write

S dτ+ V dπ+ N dµ = 0 , (5.23)

3 2 which is better known as the Gibbs–Duhem equation. Alternatively, if F = G(x, ξ) where x = N and ξT = (τ, π), then
Eq. 5.19 takes the form:

N d
(∂G
∂N

)
τ,π
− (∂G

∂τ

)
π,N dτ − (∂G

∂π

)
τ,N dπ = 0 .

4 The partial derivatives of G with respect to N, τ and π have been
identified as µ,−S and −V in Paragraph 31 on page 188.

5 The expression can therefore be reformulated as N dµ + S dτ +

V dπ = 0 which is identical to the Gibbs–Duhem equation.
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5 Euler’s . . .§ 034 Gibbs–Duhem (2)

6 In fact, all Legendre transforms of U end up giving the same Gibbs–
Duhem equation.
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5 Euler’s . . .Comment

1 We have not been asked for any extensions, but by analogy to
Eqs. 5.8 and 5.15 the Gibbs–Duhem equation may be extended to a
multicomponent form:

S dτ+ V dπ+
n∑

i=1
Ni dµi =̂ S dτ+ V dπ+ nT dµ = 0 . (5.24)

4 2 Note that the Gibbs–Duhem equation follows inevitably from the
properties of extensive functions when differentiated, which in turn re-
flect their homogeneity.
3 This is true for all functions of this kind, and not only thermody-

namic ones. The homogeneity, which effectively removes one degree of free-
dom in the function expression, shows up as a mutual dependency in
the nth derivatives (of U).

6 5 As a result, only n − 1 of the intensive state variables are indepen-
dent. In single component systems this means that any arbitrary inten-

sive variable can be expressed as a function of (at most) two other in-
tensive variables, see also Paragraph 39 on page 214.
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5 Euler’s . . .

1 It is important to realise that the information contained in U is con-
served during the Legendre transformation to H,A , . . . ,O .

2 For example, knowing the Gibbs energy G(τ, π,N) really implies
full knowledge of U(S ,V ,N), and vice versa.

3 The Gibbs–Duhem equation can therefore be derived from any of
the energy functions.

4 In particular this also applies to the differential of the null-potential
O(τ, π, µ) which is identical to Eq. 5.23, see Paragraph 26 on page 157.
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5 Euler’s . . .§ 035 § 34 § 36

Use the result from Paragraph 33 on page 194 to
determine the second derivatives (∂2G/∂N∂N)τ,π,

(∂2Y/∂S∂S)π,µ and (∂2Ω/∂V∂V)τ,µ, where G = G(τ,

π,N) and Y = Y(S , π, µ) and Ω = Ω(τ,V , µ).
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5 Euler’s . . .§ 035 Linear potentials

1 The three functions G,Y and Ω are extensive in N,S and V re-
spectively, i.e. in one variable each.

2 This makes Eq. 5.17 valid and the substitution of the definitions for
τ, π and µ yields:

( ∂2G
∂N∂N

)
τ,π

=
(∂µ
∂N

)
τ,π

= 0 , (5.25)
( ∂2Y
∂S∂S

)
π,µ

=
(∂τ
∂S

)
π,µ

= 0 , (5.26)
( ∂2Ω
∂V∂V

)
τ,µ

=
(∂π
∂V

)
τ,µ

= 0 . (5.27)
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5 Euler’s . . .§ 036 § 35 § 37

Show that the Hessian of A = A(τ,V ,N) has only
one independent element when the temperature τ is
taken to be a constant parameter. Use Eq. 5.21 as

your starting point.
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5 Euler’s . . .Example

1 Helmholtz energy is extensive in V ,N at any given temperature τ.

2 Bearing in mind Eq. 5.21 the Hessian of A can be expressed as a
function of only one independent variable because the matrix, in addi-
tion to being symmetric, must satisfy the relation:

( ∂2A
∂x∂x

)
τ

x =̂




(∂π
∂V

)
τ,N

(∂π
∂N

)
τ,V

(∂µ
∂V

)
τ,N

(∂µ
∂N

)
τ,V







V

N



=




0

0



.

3 The fact that the matrix, like all Hessians, must be symmetric, in
this case leads to (∂π/∂N)τ,V = (∂µ/∂V)τ,N.

4 Altogether there are 4 matrix elements, with 3 associated relations.
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5 Euler’s . . .§ 036 Hessians

1 The solution of the homogeneous (!) system of equations can be
formulated in an infinite number of ways, one of which is:

N
V

(∂µ
∂N

)
τ,V




N
V −1
−1 V

N






V
N


 =




0
0


 . (5.28)

2 Note that the second derivative of Helmholtz energy with respect
to the mole number is non-zero in Eq. 5.28, while the corresponding
second derivative of Gibbs energy is zero in Eq. 5.25:

fra 5.25:
(∂µ
∂N

)
τ,π

= 0 ,

og fra 5.28:
(∂µ
∂N

)
τ,V , 0 .

3 This emphasises the fact that it is important to have a proper un-
derstanding of the many peculiarities of the energy functions, and it also
highlights that it is essential to know which variables are held constant
during differentiation.
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5 Euler’s . . .§ 037 § 36 § 38

Find analytical expressions for (∂G/∂τ)π,N and (∂G/∂π)τ,N
by using the Euler method to integrate the partial molar

entropy and partial molar volume.
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5 Euler’s . . .§ 037 Partial molarity

1 Replace F by G(ξ,n) in Eq. 5.22, where ξT = (τ, π) and nT =

(N1, . . . ,Nn). This gives, without much difficulty:



(∂G
∂τ

)
π,N

(∂G
∂π

)
τ,N



=




( ∂2G
∂τ∂nT

)
π

( ∂2G
∂π∂nT

)
τ




n = −




( ∂S
∂nT

)
τ,π

( ∂V
∂nT

)
τ,π




n =̂ −




s̄Tn

v̄Tn



.

2 The partial derivatives of S and V on the right hand side are called
the partial molar entropy and partial molar10 volume respectively.

4 3 These and other partial molar quantities occur so frequently in the
thermodynamic theory of mixtures that they have been given their own
differential operator, see Paragraph 10 on page 76. A more compact notation is therefore S = nTs̄ and V = nTv̄.

10 A partial molar quantity is defined as f̄ = (∂F/∂n)τ,π, irrespective of whether or not
F has τ,π,N1, . . . ,Nn as canonical variables (it is only for Gibbs energy that there is a
correspondence between the two sets of variables).
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5 Euler’s . . .§ 038 § 37 § 39

Show that G(S ,V ,N) is really an extensive function of
the variables S ,V and N, thus verifying the conjecture

set out in the introduction to this chapter (on page 190).
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5 Euler’s . . .§ 038 Proof

1 From the definition G(τ, π,N) =̂ U − τS − πV , where U = U(S ,V ,
N), τ =̂ (∂U/∂S)V ,N and π =̂ (∂U/∂V)S,N, it follows that we can express
Gibbs energy as a function of S ,V and N, because the right-hand side
of the equation only includes U and functions derived from U:

G(S ,V ,N) = U(S ,V ,N) − τ(S ,V ,N)S − π(S ,V ,N)V .

2 We already know that τ and π are intensive variables, whereas
U,S and V are extensive variables.
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5 Euler’s . . .§ 038 Proof (2)

3 From this it follows that

G(S ,V ,N) = λu(s, v, n) − λτ(s, v, n)s − λπ(s, v, n)v
=̂ λg(s, v, n) ,

which clearly demonstrates that G is homogeneous, in accordance with
the conjecture.4 Note that the last equation tacitly assumes the homogeneity rela-

tions S = λs,V = λv and N = λn.
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5 Euler’s . . .§ 039 § 38 § 40

Starting from Paragraph 35 on page 204, can you tell
how many thermodynamic variables are needed to

determine the intensive state of a system?
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5 Euler’s . . .§ 039 The state concept

1 A thermodynamic system is normally described by n + 2 indepen-
dent state variables.

2 However, the intensive state can be determined once n + 1 (inten-
sive) variables are known.

4 3 This fact is illustrated by Eqs. 5.25–5.27, where the derivative of
an intensive property with respect to an extensive variable is zero if the
other variables are intensive, and are held constant during differentia-
tion. In fact, the (single) extensive variable determines the system size

but has no influence on τ, π and µ.

5 For a single-component system we can describe the intensive state
in three different ways:

τ = τ(π, µ) ,

π = π(τ, µ) ,

µ = µ(τ, π) .
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Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

Part 7

Equations of state

see also Part-Contents
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Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .State description

1 Although thermodynamics builds on some basic, fundamental
principles of physical science, which form part of a well-defined mathe-
matical theory, it is essentially an empirical science.

3 2 This is particularly true of the many semi-empirical models that are
used in engineering research. That is how it was in the past, and that is how it will continue to be

in the future, because with the exception of a handful of simplifications
used in statistical mechanics1 there are no precise models, and there
will always be the need for essentially physical models with adjustable
parameters.

6 4 A thermodynamic state description needs one or more functions of
state that define the asymptotes of the system (mixture) in a consistent
manner.
5 Applying parameters to the functions gives engineers the flexibility

they need, while it also ensures thermodynamic consistency. In this chapter we learn about a variety of useful concepts, such as
ideal gases, virial development, the Einstein–Debye phonon model and
van der Waals theory, but first of all we need to define the concept of an
equation of state.
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7 Equations . . .State description (2)

7 Let us start with any canonical differential, e.g. of internal energy

dU = T dS − p dV +
n∑

i=1
µi dNi , (7.1)

defined using the canonical variables S ,V ,Ni.

8 If we know the fundamental state functions referred to as the equa-
tions of state of the system

T = T(S ,V ,n) , (7.2)

p = p(S ,V ,n) , (7.3)

µi = µi(S ,V ,n) , (7.4)

then Eq. 7.1 can be integrated using Euler’s 1st theorem to give U =

TS − pV +
∑n

i=1 µiNi, as shown in Paragraph 30 in Chapter 5. However,
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7 Equations . . .State description (3)

in practice this doesn’t work, because the relationships defined by 7.2–
7.4 only exist as implicit functions2.

9 It is therefore more normal to start with

(dG)T ,p =
n∑

i=1
µi dNi (7.5)

or alternatively

(dA)T = −p dV +
n∑

i=1
µi dNi , (7.6)

10 which can be integrated in the same way if the state function(s)
µi(T , p,n) or p(T ,V ,n) and µi(T ,V ,n) are known,a

a Many textbooks refer to p(T ,V ,n) as if there were no other state functions, but that
is wrong! but it is still difficult to accurately describe the chemical potential of the
compounds in a multi-component mixture.

11 The exceptions to this are ideal (gas) mixtures for which we can
obtain exact solutions using statistical mechanics.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 257 / 1598



Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .State description (4)

17 12 By taking the ideal gas model as a reference, it is relatively easy to
obtain the residual functions Gr,p(T , p,n) =̂

∫
(V(T , p,n)− V ıg)dp

13 or A r,v(T ,V ,n) =̂
∫
(p(T ,V ,n) − pıg)dV ,

14 which describe the difference between a real mixture and an equiv-
alent ideal gas under the same physical conditions.
15 If we combine this with an expression for the energy of the refer-
ence gas, we get the Gibbs or Helmholtz energy of the mixture, and a
full set of state functions can then be derived using differentiation.
16 This leaves us with just V(T , p,n) or p(T ,V ,n) as the state func-
tions. The alternative to the above approach is to derive the thermody-

namic functions in non-canonical coordinates:

U(T ,V , n) rather than U(S ,V , n)

H(T ,V , n) rather than H(S , p, n)
...

S(T , p, n) rather than S(H, p, n)

This is particularly useful if you only need to obtain U, H or S, but not
A or G.18 Typically, this is the case for physical state changes that occur at a

constant composition like for instance fluid flow in pipes, compressors
and valves.
19 For systems of variable composition, where the chemical poten-
tial is important, it is more suitable to use A and G because µi =̂

(∂A/∂Ni)T ,V ,Nj,i =̂ (∂G/∂Ni)T ,p,Nj,i

20 can be obtained later using differentiation with respect to the
canonical variables.
21 If we choose to disregard canonical theory for a moment, then
the chemical potential must be defined as µi = (∂H/∂Ni)T ,p,Nj,i −
T (∂S/∂Ni)T ,p,Nj,i =̂ h̄i − Ts̄i

22 or a similar expression based on U, but this approach normally
involves more work.

1 Above all crystalline phases, ideal gases and dilute electrolytes.
2 Only very rarely can entropy be written as an explicit (independent) variable in the
state functions.
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7 Equations . . .Ideell (perfect) gas

1 2 The term ideal (perfect) gas refers to ideal, and from a physical
point of view hypothetical, descriptions of the conditions in a real gas. An ideal gas consists of individual particles (atoms, molecules or

radicals) that move freely and independently in space, without any kind
of interaction.

5 3 This is the ideal situation because it involves ignoring the inter-
molecular forces that exist between the particles in a real gas.
4 This includes all of the interactions caused by induced dipoles (van

der Waals forces), dipole-dipole forces, dipole-quadrupole forces, etc. In spite of this massive simplification, the total energy of the gas is
not equal to zero, as the particles have their kinetic energy (translation),
moment of inertia (rotation), internal degrees if freedom (vibration, in-
ternal rotation, torsion, electronic excitation) and chemical binding en-
ergy.

7 6 Furthermore, electron and nuclear spin can also play a role. Ideal gases are only valid as a special case of the true thermody-
namic state when pressure approaches zero, and can never be mea-
sured directly in a real (physical) system.8 Nevertheless, we must be allowed to consider the ideal gas law

one of the great scientific discoveries.
9 Perhaps it is just as important as Maxwell’s equations, which de-

scribe electromagnetism, although that is a very subjective judgement,
as Maxwell’s equations are a complex set of four linked partial differ-
ential equations, whereas the ideal gas law is just a simple algebraic
equation.
10 What they have in common, then, is not their mathematical formu-
lae, but rather their understanding of the underlying physics and of the
practical and theoretical implications.
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7 Equations . . .The ideal gas law

1 It is not a new idea that the world is composed of more or less
distinct material points, but the experiments that underpin the ideal gas
law as we know it today are more recent:

Name Observation Year
Boyle ( PV )T ,N = c1 1662
Charles ( V/T )p,N = c2 1787
Gay-Lussac ( P/T )V ,N = c4 1809
Avogadro (V/N )T ,p = c5 1811

3 2 Given what we know today, the above table accurately represents
the scientific progress, but at the time the scientists lacked our histori-
cal perspective, and we should be cautious about attributing entirely ra-
tional motivations for their observations. It was only in 1834 that Émile Clapeyron successfully formulated

the ideal gas law in the simple form:

pıg = NRT
V . (7.7)
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7 Equations . . .The ideal gas law (2)

5 4 The question we are going to look at is to what extent, and if so how,
this law can be used to derive expressions for the Helmholtz energy of
the gas. We can see that the unit of the product p · V is the same as

for A , which means that there may be a deeper relationship between
pressure–volume and the energy functions.

vmode (bug): 6 The argument that follows is a great example of how physical and
mathematical analysis can be successfully combined with experimental
results (thanks to the insight of the old scientists, not the author).
7 We will admittedly need to make some choices along the way,

which mean that the results are not entirely conclusive, but this must
be seen in the context of established practice for measuring and report-
ing basic thermodynamic functions.
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7 Equations . . .Gibbs–Duhem I

1 The quickest way to obtain a useful result is to apply the Gibbs–
Duhem Eq. 5.23 described in Chapter 5. For a thermodynamic system
with only one chemical component, the folowing applies:

s dτ+ v dπ+ dµ = 0 .

2 This differential has no general solution, as s and v are quite arbi-
trary functions of the material state, but for a change of state that is as-
sumed to be isothermal, then dτ = 0 and v ıg =̂ V/N = RT/p =̂ −RT/π,
giving us

(dµıg)T = RT
π dπ ,

or:

µıg(T , p) − µ◦(T) = RT
p∫
p◦

dπ
π = RT ln

(
p
p◦

)
.
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7 Equations . . .Gibbs–Duhem I (2)
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7 Equations . . .Euler’s homogeneous function theorem

1 2 It is also important to remember that thermodynamic energy func-
tions are first-order homogeneous functions to which Euler’s theorem
applies. The Helmholtz energy of a single-component system can therefore

be written as the integral A = −pV + µN.

5 3 Substituting in pıg and µıg from the above equations gives us:

A ıg = −NRT + Nµ◦(T) + NRT ln
(

NRT
p◦V

)
.

4 We have thus derived the Helmholtz energy from the ideal gas law,
using the fact that Euler’s theorem applies to the extensive properties of
the gas, and the Gibbs–Duhem equation, which is itself a direct result
of Euler’s theorem. From Chapter 4 on Legendre transforms we know the general

equations S = − (∂A/∂T)V ,N and U = A + TS, which means that it
also follows that:

Uıg = N

[
µ◦ − T

(
∂µ◦
∂T

)]
− NRT = Nh◦ − NRT .

6 In other words, the internal energy of the gas depends on the
system’s size N and temperature T through the constant of integra-
tion3called µ◦.7 The latter constant must be determined experimentally in each in-

dividual case, or theoretically–experimentally if there are good simula-
tion models for the chemical compound (based on spectrometric mea-
surements).
8 Our provisional conclusion is therefore that we can calculate the

Helmholtz energy of an ideal gas with only one chemical component
and its internal energy. From this the other energy functions can be
obtained in a similar way using Legendre transforms, apart from one
temperature dependent constant.

3 The internal energy Uıg is inevitably independent of both pressure and volume: ideal
gases are a collection of free material points without any form of interaction. It is only
the internal degrees of freedom of the particles that contribute to their energy, and
these are also what determine the integration constant µ◦.
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7 Equations . . .Gibbs–Duhem II

1 Our next challenge is to generalise this result into one that is sim-
ilarly valid for a multi-component system. In order to do that, we must
write the ideal gas law in its extended form

pıg =
∑
i

NiRT
V (7.8)

so that we can identify the components that constitute the mixture.

5 2 This is a function of state in the form p(T ,V ,n), which gives us a
good way to approach the question of Helmholtz energy A(T ,V ,n), but
in order to determine A using the Euler method of integration as shown
in Chapter 5, we also need to know the equation of state µıg

i (T ,V ,n).
3 This function cannot be obtained experimentally in the same way

as pıg, and must therefore be derived theoretically.
4 One way to do this is to apply the Gibbs–Duhem equation again:

S dτ+ V dπ+
∑
i

Ni dµi = 0 . The Gibbs–Duhem equation from Chapter 5 follows directly from
the fact that U is a homogeneous function to which Euler’s theorem
applies when expressed using the variables S, V and n.
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7 Equations . . .Gibbs–Duhem II (2)

7 6 This means that there is an interdependence between the differ-
entials of U which can be usefully exploited, and using the equation of
state π =̂ −pıg and the Gibbs–Duhem equation we will obtain a possi-
ble solution for µi. Let us substitute for π =̂ −pıg while keeping τ =̂ T constant as

shown below:

−V
∑
i

NiRT
−V2 dV − V

∑
i

RT
V dNi +

∑
i

Ni(dµi)
ıg
T = 0 ,

or
∑
i
(RT dV

V − RT dNi
Ni

+ (dµi)T ) = 0 .

8 The simplest solution for an expression with a sum equal to zero is
to assume that each individual term is equal to zero:

(dµi)
ıg
T

RT = − dV
V + dNi

Ni
; ∀i ∈ [1, n] .
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7 Equations . . .Gibbs–Duhem II (3)

13 9 Thermodynamics is a phenomenological science, and we cannot
be sure that the above expression correctly describes the gas mixture,
but at least it is a possible solution.
10 However, the result agrees with experimental observations of dilute
gases, which in the limit case p → 0 behave like a chaotic collection of
particles without any interaction, and where the macroscopic properties
associated with each particle are independent of the other particles.
11 Interestingly, deriving the chemical potiential of a component of an
ideal gas using statistical mechanics gives us exactly the same an-
swera.
12 This is a convincing demonstration of the great power of formal
thermodynamic analysis.

a Statistical mechanical theory is based on a microscopic description of the properties
of particles, and involves calculating their average values based on a relatively small
number of axioms. Whereas at the macroscopic level we have to accept that our
result is merely a possible result, the theoretician can assert that it is a correct result
for a gas consisting of hypothetical particles without any physical extension or mutual
interaction. In other words, a perfect gas. Integrating the differential gives us

1
RT (µıg

i (T ,V ,n) − µ
◦
i (T)) = − ln V

V◦
+ ln Ni

N◦i
.

Note that the constant of integration µ◦i , which will hereafter be called
the standard state of component i, is a function of temperature.14 This means that for any given temperature T we must calculate or

estimate a new value for µ◦i .
15 If the function of state were available in the form p(S ,V ,n), then µ◦i
would become a genuine constant of integration.
16 In practice there are very few systems that can be described in this
way, but radiation from black bodies, as described in Paragraph 45, is
one example.
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7 Equations . . .Standard potential

1 The normal convention is to assume a pure-component standard
state where V◦/N◦i = RT/p◦ and where p◦ = 1 bar, or, in older reference
works, where p◦ = 1 atm.

3 2 The standard state µ◦i should in that case be interpreted as rep-
resenting µ◦i (T , p◦), or more properly µıg

i (T , p◦,N1 = 0, . . . ,Ni = 1 mol,
. . . ,Nn = 0). Bearing in mind this fundamental understanding of what µ◦i means,

the chemical potential of the component can be expressed as

µıg
i (T ,V ,n) = µ◦i (T , p◦) + RT ln

(NiRT
p◦V

)
. (7.9)

Here we should particularly note that (dµıg
i )T ,V ,n = 0 must be true for all

values of p◦.
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7 Equations . . .Standard potential (2)

10 4 This is of course the case by definition, since T , V and n completely
determine the thermodynamic state, but at the same time p◦ acts as a
parameter in the expression for µıg

i .
5 It is therefore slightly unclear what happens if p◦ changes.
6 The passive role of the standard pressure becomes more obvious

if we partially differentiate µıg
i with respect to p◦.

7 This gives us (∂µ◦i /∂p◦)T − RT/p◦ = 0, or put another way: if we
choose to change p◦ then we must also correct µ◦i to ensure that the
total impact on µıg

i is zero.
8 It is important for our own self-esteem to acknowledge that in or-

der to accurately determine the standard state one needs information
at a high level including precise calorimetric measurements, advanced
spectroscopy and quantum physics, or a combination of these things,
and that these activities lie outside our area of responsibility.
9 We must therefore adapt our way of working to the available ther-

modynamic databases, and not vice-versa, which means that it is im-
portant to use the data properly. Essentially, standard states are presented in three different ways in

the literature:

µ◦i (T , p◦) = µ◦i (T , p◦) (7.10)

µ◦i (T , p◦) = ∆fh
◦
i (T) − Ts◦i (T , p◦) (7.11)

µ◦i (T , p◦) = ∆fh
◦
i (T◦) + (h◦i (T) − h◦i (T◦)) − Ts◦i (T , p◦) . (7.12)

11 These equations follow from the definition G =̂ U + pV − TS =̂

H − TS from Chapter 4 applied to the standard state as defined in the
above paragraph.
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7 Equations . . .Standard potential (3)

14 12 Moreover, it is an experimental fact that all molecules, with the ex-
ception of monoatomic ones, have internal energy due to the bonding
within the molecule.
13 Normally this energy is reported as the enthalpy of formation
∆fh◦i (T◦) of the compound. All of the formation properties (enthalpy, volume, entropy, etc.) of

any given compound AaBb . . .Zz in an ideal gas state are defined anal-
ogously by

∆fh
◦
AaBb ...Zz

=̂ hıg
AaBb ...Zz

− ahαA − bhβB − . . . − zhζZ ,

where α, β and ζ indicate the phases (configurations) of the various
elements.

17 15 The phase can be liquid or solid, in which case the crystalline con-
figuration is given, or a hypothetical ideal gas for gaseous elements.
16 The chemical formula AaBb . . .Zz should here be seen as the ele-
mental composition, i.e. not the atomic composition, of the molecule. For example, hydrogen bromide would have the formula

(H2)0.5(Br2)0.5, giving the enthalpy of formation

∆fh
◦
HBr = hıg

HBr
− 0.5hıg

H2
− 0.5h lıq

Br2
.

18 The reason for this discrepancy, with respect to the established
practice for chemical equilibrium reactions, is that according to the IU-
PAC convention the enthalpy of a chemical element is defined as zero
for the stable configuration of the elementa

a Such as H2(g), Ar(g), S(rhombıc), Br2(lıq), Al(s), etc. at T◦ = 298.15 K and p◦ = 1 bar.
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19 Hence, in the above equation hıg
H2

= h lıq
Br2

= 0 and the enthalpy of
formation ∆fh◦HBr

≡ hıg
HBr

is given relative to this arbitrary reference.

22 20 In particular, note that ∆fh◦Br2 , 0, as the enthalpy reference by
definition relates to bromine in the liquid phase and not for bromine in
the (ideal) gas phase.
21 This is the main principle that determines how the thermodynamic
standard state is reported, but there are, of course, exceptions to the
rule: at least one important database (JANAF) uses the more specific
definition h◦i (T) = 0 for the elements at all temperatures T , while an-
other database perhaps uses T = 0 K as its reference and yet another
one may use g◦i (T◦, p◦) instead of s◦i (T◦, p◦). There are therefore many ways of reporting the standard state, but

for all of them it is true that

h◦i (T) − h◦i (T◦) =
T∫

T◦

c◦p,i(T)dT , (7.13)

s◦i (T) − s◦i (T◦) =
T∫

T◦

c◦p,i(T)dln T . (7.14)

23 One of these equations (it doesn’t matter which) can be viewed as
a definition of c◦p , while the other one follows from the total differential
dh = T ds + v dp +

∑
µi dNi, which for constant pressure and composi-

tion gives us (dh)p,n = T ds.
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1 2 The sections 2.1–2.4 explain a little bit about the fundamental phys-
ical principles that, in their different ways, contribute to c◦v,i . In practice, all thermodynamic reference works are based on a

large number of carefully recorded measurements supported by one
or more theoretical calculations, which together produce figures for
∆fh◦i (T◦), s◦i (T◦, p◦) and c◦p,i(T).

3 The enthalpy of formation is generally measured using calorimetry,
whereas the heat capacity of an ideal gas component essentially ad-
heres to the superposition principle 4

c◦p,i = c trans
v,i + crot

v,i + cvıb
v,i + celec

v,i + R

and can be calculated from spectrometric measurements.4 The JANAF tablesa are a good example of how far this develop-
ment has gone.
5 For relatively small molecules (fewer than 8–10 atoms) it is now
possible to estimate c◦p,i more precisely than using high-quality calori-
metric measurements.
a JANAF thermochemical tables. 3rd edition. Part I,II. J. Phys. Chem. Ref. Data, Suppl.,
14(1), 1985.

4 The gas constant R in the above equation is a result of the defintiion of H =̂ U + pV ,
which for an ideal gas gives us Hıg =̂ Uıg +(pV)ıg = Uıg +NRT . If we then differentiate
with respect to temperature we get c◦p,i = c◦v ,i + R.
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7 Equations . . .Euler integration

1 It is easy to lose one’s way in the details of these calculations.
It is therefore worth reiterating that using Euler’s theorem to integrate
euqations 7.8 and 7.9 always works, and that the Helmholtz energy of
the gas can be expressed in the following general form:

A ıg(T ,V ,n) = πıgV +
∑
i

Niµ
ıg
i

= −∑
i

NiRT +
∑
i

Niµ
◦
i (T , p◦)

︸           ︷︷           ︸
G◦(T ,p◦)

+
∑
i

NiRT ln
(NiRT

p◦V

)
.

2 Note that, in this expression, the standard state term is a conven-
tional Gibbs energy function, because T and p◦ have been selected as
the state variables of µ◦i , rather than T and V◦.3 In some strange manner, something has gone wrong here, but

what?
4 It is clear that we no longer have a canonical description of

A (T ,V ,n), and that the unfortunate decision to combine T , V and n

from the original set of variables of p ıg, with p◦ from the standard state
of µıg

i , is creating unintended confusion.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 273 / 1598



Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .Note 7.10

1
2 The consequences become even clearer if we take A ıg as our

starting point for differentiating Uıg = (∂(A ıg/T)/∂(1/T))V ,n or −S ıg =

(∂A ıg/∂T)V ,n.
3 The partial derivative of A ıg is in both cases defined at constant

volume, but how is it possible to implement this for µ◦i (T , p◦)?
4 Let us use Uıg as an example.
5 We start with

A ıg

T = −∑
i

NiR +
∑
i

Ni
µ◦i (T ,p◦)

T +
∑
i

NiR ln(NiRT
p◦V )

6 followed by

d(A ıg

T )V ,n =
∑
i

Ni



(
∂(µ◦i /T)

∂(1/T)

)

p◦

d( 1
T ) +

(
∂(µ◦i /T)

∂p◦

)

T
dp◦




−∑
i

NiR
[
T d( 1

T ) +
1
p◦ dp◦

]
.

7 Finally we use the Gibbs–Helmholtz equations from Paragraph 28
on page 164 together with (∂(µ◦i /T)/∂p◦)T = R/p◦ from the equivalent
discussion on page 256.
8 The differential can now be expressed in the form

Uıg(T ,n) =
(
d(A ıg/T)

d(1/T)

)

V ,n
=

∑
i

Nih◦i (T) −∑
i

NiRT = Hıg − pıgV ,

9 which shows that Uıg is only a function of T and n because p◦ and
V cancel out during the derivation.
10 The total derivative now has one degree of freedom, and there-
fore takes the same value as the partial derivative (∂(A ıg/T)/∂(1/T))

throughout the domain of definition.
11 But why is it necessary to go via the total differential?
12 Well, because otherwise we risk writing (∂(µ◦i /T)/∂(1/T))V ,n = u◦i .
13 Firstly µ◦i is a function of V◦ and not of V , and secondly V◦ varies
with T when p◦ has been chosen as the standard state.
14 It is easy to make a mistake in those circumstances, and it is there-
fore safest to go via the total differential.
15 The derivation also illustrates how risky it is to introduce non-
canonical variables for the thermodynamic potentials. In summary, the following equations apply to ideal gas mixtures:

A ıg(T ,V ,n) =
∑
i

Niµ
◦
i (T , p◦) +

∑
i

NiRT
[
ln

(NiRT
p◦V

) − 1
]

(7.15)

−S ıg(T ,V ,n) =
∑
i

Nis◦i (T , p◦) +
∑
i

NiR ln
(NiRT

p◦V

)
(7.16)

Uıg(T ,n) = Hıg(T ,n) − NRT (7.17)

Hıg(T ,n) =
∑
i

Nih◦i (T) . (7.18)
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1 2 Historicallly speaking, T , p,n has long been the favoured set of
variables for modelling all chemical systems, probably because tem-
perature and pressure are particularly easy to control in a laboratory. In our case, it is possible to calculate Gibbs energy by using the

Euler method to integrate the chemical potential in Eq. 7.9, and substi-
tuting in the ideal gas law from Eq. 7.7

µıg
i (T , p,n) = µ◦i (T , p◦) + RT ln

(Nip
Np◦

)
, (7.19)

which gives us:

Gıg(T , p,n) =
n∑

i=1
µıg

i Ni =
n∑

i=1
µ◦i Ni + RT

n∑
i=1

Ni ln
(Ni

N
)
+ NRT ln

( p
p◦

)
.

(7.20)

3 Alternatively, we can calculate the Gibbs energy as a Legendre
transform of Helmholtz energy (or vice–versa).

7 4 This is undoubtedly possible, but since Gıg and A ıg have different
canonical variables, we also need to invert p(T ,V ,n) to V(T , p,n).
5 If this is impossible, the result of the transformation will be an im-

plicit functiona.
6 For most equations of state, with the exception of ideal gases, the

2nd virial equation and certain other models, an explicit transformation
from T , p,n to T ,V ,n is impossible.

a The specification V(p) has 3 solutions in the steam/liquid phases, and is not a func-
tion in the ordinary sense of the word. On the other hand, p(V) is an unambiguous
specification, which means that there is no problem with doing a Legendre transform
of Helmholtz energy to Gibbs energy. This significantly complicates the practical application of Legendre

transforms.
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1 2 The ideal gas law is a simple model, which allows us to choose any
system variables that we like.
3 For example, we can rewrite µ(T , p,n) or µ(T ,V ,n) as expressions

for n(T ,V ,µ).
4 Very few models allow us to do this, and so we will make use of the

opportunity now that we have it. An alternative way of expressing Eq. 7.19 is:

Nıg
i (T ,V ,µ) = p◦V

RT exp
(µi−µ◦i

RT
)
. (7.21)

5 Substituted into the ideal gas law, Eq. 7.21 gives us an adequate
equation of state for the grand potential Ω(T ,V ,µ):

pıg(T ,µ) = RT
V

n∑
i=1

Nıg
i = p◦

n∑
i=1

exp
(µi−µ◦i

RT
)
. (7.22)

6 The total differential of Ω for a one-component system was derived
in Chapter 4, see Paragraph 24 on page 136.

7 For an n-component system, we can state that

(dΩ)T ,µ = −p dV . (7.23)
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7 Equations . . .n(T ,V ,µ) (2)

8 The differential (dΩ)T ,µ can be integrated directly, as long as the
function of state p(T ,V ,µ) is expressed explicitly. Eq. 7.22 is explicit,
and if we integrate using Euler’s method at a given T and µ we obtain

Ωıg(T ,V ,µ) = −pıgV = −p◦V
n∑

i=1
exp

(µi−µ◦i
RT

)
. (7.24)

9 It may at first sight appear that p◦ is a free variable in the above
equations, but if we change p◦, then µ◦i (T , p◦) varies accordingly, always
keeping the value of Ωıg unchanged (show this).

11 10 Also note that pıg(T , µi) is a function of only two variables in
Eq. 7.22, whereas Ωıg(T ,V , µi) in Eq. 7.24 requires three variables. The intensive state is evidently given when n + 1 intensive vari-

ables have been determined, while the extensive state requires n + 2
variables.

12 This is a general result, which is not limited to ideal gases5.13 From Paragraph 35 in Chapter 5 we know that the partial differen-
tials of functions with only one extensive variable fulfil the requirements
for homogeneitya:

{∂T
∂S

}
p,µ1,...,µn =

{∂p
∂V

}
T ,µ1,...,µn =

{∂µ1

∂N1

}
T ,p,µ2,...,µn

= . . . =
{∂µn

∂Nn

}
T ,p,µ1,...,µn−1

= 0 .

14 The intensive variables are clearly independent of the size of the
system, and the state is therefore given when n + 1 intensive variables
have been determined, cf. Paragraph 39 on page 214.
15 However, in order to determine the size of the system, we also
need an extensive variable.
16 In other words, a thermodynamic system requires n + 2 state vari-
ables, in spite of the fact that the intensive state can be described with
only n + 1 variables.

a Zero is zero, most people probably think, but the partial differentials have different
units in this case, and the similarity only applies to the measure (the absolute value) of
these quantities.

5 In contrast to e.g. Uıg = U(T ,n), which only applies to ideal gases.
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Derive the partial derivatives of Ωıg(T ,V , µj) with respect
to T , V and µi. Show that the results can be interpreted

as −S ıg, −pıg and −Nıg
j , without discussing the properties

of the Legendre transform.
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1 2 It’s a good idea to start by establishing some shadow values before
starting on the differentiation process itself. Instead of differentiating pıgV in Eq. 7.24 we will use the fact that

−Ωıg = pıgV =
∑

i Nıg
i RT = NıgRT . If we differentiate Nıg

i (T ,V ,µ) in
Eq. 7.21 we get:

(∂Nıg
i

∂T
)
V ,µ = Nıg

i
RTs◦i −R(µi−µ◦i )

(RT)2 − Nıg
i

T =
Nıg

i
RT

(
s̄ıg

i − R
)
,

(∂Nıg
i

∂V
)
T ,µ =

Nıg
i

V ,

(∂Nıg
i

∂µj

)
T ,V ,µk,j

=
δij Nıg

i
RT .

3 Here we have made use of the relationship −s◦i = − (∂µ◦i /∂T)p,n,
which also means that −s◦i = − (∂µ◦i /∂T)

V ,µ
.
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7 Equations . . .§ 040 Grand canonical potential (2)

5 4 Think about this result for a moment. Apart from this fundamental observation, the simplification of
RTs◦i − R(µi − µ◦i ) in the first partial differential equation relies on an
understanding of certain principles of thermodynamics.

6 In the general case, µi = h̄i − Ts̄i. In the special case of ideal
gases, h̄ıg

i = h̄◦i , and hence Ts◦i − (µi − µ◦i ) = Ts̄ıg
i .

7 We are now ready to derive the partial differentials of Ωıg

(∂Ωıg

∂T
)
V ,µ = −RT

n∑
i=1

(∂Nıg
i

∂T
)
V ,µ − NR = −

n∑
i=1

Ni(s̄
ıg
i − R) − NR = −S ıg ,

(∂Ωıg

∂V
)
T ,µ = −RT

n∑
i=1

(∂Nıg
i

∂V
)
T ,µ = −RT

n∑
i=1

Nıg
i

V = −pıg ,

(∂Ωıg

∂µj

)
T ,V ,µk,j

= −RT
n∑

i=1

(∂Nıg
i

∂µj

)
T ,V ,µk,j

= −
n∑

i=1
Nıg

i δij
= −Nıg

j
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1 2 The ideal gas law was established in several stages over the course
of the 17th-19th centuries, as an experimental law for the so-called per-
manent gases (air, N2, H2, etc.).
3 We now know that there is a direct link between the macroscopic

characteristics of the gas and the microscopic properties of the individ-
ual molecules.
4 The related discipline is called statistical mechanics or statistical

thermodynamics.
5 It would be far too big a job to discuss this theory in detail, but

we will take the time to look at some of the details that underpin our
understanding of ideal gases. Without further introduction, let us assume that the relationship

between the particles’ microstates and Helmholtz energy is

A
NRT = − ln Q ,

where Q is the total partition function of the system67.

7 6 For a system with n particles in defined locations, Q = qn, but if
the particles are not in a fixed location (as in a gas), then Q = 1

n!q
n. The molecular partition function q approximates to the product of

q ≈ qtransqvıbqrot · · · over the (assumed) number of independent terms.

8 In principle, this is all we need to know about the gas, but in order
to calculate the necessary properties, we must first know the quantum
mechanical description of each individual input to the model.9 We can only barely scratch the surface of quantum mechanics, and

the descriptions given in this section have therefore been kept as simple
as possible.
10 However, before we start looking at microstates, we will first estab-
lish the fundamental macroscopic thermodynamic equations that apply
to ideal gases.

6 D. F. Lawden. Principles of Thermodynamics and Statistical Mechanics. John Wiley
& Sons, 1987.
7 Robert P. H. Gasser and W. Graham Richards. An Introduction to Statistical Thermo-
dynamics. World Scientific Publishing Co. Pte. Ltd., 2nd edition, 1995.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 281 / 1598



Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .Free translation

1 A particle-in-a-box has three identical degrees of translational free-
dom.

3 2 Even though the particle can in principle move freely within the
control volume, its kinetic energy is quantified (only standing waves are
permitted). In a cubic box, each direction will have its own quantum number jx ,

jy and jz , which is given the same unit of energy ε = h2/8ml2.

4 The associated partition function8 can be written

qtrans =
∞∑

jx=1

∞∑
jy=1

∞∑
jz=1

exp
(−(j2x+j2y+j2z )ε

kT
)
.

5 For high quantum numbers j2 = j2x + j2y + j2z ≫ 0 is a virtually
continuous function over (an eighth of) the surface of a sphere with a
radius of j.
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7 Equations . . .Free translation (2)

6 The surface area of the octant of the sphere is πj2/2, which leads
us to the integral

lim
kT≫ε

qtrans = π
2

∞∫

0

j2 exp
(−j2ε

kT
)
dj

= π
2
(kT
ε

)3/2
∞∫

0

x2e−x2
dx

︸        ︷︷        ︸
√
π/4

, x2 =̂
j2ε
kT ,

→ (2πmkT)3/2V
h3 .
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7 Equations . . .Free translation (3)

7 When going from summation to integration, it has been assumed
that kT ≫ εx . Combining this with j2 ≫ 0 gives us j2ε/kT < 1 over
much of the area of integration, which ensures that the integral is a
good approximation of the sum.

8 Per Chr. Hemmer. Statistisk mekanikk. Tapir Forlag, 1970. In Norwegian.
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7 Equations . . .§ 041 § 40 § 42

Calculate the typical translational temperature ε/k =

h2/8ml2k for the light gases hydrogen, helium and
neon. Assume that the lengths of the sides of the box

are ≥ 1 nm. Comment on the answer.
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7 Equations . . .§ 041 Particle-in-a-box

1 The table below gives the values for ε/k and the standard boil-
ingpoint of these three low-boiling-point compounds.

Mw
g/mol

ε/k
K

Tb
K

H2 2.0159 1.19 20.39
He 4.0026 0.60 4.224
Ne 20.179 0.12 27.09

2 The length of the sides of the box is l = 1 nm (which is right at the
limit of the range of validity of classical thermodynamics).

3 Except in the case of He, ε/k is reassuringly far below the boiling
point of the compounds, and in practice all gases have a virtually con-
tinuous spectrum of translational energies9.
9 Note that ε ∝ l-2. If the length of the box is changed to e.g. 10 nm, then ε/k will be
reduced by a factor of 100. This means that even He behaves in the classical manner
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7 Equations . . .Sackur–Tetrode S

1 For an ensemble of n particles-in-a-box without fixed locations, the
total partition function becomes Q trans = 1

n!(q
trans)n.

2 This results in a function for communal entropy that only depends
on the system’s volume and the mass and number of particles, while
the geometry and bonds are irrelevant:

Q trans =
(qtrans)

n

n!
n→∞→ en(qtrans)

n

nn
ε≪kT−→ (e

n
)n [V(2πmkT)3/2

h3

]n
.

3 Let us substitute in n = NAN, m = N-1
A Mw , k = N-1

A R and ln e = 1.
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7 Equations . . .Sackur–Tetrode S (2)

4 Differentiating gives us a set of canonical equations of state for
Helmholtz energy:

ptransV
NRT = 1 ,

µtrans

RT = 1 − ln
[V(2πMw RT)3/2

NN4
A h3

]
.

5 Two of thermodynamic properties that can be derived from this are
ctrans

v /R = 3/2 and standard entropy

strans(1 atm)
R = −1.164855 . . .+ 5

2 ln T
[K] +

3
2 ln Mw

[g/mol] , which is also known as the Sackur10–Tetrode11 equation.

10 O. Sackur. Ann. Physik, 36:398, 1911.
11 H. Tetrode. Ann. Physik, 38:434, 1912. Correction in 39 (1912) 255.
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7 Equations . . .§ 042 § 41 § 43

Use the Sackur–Tetrode equation to estimate s◦298.15 K,1 bar
for all of the noble gases. Compare your answer with

experimental values.
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7 Equations . . .§ 042 Sackur–Tetrode

1 A convincing comparison of measured and calculated values is
shown in Table 7.1.

2 These calculations are more precise than experimental results, but
the theory cannot be tested on multi-atomic molecules, because the
internal degrees of freedom of the molecules also contribute energy.3 This topic will be further discussed in the following sections on vi-

brational and rotational degrees of freedom.
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Figure 7.1: Comparison of experimental standard entropies with the Sackur–
Tetrode equation (the margin of error for R , NA , h and Mw is less than
0.01 cal/mol K).

Mw
g/mol

s
cal/K mol

122 strans

cal/K mol
Mw

g/mol
s

cal/K mol
132 strans

cal/K mol

He 4.0026 - 30.11 Kr 83.80 39.17 ± 0.1 39.18
Ne 20.179 35.01 ± 0.1 34.93 Xe 131.29 40.70 ± 0.3 40.52
Ar 39.948 36.95 ± 0.2 36.97 Rn 222.0 - 42.08

142 Gilbert Newton Lewis and Merle Randall. Thermodynamics. McGraw-Hill Book

Company, Inc., 2nd edition, 1961.
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7 Equations . . .Free vibration

1 The atoms in a molecule are held together by forces which, when
subjected to small perturbations, allow the atoms to vibrate as if their
centres of were connected by elastic springs.

2 The partition function for a harmonic oscillator of this kind, with a
characteristic frequency ν, quantum number j and energy factor ε =

hν = hω/2π =̂ ~ω, is

qvıb =
∞∑

j=0
exp

[−(j+ 1
2)ε

kT
]
= exp

( −ε
2kT

) ∞∑
j=0

exp
(−jε

kT
)
.

3 The summation can be written as a geometric series qvıb =
√

u∑∞
j=0 uj =

√
u/(1 − u) where u =̂ e−x =̂ exp(−ε/kT).
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4 If we divide the numerator and denominator by
√

e−x , we get

qvıb =
√

u
1−u →

√
e−x

1−e−x = 1√
ex−
√

e−x
.

5 We can obtain a canonical equation of state if we substitute
2 sinh(x/2) =

√
ex −

√
e−x .

6 When inserted into x = ε/kT this produces

µvıb

RT = − ln qvıb = ln
[
2 sinh

( hν
2kT

)]
.

7 Differentiating twice with respect to temperature gives us

cvıb
v

R =
( hν

2kT )
2

sinh2( hν
2kT )

. (7.25)
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The heat capacity of a harmonic oscillator has an
upper temperature limit of limT→∞ cvıb

v = R. Show this.
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7 Equations . . .§ 043 Harmonic oscillator

1 The power series expansion of sinh(x) = x + 1
3!x

3 +O(x5) applied
to kT ≫ hν gives:

lim
kT≫hν

cvıb
v

R = lim
x≪1

x2

(x+ 1
3!x

3···)2 = 1 .

2 A harmonic oscillator has two equally important energy contribu-
tions (kinetic and potential energy), which gives us cv → R/2+R/2 = R
as the upper temperature limit.

3 In a multi-atomic molecule with many vibration frequencies, the
contributions of each individual oscillator must be summed (linearly) in
accordance with the equipartition principle.
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1 The table below shows the characteristic vibrational temperatures
ε/k = hν/k = hc/λk for a few di- and multi-atomic molecules.

2 Unlike the contributions from translation and rotation, the vibra-
tional state is only fully developed at high temperatures:

g1,2,3,···
λ-11,2,3,···
cm-1

ε/2k
K

H2 1 4162 ca. 3000
CH4 3, 2, 1, 1 1306, 1534, 2916, 3019 900–2200
HCl 1 2885 ca. 2100
H2O 1, 1, 1 1595, 3657, 3756 1100–2700
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3 One of the striking features of the oscillator equations is that the
ground state (with the quantum number j = 0) makes a positive contri-
bution to the total energy.

4 If we ignore the ground state, the partition function simplifies to

qEinstein → 1
1−exp( −εkT )

= 1
1−e−x .

5 The heat capacity can then be expressed as Einstein’s15 equation:

cEinstein
v = x2ex

(ex−1)2 . (7.26)

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 297 / 1598



Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .Einstein CP (3)

6 Our intuition tells us that the Eqs. 7.25 and 7.26 are equiva-
lent, because the ground state only makes a constant (temperature-
independent) energy contribution. The explanation for this is by no
means obvious at first glance, but if we compare the equations, we can
see that it is the case (show this).

15 Albert Einstein, 1879–1955. German physicist.
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1 A rotating system with a fixed distribution of mass is called a rigid
rotor. The moment of inertia of the rotor determines how much kinetic
energy it stores at any given frequency.

2 In quantum mechanics, the moment of inertia of isolated atoms is
zero, whereas diatomic (linear) molecules have degenerate moments of
inertia about two of their axes of rotation and a zero moment of inertia
about the third axis.

3 In multi-atomic (non-linear) molecules, the moments of inertia
about each axis of rotation are different, unless the symmetry of the
molecule dictates otherwise.
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4 The partition function for a linear molecule with a moment of inertia
I, quantum number j and energy factor ε = ~2/2I =̂ h2/8π2I can be
expressed

qrot,2D = 1
σ

∞∑
j=0

(2j + 1)exp
[−j(j+1)ε

kT
]
,

where σ corrects for any rotational symmetry of the molecule (σH2O = 2,
σNH3 = 3, σCH4 = 12).

5 There is no analytical limit to the above summation, but expanding
the power series16 gives us qrot = kT

ε (1 + ε
3kT + 1

15(
ε

kT )
2 + 4

315(
ε

kT )
3 +

· · · ) provided that 0.3kT > ε.
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7 6 The upper temperature limit can be calculated using integration to
obtain an approximation of the partition sum, as shown below:

lim
kT≫ε

qrot,2D = 1
σ

∞∫

j=0

(2j + 1)exp
[−j(j+1)ε

kT
]
dj

= − kT
σε e−j(j+1) εkT

∣∣∣∞0
→ 8π2IkT

σh2 . The rotational behaviour of multi-atomic (non-linear) molecules is
more complex than that of linear molecules, and we will therefore simply
state the partition function without further explanation17:

lim
kT≫ε

qrot,3D =
(8π2IkT)3/2

σh3 .

M =
∑
i

Mi

(
yT

i yiI − yiy
T
i

)
∼ QΛQT .

8 Here yi = xi − x̂ represents the molecular coordinates of each of
the atoms i measured in relation to the molecule’s centre of mass x̂ =∑

i M-1
w Mixi.

16 Gilbert Newton Lewis and Merle Randall. Thermodynamics. McGraw-Hill Book
Company, Inc., 2nd edition, 1961.
17 Note the close analogy between qrot,3D and qtrans. Both of the terms include a kinetic
energy contribution, and so there are clear similarties.
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Determine the moment of inertia of an H2O molecule
if the bond angle is 104.5◦ and the O–H distance is

0.958 Å.
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1 Let us number the atoms H(1), H(2) and O(3).

2 Their respsective atomic weights are M1 = 1.00794 gmol-1, M2 =

1.00794 gmol-1 and M3 = 15.9994 gmol-1.

3 The molecule can be oriented in an infinite number of ways, and
the coordinates given below are simply based on an arbitrary choice
(origin at O(3) and H(1) along the x axis):

x1

[Å]
=




−.958
0
0



, x2

[Å]
=




0.958 · sin(14.5·2π
360 ) = 0.240

0.958 · cos(14.5·2π
360 ) = 0.927

0



, x3

[Å]
=




0
0
0



.
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4 From this information, the inertia tensor follows

M

[g mol-1 Å
2
]
=




0.818 −.262 0
−.262 0.954 0

0 0 1.772



.

5 Diagonalising M y QΛQT gives us the eigenvalues λ1 = 0.615,
λ2 = 1.156 and λ3 = 1.772, which have the same units as M itself.

6 The moment of inertia can now be calculated as I =
3√
0.615 · 1.156 · 1.772 = 1.080 g mol-1 Å

2
= 1.794 · 10-47 kg m2.
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1 Finally, the canonical equation of state describing the rotation of
non-linear molecules can be written

µrot,3D = −RT ln (8π2IRT)3/2

σN3
A h3 ,

as long as we understand that I = 3√λ1λ2λ3 represents the molar mo-
ment of inertia.

2 Most molecules, with the exception of hydrogen (isotopes), there-
fore have a relatively high moment of inertia, which means that the up-
per temperature limit is as low as T . 50 K:
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Ref.18 σ λi ·1047

kg m2
I·1047

kg m2
ε/k
K

Tb
K

H2 2 0.460 0.460 0 0.460 87.6 20.39
CH4 12 5.313 5.313 5.313 5.313 7.6 111.66
HCl 1 2.641 2.641 0 2.641 15.3 188.15
H2O 2 1.022 1.920 2.942 1.794 22.5 373.15

3 This gives us the classical heat capacity values of R and 3/2R for
linear and non-linear molecules respectively.

18 G. M. Barrow. Physical Chemistry. McGraw-Hill, 3rd edition, 1979.
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1 Vibration and rotation are the “classical” contributions to the intra-
molecular energy function.

2 For simple molecules, these contributions can be added together,
provided that the amplitude of vibration is small and doesn’t disturb the
molecule’s centre of mass (harmonic oscillator).

3 However, the general description of the molecule is far more com-
plex, and must take into account anharmonic vibration or internal rota-
tional and torsional fluctuations.

4 In hydrocarbons, e.g. CH3, groups will rotate freely around the
bond axis, whereas double bonds such as CH2 = CH2 only allow tor-
sional fluctuations.5 Internal rotation can also be partially prevented by sufficiently low

temperatures (staggered rotation).
6 An important theoretical limit in this context is the equipartition prin-

ciple, which states that a fully developed energy degree of freedom con-
tributes 1

2R to cv (vibration results in two degrees of freedom, consist-
ing of potential and kinetic energy).
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1 Electron excitation is a phenomenon that typically occurs at high
temperatures, and the outer electrons in a stable molecule will (gradu-
ally) be excited at temperatures & 3000 K.

2 In radicals, excitation can occur at . 1000 K, because their elec-
trons are more weakly bonded.
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1 The spin of elementary particles can also contribute to the energy
state of a molecule.

2 In the case of hydrogen, nuclear spin (cf. parahydrogen and ortho-
hydrogen) plays a key role at temperatures . 400 K.

3 Similarly, electron spin is significant if the molecule has unpaired
electrons (cf. NO, O2 and NO2).
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1 Thermal radiation (in a closed control volume) can be treated as a
thermodynamic system, provided that we’re not interested in the spec-
tral distribution19 of the radiation.

2 In this case it is actually possible to set up the canonical equations
of state20 for internal energy

prad =
1
4

3
√

3
4b

(S
V
)4
,

T rad =
3
√

3S
4bV ,

hvor

b = 8π5k4

15h3c3 = 7.56591 . . . · 10-16 J
m3 K4 .
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6 3 Note that the number of photons present in the radiation space is
not included in the equations (determined by S and V ).
4 In this respect eletromagnetic radiation deviates from the classical

notion that the particle number of a system can be treated as a free
variable because it is countable.
5 An unexpected consequence of this is that the chemical potential

of the photon must be set at zero (this follows from a Lagrange optimi-
sation of the equilibrium state). Using Euler’s method to do a simplified integration with respect to

only S and V gives us the internal energy of the radiation space:

Urad(S ,V) = T radS − pradV =
3
4

3
√

3S4

4bV .

7 By eliminating S we can obtain the Stefan21–Boltzmann22 law of
radiation Urad = bVT4. Alternatively, we can replace T with p, which
gives us Urad = 3pV .

19 An energy distribution function which has frequency as a free variable.
20 Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley,
2nd edition, 1985.
21 Joz̆ef Stefan alias Joseph Stefan, 1835–1993. Slovenian physicist and poet.
22 Ludwig Boltzmann, 1844–1906. Austrian physicist.
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One of the most important fission reactions in a uranium
bomb can be written 1

0 n+235
92 U→ 142

56 Ba+91
36 Kr+1

0 n.
The energy released is 3.5 · 10-11 J per fission event.
Calculate T rad and prad if 1% of the atoms take part

in the fission reaction.
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1 The density of the 235 uranium isotope is 19.1 g cm-3 and its molar
mass is 235.04 gmol-1.

2 If 1% of the mass is involved in the reaction, the energy density will
be u =̂ V -1U = 0.01 · 6.0221 · 1023 · 3.5 · 10-11 · 19.1 · 106/235.04 =

1.71 · 1016 J m-3.

3 From u = bT4 = 3p we can obtain T rad = 6.9 · 107 K and prad =

5.7 · 1010 bar.

4 These figures are representative for the uranium bomb Little Boy,
which was dropped on Hiroshima on 6 August 1945.
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1 2 The Debyea

3 model of vibration is based on a periodic crystal lattice.

a Petrus Josephus Wilhelmus Debije, alias Peter Joseph William Debye, 1884–1966.
Dutch–American physicist. At each lattice point there is a particle (atom, group of atoms or

molecule) oscillating in the force field of the neighbouring particles.

5 4 The partition function adheres to the Einstein model on page 284,
but in such a way that the frequency can vary for each individual particle. Together all of the particles vibrate within a wide spectrum of fre-

quencies (called phonons), right up to the critical frequency ωmax, which
is an indirect measure of the total number of degrees of freedom in the
system:

ωmax∫

0

g(ω)dω = 3n .

6 The function g(ω) indicates the multiplicity for each frequency, and
the next important assumption in the Debye model is g(ω) ∝ ω2.
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9 7 This is not, of course, entirely accurate, but it is nevertheless a
much better assumption than saying that all of the particles vibrate with
the same frequency, as is assumed in the Einstein model.
8 The explanation for thisa is complicated, so we will not dwell on it

here, but the result is incredibly simple

g(ω) = 9n
ω3max

ω2 .

a Herbert Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, 2nd
edition, 1985. The partition function can now be expressed in a modified Einstein

model

QDebye =
ωmax∏
ω

1

[1−exp(−~ωkT )]
g(ω) ,

where the ω represent all of the discrete frequencies in the crystal.

10 At the limit value n → ∞ there will be a continuum of frequencies,
and the Helmholtz energy can be expressed as

lim
n→∞

ADebye = 9NRT
ω3

max

ωmax∫

0

ω2 ln
[
1 − exp

(−~ω
kT

)]
dω .
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1 2 The canonical equation of state can be obtained in the normal way
through differentiation. When expressed in the dimensionless form it makes sense to in-

troduce a characteristic vibrational temperature θD =̂ ~ωmax/k also re-
ferred to as the Debye temperature. The chemical potential then be-
comes

µDebye

RT = 9
( T
θD

)3 θD/T∫

0

x2 ln (1 − e−x)dx ,

where x = ~ω/kT =̂ θD/T .
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3 If we differentiate the partition function twice with respect to tem-
perature, it gives us

cDebye
v

R = 9
( T
θD

)3
θD/T∫

0

x4ex

(ex−1)2 dx ,

but note that these expressions are two independent approximations of
the partition function.

4 This introduces a thermodynamic inconsistency where cDebye
v ,

−T ∂2µDebye/∂T∂T .
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5 There is no analytical solution to the above integral, but at the upper
temperature limit θD/T → 0 and expanding the power series ex = 1 +

x + O(x2) gives us

lim
T→∞

cDebye
v

R = 9
( T
θD

)3
θD/T∫

0

x4(1+x+··· )
(x+··· )2 dx ≃ 9

( T
θD

)3
θD/T∫

0

x2 dx = 3 .

6 This result shows that each atom (molecule) in the lattice oscillates
in 3 independent directions if the temperature is sufficiently high.

7 Many metals (Pb, Sn, Cd, Ag, . . . ) are essentially in this state at
room temperature. The limit value is also referred to as the Dulong–
Petit23 law.

8 For the lower temperature limit, θD/T → ∞ and the integral is a
constant.
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9 This has a practical application in the proportional relationship

lim
T→0

cDebye
v

R ∝ T3

when determining the entropy of a substance by calorimetry.

10 Instead of the highly time-consuming and difficult process of mea-
suring near 0 K, all you need to do is measure the heat capacity down
to 15 − 20 K.11 Often this is sufficient to determine the factor of proportionality

in the above equation, allowing you to extrapolate the measurements
down to 0 K.

23 Alexis T. Petit and Pierre L. Dulong. Ann. Chim. Phys., 10:395, 1819.
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1 2 The bonding electrons in a metal belong to a group of particles
called fermions, named after the physicist Enrico Fermia.

a Enrico Fermi, 1901–1954. Italian–American physicist. One of the characteristics of fermions is that they cannot share the
same one-particle state (the Pauli24 exclusion principle).

3 In a metal, the electron energy levels will therefore be filled up from
the lowest level up to the Fermi level equivalent to the chemical potential
(µ◦) of the electrons in the conduction band.

4 The internal energy of these electrons can be expressed

Uelec

NRT = u◦
RT + π2

4 · kT
µ◦

+ . . .

5 The chemical potential of electrons is a relatively abstract concept,
and an alternative to this value is the Fermi temperature TF =̂

µ◦
k , which

for normal metals is approximately 105 K.
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6 Differentiating Uelec gives us the lower temperature limit for the
electronic contribution to the heat capacity of metals:

lim
T→0

celec
v

R = π2T
2TF
∝ T .

7 This is in contrast to crystalline phases with covalent bonds where
limT→0(cv) ∝ T3 due to the phonon contribution.

8 The practical implication of this is that the heat capacity of met-
als is dominated by the fermion contribution at sufficiently low tempera-
tures (T . 5 K).

24 Wolfgang Ernst Pauli, 1900–1958. Austrian physicist.
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1 The virial equation relates to ideal gases. 2 There is an equivalent power series expansion for osmotic pressure
in dilute solutions, but it is harder to derive. Expand the power se-

ries p/RT in molar density ρ = N/V :

pvırV
NRT =

∞∑
k=1

Bk (T)
(N
V
)k−1

= 1 + B2(T) N
V + · · · (7.27)

3 This is the normal way to express the virial development of gases,
but it is also possible to invert the series from p(ρ) to ρ(p) as shown
below.

4 Here the series has been truncated after the second term, which
means that the index 2 can be left off the symbol B:

pV2.vır

NRT = 1 + BN
V + · · · ≃ 1 +

Bp
RT + · · ·
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5 Multiplying both sides by NRT/p gives the volume-explicit form
V2.vır = NRT/p + BN, which reveals that B is a correction factor for
the molar volume of the gas.

6 Experimentally B = limp→0(V −RT/p) is used, but this limit tells us
nothing about how B varies with temperature.

7 In practice B < 0 for T < TB ≈ 6Tc, where TB is known as the
Boyle25 temperature.
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8 Statistical mechanics explains the theoretical relationship between
B and the associated pair potential φ(r) for the interaction between two
molecules in the gas phase:

B(T) = 2πNA

∞∫

0

(
1 − e

−φ(r)
kT

)
r2 dr . (7.28)

9 This equation holds very well for non-polar molecules with vir-
tually perfect spherical symmetry, but for rod-shaped molecules and
molecules with permanent dipole moments integration must be done
with respect to the (two) inter-molecular angles of orientation as well as
the inter-molecular distance.
10 This results in an integral that looks like the one in 7.28, but where
φ(r) represents the mean pair potential of the molecules.

25 Robert Boyle, 1627–1691. English chemist and philosopher.
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1

σ r

φ
Let us assume that φ = 0 for r > σ and φ = ∞
for r ≤ σ.

2 That means viewing the molecules as hard
spheres, with no pairwise interaction.

3 Substituting this into the integral for B gives
us

Bhs = NA

σ∫

0

r2 dr = 2πNAσ
3

3

4 The hard sphere potential produces a reasonable approximation
of a real system at high temperatures, but it doesn’t explain why B is
temperature-dependent.
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7 Equations . . .Potential well

1

−ε σ r

φ
Let us assume that φ = 0 for r > ασ, φ = −ε for
σ < r ≤ ασ and φ = ∞ for r ≤ σ.

2 That means viewing the molecules as hard
spheres with pairwise interaction within the po-
tential well.

3 Substituting this simple potential into the integral for B (where
α > 1), demonstrates that B(T) is a strongly temperature-dependent
function with the hard-sphere potential as its upper temperature limit:

Bsw = Bhs + 2πNA

ασ∫
σ

(
1 − e

ε
kT

)
r2 dr

= Bhs
[
1 + (α3 − 1)(1 − e

ε
kT )

]
.
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7 Equations . . .Potential well (2)

4 Another connection between ε,TB and α is revealed if you solve
the equation Bsw(TB) = 0:

ε
kTB

= ln α3

α3−1 ⇔ α3 = e
ε

kTB

e
ε

kTB −1
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Figure 7.2: The second virial coefficient of methane calculated using the hard
sphere, well and Lennard-Jones 6:12-potential where σ = 3.85 Å and ε =

1.96 · 10-21 J. Both Bsw and BLJ satisfy the lower temperature limit limT→0 B =

−∞, whilst the upper temperature limit limT→∞ B = 0+ is only fulfilled for BLJ

(this can only be seen once you reach T & 104 K).
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7 Equations . . .Lennard-Jones28

1

−ε σ r

φ
Let us assume that φ = 4ε

[
(σr )

12−(σr )6
]

for r > 0.

3 2 This version is often referred to as the 6:12 potential. The exponent 6 has a theoretical basis in
the London26 theory of dispersion forces involv-
ing instantaneous dipoles, whilst the exponent
12 is empirical.

4 BLJ cannot be determined analytically, and numerical integration is
therefore required.

7 5 This is simple in theory, but not quite so straightforward in practice.
6 In order to prevent numerical problems, the lower limit is estimated

using a hard-sphere contribution and the upper limit using a power se-
ries expansion, see the Matlab programme 30:1.5. A typical temperature progression is shown in Figure 7.2 along with

the experimental data for methane27.
25 John Edward Lennard-Jones, 1894–1954. English mathematician and physicist.
26 Fritz London, 1900–1954. German–american physicist.
27 J. H. Dymond and E. B. Smith. The Virial Coefficients of Pure Gases and Mixtures.
Oxford University Press, 1980.
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7 Equations . . .The van der Waals equation

1 For a given vector x consisting of the mole fractions x1, x2, . . . , xn

the van der Waals29 equation of state can be expressed as

pVdW(T , v, x) = RT
v−b(x) −

a(x)
v2 , (7.29)

where a(x) =
∑

i
∑

j aijxixj tells us something about the attractive forces
between the molecules and b(x) =

∑
i bixi represents the hard-sphere

volume.

2 This means that there must be a relationship between the van der
Waals equation and the virial equation in Section 7.6. We can demon-
strate this relationship by expanding the power series pVdWV/NRT at
the limit V →∞ (ideal gas):

pVdWV
NRT = 1

1−b(N
V )
− a

RT
(N
V
)
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7 Equations . . .The van der Waals equation (2)

= 1 + b
(N
V
)
+ b2 (N

V
)2

+ · · ·+ bn (N
V
)n − a

RT
(N
V
)
.

3 If we compare the coefficients in this series with the ones in
Eq. 7.27, we find that Bvdw

2 = b − a/RT , Bvdw
3 = b2, Bvdw

4 = b3 etc.

6 4 Only Bvdw
2 bears any resemblance to real systems; the other virial

coefficients are completely unrelated to reality.
5 In spite of the massive simplification, the van der Waals equation

of state is often used as a starting point for more complicated equations
of state, see Chapter 13. It is beyond the scope of this chapter to discuss all of the impli-

cations of the van der Waals equation here, but we will at the very
least note one important property: the parameters aii and bi can be
obtained by measuring the critical point of each individual compound
experimentally.7 This does not mean that the equation is valid under near-critical

conditions (it isn’t), but these parametric values produce universal be-
haviour which is very valuable.

29 Johannes Diderik van der Waals, 1837–1923. Dutch physicist.
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7 Equations . . .§ 046 § 45 § 47

Show that the parameters b = RTc/8pc, vc = 3b and
a = 27(RTc)

2/64pc meet the criteria for a mechanical–
critical point defined by (∂p/∂v)T ,x = 0, (∂2p/∂v∂v)T ,x =

0 and p(Tc, vc) = pc.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 332 / 1598



Ideal gas law Molecules Photons Phonons Free electrons Virial Van der Waals Murnaghan

7 Equations . . .Cubic equations of state

1 2 The values given can obviously be verified by direct substitution,
but we will choose a different approach. If you multiply both sides of the equation by v2(v − b) you can

rewrite the equation of state 7.29 in the form p(v −b)v2 = RTv2−a(v −
b), or as

v3 − v2
(
b + RT

p

)
+ v a

p − ab
p = 0 . (7.30)

3 This shows that (at constant pressure) the van der Waals equation
can be treated as a cubic equation with volume as a free variable. From
the problem statement, we know that the pV isotherm has a degenerate
extreme point30 as its critical point.

4 This implies that the equation of state must have three coincident
roots (v − vc)

3 = 0, or in its expanded form:

v3 − v23vc + v3v2
c − v3

c = 0 . (7.31)

30 Both a maximum and a minimum (a horizontal point of inflection).
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7 Equations . . .§ 046 Critical points

1 The two Eqs. 7.30 and 7.31 have the same algebraic structure,
which allows us to compare the coefficients term by term.

2 This gives rise to the following set of equations:

3vc = b + RTc
pc

,

3v2
c = a

pc
,

v3
c = ab

pc
,

which must be solved with respect to a, b and vc.
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7 Equations . . .§ 046 Critical points (2)

5 3 Alternatively we could have solved the equations with respect to
e.g. a, b and R, but traditionally vc is favoured because it is subject to a
relatively large degree of experimental uncertainty.
4 However, this means that the van der Waals equation of state has

too few degrees of freedom to accurately reproduce all measurements
of pc,Tc and vc. The solution to the above set of equations can be expressed

3
8 =

vcpc
RTc

, (7.32)

b = 1
3 vc , (7.33)

a = 3pcv2
c , (7.34)

which can in turn be rewritten in the form used in the problem statement.

6 We should note that the critical compressibility factor zVdW
c =̂

pcvc/RTc = 3
8 behaves as a universal constant because vc is a de-

pendent variable in the solution.

7 Experimentally this is no more than a rough approximation as
0.25 < zc < 0.35 for most molecular compounds.
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7 Equations . . .§ 047 § 46 § 48

Pressure is an intensive property (homogeneous function
of degree zero), which implies that p(T , v, x) = p(T ,V ,n).

Rewrite the van der Waals Eq. 7.29 in this form.
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7 Equations . . .§ 047 VDW in the extensive form

1 Dimensional analysis shows that if v → V and x→ Nx in Eq. 7.29,
then homogeneity will be preserved.

2 Consequently, the equation of state can be written in the form

pVdW(T ,V ,n) = NRT
V−Nb(x) −

N2a(x)
V2 (7.35)
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7 Equations . . .§ 048 § 47 § 49

Show that, in its reduced form, the van der Waals
equation can be written as pr = 8Tr/ (3vr − 1)− 3/v2

r .
Draw the function for Tr ∈ {0.75, 1, 1.5}. Identify all of
the asymptotes to the graph. Specify the physical

range of the function.
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7 Equations . . .§ 048 Corresponding state

1 Rewrite the van der Waals equation in its reduced form by substi-
tuting Eqs. 7.33 and 7.34 into Eq. 7.29:

pVdW = RT

v−1
3 vc

− 3pcv2
c

v2 . (7.36)

2 Then divide by pc and define reduced pressure as pr =̂ p/pc and
reduced volume as vr =̂ v/vc:

pVdW
r =

(
RT

pcvc

)

vr−1
3

− 3
v2

r
. (7.37)

3 Finally substitute in R/(pcvc) = 1/(zcTc) = 8/(3Tc) from Eq. 7.32
and define reduced temperature as Tr =̂ T/Tc.
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7 Equations . . .§ 048 Corresponding state (2)

4 This gives us the van der Waals equation as formulated in the
problem statement:

pVdW
r = 8Tr

3vr−1 − 3
v2

r
. (7.38)

vr

pr

b
c.p.

5 The physical range is defined by vr ∈〈
1
3 ,∞

〉
. Note that the equation contains no

arbitrary model parameters.

7 6 We call this a universal equation, and here we will take the oppor-
tunity to mention the principle of corresponding states, which states that
related substances behave virtually alike at reduced states. For the lowest isotherm (Tr = 0.75)

there are up to three possible solutions for
pr = pr(vr). 8 The fluid is thermodynamically unstable in the range where

(∂pr/∂vr) > 0. This results in a phase transi-
tion for the system as described in Chap-
ter 14 on vapour–liquid equilibria.
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7 Equations . . .Condensed phases

1 According to Murnaghan31’s equation, isobaric expansivity α and
isothermal compressibility β are two independent state functions of tem-
perature and pressure respectively. 2 The equation is most useful for pure solids and stoichiometric com-

pounds.
3 To derive the chemical potential, we start with the total differential

of molar volume, for our current purposes expressed as (dln v)mur
N =

α(T )dT − β(p)dp, also see Section 8.6 on page 385.

4 Two commonly used functions for α and β are:

α(T) = a1 + a2T +
a3
T2 ,

β(p) = b1
1+b2p .

5 Let us start by integrating α(T) at a given reference pressure p◦
between the reference temperature T◦ and an arbitrary system temper-
ature T . This gives us: ln[v(T , p◦)/v(T◦, p◦)] = a1(T − T◦) + 1

2a2(T2 −
T2
◦ ) − a3(T -1 − T -1

◦ ) = (T − T◦)[a1 +
1
2a2(T + T◦) + a3(TT◦)-1].
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7 Equations . . .Condensed phases (2)

6 Next we integrate β(p) at constant T between the reference pres-
sure p◦ and an arbitrary system pressure p. This gives us: ln[v(T , p)/
v(T , p◦)] = −b -1

2 b1 ln[(1 + b2p)/(1 + b2p◦)].

7 We can now integrate (dµ)T ,N = v dp between the two states T , p
and T , p◦. This produces µmur(T , p) = µ◦(T , p◦) +

∫ p
p◦

v(T , p)dp which
with a little bit of effort can be rewritten as

µmur(T , p) = µ◦(T , p◦) + v(T , p◦)
p∫
p◦

( 1+b2p
1+b2p◦

)−b1/b2
dp

= µ◦(T , p◦) + v(T , p◦)
1+b2p◦
b2−b1

[( 1+b2p
1+b2p◦

)1−b1/b2 − 1
]

= µ◦(T , p◦) +
b1

b2−b1

v◦
β◦

[
β◦
β

v
v◦
− 1

]
,

where β◦ =̂ β(p◦) and v◦ =̂ v(T , p◦).8 It is now easy to produce a complete equation of state µmur(T ,p),
provided that we have an expression for the compound’s standard
chemical potential µ◦(T ,p◦).
9 For solid phases at high pressures and polymorphous compounds,

it is normal to express the standard molar Gibbs energy as a (kind of)
power series of temperature:

µ◦
RT = . . .+ a

T2 + b
T + c + d ln

(T
T◦

)
+ eT + fT2 + . . .

10 A trivial integration of µmur using the Euler method gives us the
Gibbs energy function

Gmur(T ,p,N) = Nµmur(T ,p) .

31 F. D. Murnaghan. Proc. Natl. Acad. Sci. U. S. A., 30:244–247, 1944.
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7 Equations . . .§ 049 § 48 § 50

Murnaghan’s equation is derived by integrating the
expansivity with respect to T at a given p◦, and then
integrating the compressibility with respect to p at
constant T , but this provides no guarantee that our

starting point was thermodynamically consistent. Use
differentiation to show that α = f(T) and β = g(p)

genuinely represent a consistent basis for a model.
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7 Equations . . .§ 049 The Murnaghan model

1 2 It is easy to make apparently independent assumptions without
checking whether they are mutually coherent. For the model to be consistent, the third-order Maxwell equation

∂2v
∂T∂p = ∂2v

∂p∂T

must hold. Substituting in (∂v/∂T)p = vf(T) and (∂v/∂p)T = −vg(p)
gives us

− (∂v
∂T

)
p g(p) ?

=
(∂v
∂p

)
T

f(T) ,

where f(T) and g(p) are functions of different state variables.

4 3 This avoids circular references. If we rewrite the last equation slightly we get

vf(T)g(p) ?
= vg(p)f(T) .

Here the right-hand side is identical to the left-hand side, so the test has
been satisfied.
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7 Equations . . .§ 050 § 49 § 51

Assume that thermal expansivity is constant, i.e. that
a2 = 0 K-2 and a3 = 0 K. Find an expression for

(∂cp/∂p)T ,N that is true for this simplified Murnaghan
model. What is the sign of the derivative?
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7 Equations . . .§ 050 Murnaghan CP

1 The fact that cp is pressure-dependent can be derived as shown
below.

2 Note the Maxwell relationship used at the start of the equation:

(∂cmur
p

∂p

)
T ,N

= ∂
∂p

[
T

(∂s
∂T

)
p,N

]
T ,N

= T ∂
∂T

[(∂s
∂p

)
T ,N

]

p,N

= − T ∂
∂T

[(∂v
∂T

)
p,N

]
p,N

=̂ − T
(∂(vα)
∂T

)
p,N

= − Tvα2

≤ 0
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7 Equations . . .§ 051 § 50 § 52

For a one-component system to be thermodynamically
stable, it must satisfy the conditions β > 0 and cp > 0.
Are these conditions (always) met for Murnaghan’s

equation?
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7 Equations . . .§ 051 Thermal instability

1 The first condition is satisfied for all T and p if b1 > 0 and b2 > 0.

2 With respect to the second condition, in Paragraph 50 we showed
that (∂cmur

p /∂p)
T ,N

< 0 for all V > 0.

3 Since cp < ∞, there will always be a pressure p < ∞ at which
cmur

p = 0, unless

∞∫
p◦

vmur dp
?
< ∞ .

4 It can be demonstrated that this is not the case, and that Mur-
naghan’s model therefore does not satisfy the requirement for thermal
stability at all T , p.
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Part 13

Departure Functions

see also Part-Contents
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Contents

1 Gr,p(T , p,n)

2 A r,p(T , p,n)

1 Physical derivation
2 Rational derivation
3 Connection with Gibbs energy

3 A r,v(T ,V ,n)
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13 Departure . . .Multicomponent thermodynamics

1 From a thermodynamic point of view, it makes little difference
whether a system is composed of one, two or many components, pro-
vided that their relative proportions are constant in time and space.

4 2 Such systems will only have three degrees of freedoma

3 and will have relatively simple descriptions, as discussed in Chap-
ter 8 on page 342.

a Chemical reactions change the mole numbers of the compounds in a system without
affecting the components that only vary with mass, i.e. the atoms or atom groups that
are reaction invariant. The internal degrees of freedom are hidden from the outside
world, so the composition of the system is perceived to be constant, although the size
of the system may well vary with e.g. temperature and pressure. The situation becomes much more complicated, however, if the

components that vary with mass are included in the system description.

5 The number of degrees of freedom increases, and the thermody-
namic functions describe abstract hyperplanes in more than three spa-
tial dimensions.

6 This makes it difficult to visualise the mathematical description, and
as we do not want to restrict the theory to any specific chemical system,
we shall hereafter use generic indices i ∈ [1, n] instead of component
names.
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13 Departure . . .Multicomponent thermodynamics (2)

9 7 The thermodynamics of multi-component mixtures therefore has a
more formal structure than that of its single-component counterpart.
8 The virial equation will be used repeatedly as an example in this

chapter, but let us start by looking at how we can extend the results
from Chapter 8 on page 342 to systems with variable compositions. In ideal gases, the composition dependence is relatively simple,

and by referring to the Eqs. 8.40–8.42 on 390 we can write:

∆fH
ıg(T◦,n) =

n∑
i=1

Ni∆fh
◦
i (T◦) , (13.1)

C ıg
V (T ,n) =

n∑
i=1

Nic◦v,i(T) , (13.2)

C ıg
P (T ,n) =

n∑
i=1

Nic◦p,i(T) , (13.3)

S ıg(T◦, p◦,n) =
n∑

i=1
Nis◦i (T◦, p◦) − R

n∑
i=1

Ni ln
(Ni

N
)
. (13.4)

10 Note that ∆fh◦i , c
◦
v,i , c

◦
p,i and s◦i are contributions from the standard

state of the same kind as µ◦i in Eq. 7.19 on page 262.11 For systems with constant composition, U, H and S are the key
functions, but in mixtures the chemical potential becomes increasingly
important.
12 However, this quantity cannot be obtained by differentiating
U or H with respect to their canonical variables because µi =̂

(∂U/∂Ni)S ,V ,Nj,i = (∂H/∂Ni)S,p,Nj,i

13 requires S to be a free variable, which is only possible in very spe-
cial cases.
14 The solution to the problem is to take either the Gibbsa or the
Helmholtzb energy as our starting point, as µi = (∂G/∂Ni)T ,p,Nj,i =

(∂A/∂Ni)T ,V ,Nj,i

15 can then be determined through explicit differentiationc.
16 Whether we use G or A depends on the equation of state being
used (more on this later).

a Josiah Willard Gibbs, 1839–1903. American physicist.
b Hermann Ludwig Ferdinand von Helmholtz, 1821–1894. German physician and
physicist.
c The great majority of thermodynamic models, including both equations of state and
activity coefficient models, are explicit in T but not in S .
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13 Departure . . .§ 103 § 102 § 104

Express the Gibbs energy of an ideal gas based on
Eqs. 13.1–13.4. Calculate the standard state contribution

of Gıg by using s◦i , ∆fh◦i and c◦p,i(T). Show by differentiation

that the chemical potential can be expressed as µıg
i (T ,

p,n) = µ◦i (T , p◦) + RT ln[Nip/(Np◦)]. Identify the
function µ◦i .
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13 Departure . . .§ 103 Ideal gas Gibbs energy

1 The Gibbs energy G = H − TS of an ideal gas mixture can be
derived from Eqs. 8.41 and 8.42:

Gıg(T , p,n) = ∆fH
ıg(T◦,n) +

T∫

T◦

C ıg
P (T ,n)dT − T

{
S ıg(T◦, p◦,n)

+
T∫

T◦

C ıg
P (T ,n)

T dT − NR ln
( p
p◦

)}
. (13.5)
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13 Departure . . .§ 103 Ideal gas Gibbs energy (2)

2 Let us substitute Eqs. 13.1, 13.3 and 13.4 into Eq. 13.5 and differ-
entiate with respect to Ni:

µıg
i (T , p,n) =

(∂Gıg

∂Ni

)
T ,p,Nj,i

= ∆fh
◦
i (T◦) +

T∫

T◦

c◦p,i(T)dT − T
{
s◦i (T◦, p◦)

− R ln
(Ni

N
) −

n∑
k=1

Nk R N
Nk

δik N−Nk
N2

+
T∫

T◦

c◦p,i(T)

T dT − R ln
( p
p◦

)}
. (13.6)

3 The above equation contains Kronecker’s delta, which has the
value 1 if i = k and 0 in all other cases.
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13 Departure . . .§ 103 Ideal gas Gibbs energy (3)

4 By simplifying Eq. 13.6 we can state the chemical potential as

µıg
i (T , p,n) = µ◦i (T , p◦) + RT ln

(Nip
Np◦

)
, (13.7)

where the standard chemical potential µ◦i is defined as:

µ◦i (T) = ∆fh
◦
i (T◦) +

T∫

T◦

c◦p,i(T)dT − Ts◦i (T◦, p◦) − T
T∫

T◦

c◦p,i(T)

T dT (13.8)
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13 Departure . . .§ 104 § 103 § 105

Use a specific example to show that Uıg − TS ıg +

pV ıg =
∑n

i=1 µ
ıg
i Ni.
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13 Departure . . .§ 104 Ideal gas internal energy

1 It provides valuable experience to know that the general relations
we meet in thermodynamics are valid under special circumstances as
well.

3 2 This paragraph underpins such an experience. First, Eq. 13.7 is substituted into the right-hand side of the equation
given in the paragraph text.

4 The left-hand side then follows by inserting Hıg = Uıg + NRT .
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13 Departure . . .Gibbs residual Gr,p

1 The canonical variables of Gibbs energy include temperature and
pressure.

3 2 This makes it possible to compare the chemical potentials of the
components of real fluids with those of the same components in the
ideal gas state, at the same temperature and pressure. Using what we already know about Gıg allows us to define the

residual Gibbs energy: as

Gr,p(T , p,n) =̂ G(T , p,n)−Gıg(T , p,n) . (13.9)

4 As p → 0, all fluids have virtually ideal properties.

5 This approximation means that

lim
p→0

{
Gr,p = 0,

(∂Gr,p

∂p

)
T ,n

= B ′2, . . . ,
(∂nGr,p

∂p···∂p

)
T ,n

= (n − 1)!B ′n+1

}
.

(13.10)
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13 Departure . . .Gibbs residual Gr,p (2)

6 This is consistent with the virial theorem in Chapter 7 on page 242,
and with the Legendre transform in Chapter 4, from which it follows that
(∂G/∂p)T ,n is the system volume regardless of whether the fluid is ideal
or real.

7 By taking the limits from Eq. 13.10 it is possible to rewrite Eq. 13.9
as1:

Gr,p(T , p,n) =
p∫

0

(V − V ıg)dπ =
p∫

0

(
V(π) − NRT

π

)
dπ . (13.11)

1 Note that π is used as the integration variable in order to avoid confusion with p,
which appears in the upper limit of the integral.
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13 Departure . . .Residual chemical potential

1 An equivalent expression for the chemical potential µi =

(∂G/∂Ni)T ,p,Nj,i
is true for all conceivable Gibbs energy functions, in-

cluding Gr,p.

2 This allows us to define the residual chemical potential as µr,p
i =̂

µi − µıg
i , or

µr,p
i (T , p,n) =̂

(∂Gr,p

∂Ni

)
T ,p,Nj,i

=
p∫

0

[(∂V
∂Ni

)
T ,π,Nj,i

− RT
π

]
dπ =̂

p∫

0

(
v̄i − RT

π

)
dπ , (13.12)

where v̄i =̂ (∂V/∂Ni)T ,π,Nj,i
is the partial molar volume of the component

i.3 To obtain Eq. 13.12 from Eq. 13.11, Gr,p must be differentiated at
constant pressurea.

a Note that to calculate the derivative of Gr,p at a given pressure p we must know the
derivative of V − V ıg for all pressures π ∈ [0,p] in the integration domain. This goes
against usual practice when performing partial differentiation, but Gr,p is a functional
that is defined for all pressures p > 0, and not merely for one arbitrarily chosen system
pressure p. The integrand, on the other hand, only depends on the local pressure π, so
it will not change in any way if p changes in the upper limit of the integral. The integral in
question is thus uniquely defined in terms of the area under a specific curve, integrated
from the lower limit p = 0 up to the system pressure p. Admittedly the curve depends
on the specified isotherm T and specified composition n, but it does not depend on the
system pressure p. Consequently, the curve must be defined by differentiating V −V ıg

at every value of π such that we can choose to stop the integration at any value of
p > 0.
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13 Departure . . .The derivative of an integral

1 Since the system pressure is only present in the limit of the integral,
we need only worry about the derivative of the kernel, but there the
pressure does vary (locally) throughout the integration!

2 This is an unusual situation, and it is important to realise that the
corresponding differential of V(π) is defined locally as

(dV)T ,π,Nj,i =
(∂V
∂Ni

)
T ,π,Nj,i

dNi

for all pressures π ∈ [0, p].
3 What is unusual in this respect is that there are two different phys-
ical interpretions of pressure — one being the system pressure in the
upper limit of the integral and the other being the integration variable π.
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13 Departure . . .The derivative of an integral (2)

4 However, there is a given local pressure π at each stage of the in-
tegration, so the only remaining degree of freedom comes from varia-
tion in the composition of component i.

5 Hence, the chemical potential must be integrated over the volume
derivative as shown in Eq. 13.12.

6 For historical reasons it is customary to rewrite the residual poten-
tial as

RT lnϕi =̂ µr,p
i (T , p,n) , (13.13)

where ϕi(T , p,n) is the fugacity coefficient of component i.7 This is a measure of the difference between the thermodynamic
state of a component in a real fluid and of the same component in ideal
gas under the system conditions T ,p,n.
8 The fugacity coefficient has traditionally been given a great deal of

attention in the American literature, but really it is a vestige of the past.
9 For gases at low pressures and phase equilibrium calculations us-

ing the K -value method it has certain benefits, but in general it causes
more problems than it solves — it neither increases our basic under-
standing nor improves the numerical performance of thermodynamic
algorithms.
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13 Departure . . .§ 105 § 104 § 106

Show that µi = µıg
i + µr,p

i = µ◦i + RT ln[Niϕip/(Np◦)].
Verify that the lower limit limp→0 ϕi = 1. What is ϕi for

a component in the ideal gas state?
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13 Departure . . .§ 105 The fugacity coefficient

1 The chemical potential can be derived by combining Eqs. 13.7 and
13.12.

2 The latter equation gives us limp→0 µ
r,p
i = 0 and hence limp→0 ϕi =

1.

3 For an ideal gas v̄ ıg
i = RT/π, which means that µr,p,ıg

i = 0 regard-
less of the pressure.

4 Hence ϕıg
i = 1.
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13 Departure . . .§ 106 § 105 § 107

Derive Gr,p for the 2nd virial equation if pV2.vır = NRT +Bp.
Differentiate to find RT lnϕ2.vır

k . Use the quadratic
mixing rule for B = N

∑
i

∑
j

xixjBi,j where Bi,j = Bj,i.
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13 Departure . . .§ 106 Virial Gibbs energy I

1 The residual Gibbs energy can be determined by directly substi-
tuting the 2nd virial equation into Eq. 13.11:

Gr,p,2.vır =
p∫

0

(
NRT
π + B − NRT

π

)
dπ = Bp . (13.14)

2 In order to find RT lnϕk we must differentiate Gr,p, and hence B,
with respect to Nk , but differentiating with respect to (mole) fractions
has an unfortunate tendency to cause what is known as “code bloat” in
computing.
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13 Departure . . .§ 106 Virial Gibbs energy I (2)

3 We can considerably reduce the amount of writing that we need
to do by using NB =

∑
i
∑

j NiNjBi,j, which, even though it is an implicit
expression, is much better suited for differentiation:

(∂NB
∂Nk

)
T ,Nl,k

=
∑
i

∑
j

(∂NiNj

∂Nk

)
Nl,k

Bij .

4 Differentiate both sides and substitute in Kronecker’s delta, where
δii = 1 if i = j and δij = 0 if i , j:

B + N
( ∂B
∂Nk

)
T ,Nl,k

=
∑
i

∑
j

(
δ
ik

Nj + Ni δ
jk

)
Bij =

∑
j

NjBkj +
∑
i

NiBik .

5 We can simplify the right-hand side considerably by substituting
Bkj = Bjk and simultaneously changing one of the summation indices
from j to i.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 696 / 1598



Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 106 Virial Gibbs energy I (3)

6 This gives us two identical terms on the right-hand side, so the
partial derivative of B can now be written

b̄k =̂
( ∂B
∂Nk

)
T ,Nl,k

= 2
∑
i

Ni
N Bik − B

N .

7 The residual potential can be calculated from Eq. 13.14 on
page 671, as shown below:

RT lnϕ2.vır
k =

(∂Gr,p,2.vır

∂Nk

)
T ,p,Nl,k

= p
( ∂B
∂Nk

)
T ,Nl,k

=̂ pb̄k .

8 Alternatively, we can achieve the same result by substituting the
partial derivative of B into Eq. 13.12 on page 665 and integrating2.

2 It is worth noting that b̄i is the (pressure-independent) departure function of the partial
molar volume from the 2nd virial equation: v̄2.vır

i −RT/π = b̄i(T).
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13 Departure . . .Helmholtz residual A r,p I
Helmholtz residual
1 Residual Gibbs energy has the canonical variables temperature

and pressure.

2 We must therefore use an equation of state in the form V = V(T , p,
n), which in practice means that the virial equation V2.vır = NRT/p + B
is of limited use.

3 However, there has been rapid development of equations of state
in the form p = p(T ,V ,n), which changes the canonical variables to
temperature and volume rather than pressure.

4 This makes it attractive to take Helmholtz energy rather than Gibbs
energy as our starting point.

5 Traditionally, the definition of the fugacity coefficient in Eq. 13.13 is
not changed in the transposition from G to A .

6 This causes a problem with the chemical potential, because ϕi

describes the difference between the real fluid and ideal gas at a given
pressure — not a given volume.

7 As a result, you end up with a non-canonical description, which is
discussed here mainly because of its historical interest.

698 / 1598

1 Our goal is to describe the difference in Helmholtz energy between
a real fluid and an ideal gas at a given temperature and pressure.

3 2 To do this, we have to find the difference between two state func-
tions applied to two different states. We can simplify our task by splitting the expression into two terms:

The first term compares the two functions in the same state, while the
second term compares the ideal gas in two different states:

A r,p(T ,V(p),n) =̂ A (T ,V(p),n) − A ıg(T ,V ıg(p),n)

≡ A (T ,V(p),n) − A ıg(T ,V (p),n) (13.15)

+ A ıg(T ,V(p),n) − A ıg(T ,V ıg(p),n) .

4 It should be emphasised that volume is a function of pressure p. 5 The pressure is by definition the same in the ideal gas and the real
fluid, i.e. pıg = p.

It implies, however, that the two fluids have different volumes, since
V , V ıg at a given p.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 699 / 1598



Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .Helmholtz residual A r,p I (2)

6 From Chapter 4 we know that (∂A/∂V)T ,n = −p. 7 This is true for any Helmholtz energy function, regardless of
whether it refers to an ideal gas or a real fluid. Analogously to

Eq. 13.11 on page 664 we can therefore write3

A r,p(T ,V(p),n) =
V(p)∫
∞

(πıg − π)dν −
V(p)∫

V ıg(p)

πıg dν

=
V(p)∫
∞

(
NRT
ν − π

)
dν − NRT ln z(p) , (13.16)

where the ideal gas volume is given by V ıg = NRT/p, and the com-
pressibility factor z is defined as z =̂ V/V ıg = pV/(NRT).

3 This follows from lim
V→∞

{
A − A ıg = 0, (∂A−A ıg

∂V )
T ,n = 0, . . . , (∂

nA−A ıg

∂V ···∂V )
T ,n = 0

}
in accor-

dance with the virial theorem.
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13 Departure . . .Problems

1 2 Eq. 13.16 may look trivial, but please note that the volume is an
implicit variable in the integral. The implicit form of the function A r,p(T ,V(p), p,n) prevents us from

calculating the chemical potential by differentiation with respect to the
canonical variables T ,V ,n4.

3 so we must instead use

µi =
(∂A
∂Ni

)
T ,V ,Nj,i

⇒ µıg
i =

(∂A ıg

∂Ni

)
T ,V ıg,Nj,i

,

4 If we substitute this into the residual chemical potential µr,p
i =̂ µi −

µıg
i we get

µr,p
i =

(∂A
∂Ni

)
T ,V(p),Nj,i

− (∂A ıg

∂Ni

)
T ,V ıg(p),Nj,i

=
(∂A r,p

∂Ni

)
T ,V(p),V ıg(p),Nj,i

.
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13 Departure . . .Problems (2)

5 Note that V(p) is constant in one of the partial derivatives, while
V ıg(p) is constant in the other one.

6 This means that both V(p) and V ıg(p) must be kept constant when
differentiating A r,p, which in turn implies that z(p) = V(p)/V ıg(p) is a
constant factor.

7 The residual chemical potential can therefore be expressed

µr,p
i (T ,V(p),n) =

V(p)∫
∞

[
RT
ν −

( ∂π
∂Ni

)
T ,ν,Nj,i

]
dν − RT ln z(T ,V(p),n) .

(13.17)
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13 Departure . . .Problems (3)

8 Although this derivation is mathematically correct, it is hard to ex-
plain logically, as it relies on there being two different volumes (both of
which remain constant, in line with the definition) during the same dif-
ferentiation.

4 If we redefine the fugacity coefficient to mean the difference between an ideal gas
and a real fluid at a given volume rather than a given pressure, it becomes easier to
derive the chemical potential; see Section 13.3 on page 689.
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13 Departure . . .§ 107 § 106 § 108

Find A r,p for the 2nd virial equation if pV2.vır = NRT +Bp.
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13 Departure . . .§ 107 Virial Helmholtz energy

1 The residual Helmholtz energy is calculated by inserting the
2nd virial equation into Eq. 13.16, which gives us this surprising re-
sult:

A r,p,2.vır =
V∫
∞

(
NRT
ν − NRT

ν−B

)
dν − NRT ln

( V
V−B

)
= 0 . (13.18)

2 So there is no difference between Helmholtz energy for the
2nd virial equation and that for an ideal gas at the same pressure.

3 In other words: The volume term in A2.vır happens to be equal to
RT ln z2.vır.

6 4 This does not mean that all residual properties cancel.
5 For example, Gr,p,2.vır was found to be Bp in Eq. 13.14 on page 671,

and you should verify that if the 2nd virial equation is substituted into
Eq. 13.17, it gives the same answer as in Eq. 13.12 on page 665. Moreover, even though A r,p,2.vır is zero, this does not imply that

µr,p,2.vır
i is also zero.

8 7 The fact is that Gr,p,2.vır, and hence µr,p,2.vır
i , are direct measures of

the non-ideality of the gas, whereas A r,p,2.vır is not. It is important to remember that A r,p is a non-canonical function.
Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 705 / 1598



Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .Helmholtz resdiaul A r,p II

1 At this point it may be helpful to offer an alternative, more intuitive
derivation of A r,p.

2 Let us first differentiate Eq. 13.15 with respect to the mole number
Ni:

(∂A r,p

∂Ni

)
T ,V ,Nj,i

= µi −
(∂A ıg

∂Ni

)
T ,V ,Nj,i

. (13.19)

3 This time we face the problem that constant V does not necessarily
imply constant V ıg.

4 In fact, in order to differentiate A ıg with respect to Ni, we need to
know how V ıg varies with Ni when V is kept constant.
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13 Departure . . .Helmholtz resdiaul A r,p II (2)

5 At a given temperature and at fixed amounts of all components j,
except i, the differential of A ıg is

(dA ıg)T ,Nj,i =
(∂A ıg

∂Ni

)
T ,V ıg,Nj,i

dNi +
(∂A ıg

∂V ıg

)
T ,n dV ıg = µıg

i dNi − pıg dV ıg ,

(13.20)
where ıg is stated explicitly in order to make the next step a little bit
clearer.

6 If we bear in mind the condition pıg = p, we can simplify Eq. 13.20
to

(∂A ıg

∂Ni

)
T ,V ,Nj,i

= µıg
i − p

(∂V ıg

∂Ni

)
T ,V ,Nj,i

. (13.21)

7 Combined with Eq. 13.19 this gives us:

µi − µıg
i =

(∂A r,p

∂Ni

)
T ,V ,Nj,i

− p
(∂V ıg

∂Ni

)
T ,V ,Nj,i

. (13.22)
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13 Departure . . .Helmholtz resdiaul A r,p II (3)

8 Finally, Eq. 13.16 is differentiated:

(∂A r,p

∂Ni

)
T ,V ,Nj,i

=
V∫
∞

[
RT
ν −

( ∂p
∂Ni

)
T ,ν,Nj,i

]
dν+ NRT

V ıg

(∂V ıg

∂Ni

)
T ,V ,Nj,i

− RT ln z .

(13.23)

9 You will recognise NRT/V ıg = pıg = p in Eq. 13.23.

10 This means that the term (∂V ıg/∂Ni)T ,V ,Nj,i
disappears when the

Eqs. 13.22 and 13.23 are combined.

11 The residual chemical potential µr,p
i =̂ µi − µıg

i is thus the same as
in Eq. 13.17 on page 677.
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13 Departure . . .Helmholtz residual A r,p III

1 A third option is to use Gibbs energy as our starting point, which is
a natural thing to do, since the residual chemical potential has the same
canonical variables as Gibbs energy.

2 Substituting G = A + pV into Gr,p =̂ G −Gıg gives us:

Gr,p = A(T ,V(p),n) + pV(p) − [A ıg(T ,V ıg(p),n) + pV ıg(p)] . (13.24)

3 Furthermore, pV = zNRT and pV ıg = NRT . When we substitute
these into the above equation, and combine it with Eqs. 13.15 and 13.16
on page 674, we get:

Gr,p = A r,p + NRT(z − 1)

=
V(p)∫
∞

(
NRT
ν − π

)
dν − NRT ln z(p) − NRT [z(p) − 1] . (13.25)
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13 Departure . . .Helmholtz residual A r,p III (2)

4 Our one remaining task is to differentiate this expression with re-
spect to the mole number of component i.

5 It is evident that we will need to obtain the partial derivative of
z =̂ pV/NRT , so let us start by doing that:

zi =̂
( ∂z
∂Ni

)
T ,p,Nj,i

=
pv̄i

NRT −
pV

N(NRT) =
pv̄i

NRT − z
N .

6 This is where things start to get tricky: how can we differentiate the
integral?

7 The upper limit clearly depends on the composition at fixed pres-
sure, while the differential of π at a given volume ν is:

(dπ)T ,ν,Nj,i =
( ∂π
∂Ni

)
T ,ν,Nj,i

dNi .
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13 Departure . . .Helmholtz residual A r,p III (3)

8 It is important to note that ν is an integration variable in Eq. 13.25,
and that it remains constant during the above differentiation.

9 Partial differentiation therefore gives us:

µr,p
i =

V(p)∫
∞

[
RT
ν −

( ∂π
∂Ni

)
T ,ν,Nj,i

]
dν+

(
NRT
V(p) − p

)
v̄i

− RT ln z − ziNRT
z + RT(z − 1) + ziNRT .

10 If we substitute in zi , most of the terms cancel, and the final result
is identical to Eq. 13.17 on page 677.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 108 § 107 § 109

Show that Gr,p,2.vır = NRT(z−1) = Bp when pV2.vır = NRT+Bp.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 108 Virial Gibbs energy II

1 From Eq. 13.25 we know the general expression Gr,p = A r,p +

NRT(z − 1).

2 Combined with A r,p,2.vır = 0 from Eq. 13.18 on page 680 this gives
us Gr,p,2.vır = NRT(z − 1).

3 Substituting in z2.vır = 1 + Bp/NRT gives Gr,p,2.vır = Bp in accor-
dance with Eq. 13.14 on page 671.

4 The results from the various sections are thus internally consistent.
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13 Departure . . .(T , p,n) vs (T ,V ,n)

1 The problems we experienced in the previous section were caused
by the disastrous decision to use pressure as a free variable in the
Helmholtz function.

2 If we redefine the residual Helmholtz energy as

A r,v(T ,V ,n) =̂ A(T ,V ,n)− A ıg(T ,V ,n)

we are back into the world of canonical variables, and we can use the
same approach as the one used for residual Gibbs energy on page 663.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .(T , p,n) vs (T ,V ,n) (2)

3 The alternative departure function can be written

A r,v =
V∫
∞

(
NRT
ν − p(ν)

)
dν ,

while the associated chemical potential is

µr,v
i =̂

(∂A r,v

∂Ni

)
T ,V ,Nj,i

=
V∫
∞

[
RT
ν −

( ∂p
∂Ni

)
T ,ν,Nj,i

]
dν .
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 109 § 108 § 110

Derive an expression for A r,v and the first derivatives
∂A r,v/∂(T ,V ,n) for a fluid that conforms to the Redlich–

Kwong equation of state pRK = RT/(v−b)−a/
√

Tv (v + b).
Use the mixing rules b(x) =

∑
i bixi and a(x) =

∑
i
∑

j
√

aiaj

xixj where bi and ai are component-specific parameters.
Finally, state bi and ai as functions of Tc and pc; also

see Paragraph 46 on page 319.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 109 Redlich–Kwong5

1 Let us first estimate a and b for a pure fluid. For this purpose we
will rewrite the equation of state as a cubic polynomial of volume:

v3 − RT
p v2 +

(
a

pT1/2 − b2 − RTb
p

)
v − ab

pT1/2 = 0 .

2 At the critical point this equation must fulfil (v − vc)
3 = 0, or v3 −

3vvc + 3v2v2
c − v3

c = 0.

3 If compared term-by-term (see Paragraph 46 in Chapter 7), the two
polynomials can be used to produce three equations, which can then
be solved for a, b and vc:

3vc = RTc
pc

, 3v2
c = a

pcT1/2
c
− b2 − RTcb

pc
, v3

c = ab
pcT1/2

c
.

4 Combining the middle equation with the other two yields 2v3
c −(vc+

b)3 = 0, which can be solved for the positive root b = (21/3 − 1)vc.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 109 Redlich–Kwong6 (2)

5 If expressed in terms of the critical temperature and pressure (for
any component i), this is equivalent to:

bi = Ωb
RTc,i
pc,i

ai = Ωa
R2T5/2

c,i
pc,i

Ωb =̂ 21/3−1
3 Ωa =̂ 1

9(21/3−1)

6 We can now choose whether to express the rest of the derivation
in terms of extensive properties (mole number and volume) or intensive
properties (mole fraction and molar volume).

7 Here, the extensive properties have been chosen, in order to em-
phasise the homogeneity of the thermodynamic functions.
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Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 109 Redlich–Kwong7 (3)

8 The total Helmholtz energy of the fluid is thus

A r,v,RK =
V∫
∞

(
NRT
ν − pRK

)
dν = NRT ln

( V
V−B

)
+ A

B ln
( V
V+B

)
,

and the associated first derivatives are:
(∂A r,v,RK

∂T
)
V ,n =NR ln

( V
V−B

)
+ AT

B ln
( V
V+B

)
,

(∂A r,v,RK

∂V
)
T ,n =NRT −B

V(V−B) +
A

V(V+B) ,
(∂A r,v,RK

∂Ni

)
T ,V ,Nj,k

=RT ln
( V
V−B

)
+ NRT bi

V−B + 1
B

(
Ai − Abi

B

)
ln

( V
V+B

) − Abi
B(V+B) .

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 719 / 1598



Gr,p(T ,p,n) Ar,p(T ,p,n) Ar,v(T ,V ,n)

13 Departure . . .§ 109 Redlich–Kwong8 (4)

9 The coefficients of the equation are defined below (note that αi has
the same units as aVdW

i ):

B =̂
∑
i

biNi ,

A =̂
∑
i

∑
j

(aiaj

T
)1/2

NiNj =
(∑

i
α1/2

i Ni

)2
,

AT =̂ − A
2T ,

Ai =̂ 2α1/2
i

∑
j
α1/2

j Nj = 2(αiA)1/2 ,

αi =̂ ai
T1/2

4 Otto Redlich and J. N. S. Kwong. Chem. Rev. (Washington, D. C.), 44:233–244,
1949.
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Part 14

Simple vapour–liquid equilibrium

see also Part-Contents
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Contents

1 Saturation pressure

2 Saturation volume

3 Enthalpy of vaporization

4 Critical exponents

5 Maxwell equal area rule
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14 Simple . . .Phase equilibrium Perspective
1 In the chemical industry, vapour–liquid equilibria are essential to

the design and operation of distillation and absorption columns, oil and
gas separators, evaporators and other process equipment.

2 In our everyday lives, the same physical properties cause the evap-
oration of solvents in paints and varnishes, allow us to enjoy the aro-
mas of wines, cheeses and coffees, make it possible to use propane
and butane in camping gas stoves, etc.

3 Moreover, at a global level, all life on Earth is inextricably linked to
the transport of water (as vapour) from warmer to cooler parts of the
globe, where it then condenses as rain or snow.

4 Although this cycle, which is driven by the sun, occurs under near-
equilibrium conditions, it is responsible for the vast majority of mass
transport at or near the Earth’s surface.

5 It is therefore not true to say that near-equilibrium processes are
“slower” or in any way less important than irreversible processes.

723 / 1598

1 Most of the above-mentioned processes require complex descrip-
tions of multicomponent systems involving various phases, but we can
nevertheless study the typical characteristics of vapour–liquid equilibria
based on the behaviour of a realistic one-component system.

3 2 This makes the equations that we need to solve far simpler, be-
cause they do not need to take into account the composition, and to
some extent you would expect there to be analytical solutions to the
equilibrium equations. How to go about that is precisely what this chapter is about. The

conditions for thermodynamic equilibrium along a continuous phase
boundary curve in the T , p, µ space are:

T v = T lıq dT v = dT lıq

pv = p lıq ⇒ dpv = dp lıq

µv = µlıq −sv dT v + vv dpv = −s lıq dT lıq + v lıq dp lıq
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14 Simple . . .Clausius–Clapeyron equation

1 2 The criteria on the left-hand side must be fulfilled at all equilibrium
points, but from Section 39 on page 214 we know that the intensive
statea

3 of the system can be determinied when two of the three state vari-
ables T , p, µ are known.
4 Consequently, the equilibrium state can be parametrised by T , p or

T , µ or p, µ, the first of which is the most common choice.
5 For a small change in the variables, the conditions on the right-

hand side then apply.

a We have not formulated a mass balance for the equilibrium, so the phase distribu-
tion is unknown, but that is irrelevant in this context because (∂µ/∂N)T ,p = 0 for all
one-component systems, i.e. the equilibrium is the same regardless of the quantity of
vapour and liquid. It is normal to combine the three differentials into a single equation,

which is referred to as the Clapeyron1 equation
(dp
dT

)
∆µ=0 = sv−s lıq

vv−v lıq =̂
∆vaps
∆vapv =

∆vaph
T∆vapv ,

8 6 This equation brings together four important quantities in phase
theory: vapour pressure, temperature, heat of vaporization and satura-
tion volume.
7 Note that the relationship between the entropy and enthalpy of va-

porization follows from the equilibrium condition ∆vapµ = 0, which sub-
stituted into µ = h − Ts gives us ∆vaps = ∆vaph/T . At low pressures the volume of liquid is negligible, since

limp→0(T∆vapv) = Tv ıg = T RT
p . This means that

(∂p
∂T

)
∆µ=0,p→0 =

p∆vaph
RT2 , (14.1)

11 9 where the derivative on the left-hand side has been replaced by a
partial differential (this is possible because there is only one degree of
freedom in the expression).
10 Let us rewrite the equation in such a way that the right-
hand side becomes a weak(er) function of temperature:
(∂ ln p/∂ 1

T )∆µ=0,p→0 = −∆vaph
R . If we integrate we get the Clausius2–Clapeyron vapour pressure

equation, where b = ∆vaph/R is assumed to be constant over the
relevant temperature range:

ln
( p
p◦
)C-C

= a − b
T . (14.2)

1 Émile Clapeyron, 1799–1864. French engineer and mathematician.
2 Rudolf Julius Emanuel Clausius, 1822–1888. German physicist.
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14 Simple . . .Measured vapour pressure

1 If p ≫ 0 then we cannot assume ideal gas behaviour, and if p → pc

then the volume of liquid is no longer negligible. This undermines the
theoretical

1 1.2 1.4
−3

−2

−1

0

1

1/Tr

ln
p r

Figure 14.1: Vapour pressure of CO2, where ◦ is the measured value and ×
is the deviation.
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14 Simple . . .Measured vapour pressure (2)

basis for the Clausius–Clapeyron equation, but the non-linear contribu-
tions largely cancel each other out, so Eq. 14.2 still gives a reasonable
approximation of the vapour pressure.

4 2 This relationship is illustrated in Figure 14.1, which shows a vapour
pressure curve that is surprisingly rectilinear, even close to the critical
point (cf. Matlab-program 30:1.11).
3 The percentage difference between the calculated and measured

vapour pressurea is given by ×.

a W. Duschek, R. Kleinrahm, and W. Wagner. J. Chem. Thermodynamics, 22:841–
864, 1990. To begin to understand why the vapour pressure can be plotted as

a straight line even at high pressures, let us look at the van der Waals
equation of state

pVdW = NRT
V−Nb − aN2

V2
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14 Simple . . .Measured vapour pressure (3)

6 5 in greater detail. The chemical potential can be expressed as µVdW = µıg + µr,v,
where the residual term is defined as being

µr,v =̂
V∫
∞

(
RT
V −

(∂p
∂N

)
T ,V

)
dV

=
V∫
∞

(
RT
V − RT

V−Nb − NRTb
(V−Nb)2 + 2aN

V2

)
dV

= RT ln
( V
V−Nb

)
+ NRTb

V−Nb − 2aN
V ,

and the ideal gas contribution is

µıg = µ◦(T , p◦) + RT ln
(NRT

Vp◦
)
.
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14 Simple . . .Van der Waals equation

1 Combining the equations gives us the following expression for a
van der Waals fluid:

µVdW = µ◦(T , p◦) + RT ln
( NRT
p◦(V−Nb)

)
+ NRTb

V−Nb − 2aN
V .

2 If we use the generalised parameters 3b = vc, a = 3pcv2
c and

8pcvc = 3RTc from Section 46 on page 319, we can express the pres-
sure and chemical potential in dimensionless form:

pVdW

pc
=̂ pVdW

r = 8Tr
3vr−1 − 3

v2
r
, (14.3)

µVdW

RTc
=̂ µVdW

r = µ◦r − Tr ln p◦r + Tr ln
( 8Tr
3vr−1

)
+ Tr

3vr−1 − 9
4vr

. (14.4)
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14 Simple . . .Van der Waals A

1 It is worth noting that these two equations represent a complete set
of equations of state for Helmholtz energy.

2 Integration using the Euler method gives us A = −pV + µN, which
expressed in dimensionless form becomes A

NRTc
= − pV

NRTc
+

µ
RTc

. Rewrit-
ing this in reduced variables:

aVdW
r =̂ AVdW

NRTc
= − 3

8 pVdW
r vr + µVdW

r (14.5)

3 since the critical compressibility factor is zc =̂ pcvc/RTc = 3
8 for the

van der Waals equation of state.
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14 Simple . . .Vapour–liquid equilibrium

1 At thermodynamic equilibrium, T , p and µ have the same values in
both the vapour and liquid phases.

2 Since the van der Waals equation is expressed in terms of
pr(Tr, vr), the equilibrium equations have to be solved simultaneously
in Tr, vr coordinates.

4 3 We can’t expect there to be an analytical solution to this problem,
but there is no harm in setting out the equations. The fact that the pressure is the same in both phases means that

8Tr

3v lıq
r −1
− 3

(v lıq
r )2

= 8Tr
3vv

r −1 −
3

(vv
r )

2 ,

which can be solved for temperature:

8Tr = 6 x2−y2

2x
3−x −

2y
3−y

. (14.6)

5 Here x ∈ [1, 3〉 and y ∈ 〈0, 1] are reduced (molar) densities defined
by x =̂ (v lıq

r )-1 and y =̂ (vv
r )

-1.
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14 Simple . . .Vapour–liquid equilibrium (2)

6 Similarly, the fact that the chemical potential is the same in both
phases means that

Tr ln
( 8Tr

3v lıq
r −1

)
+ Tr

3v lıq
r −1
− 9

4v lıq
r

= Tr ln
( 8Tr
3vv

r −1

)
+ Tr

3vv
r −1 −

9
4vv

r
.

7 If we substitute in the temperature from Eq. 14.6 and rewrite the
equation in terms of molar density, the equilibrium equation can be
expressed as

ln
(x(3−y)
y(3−x)

)
+

(
1 − 6

x+y

)
3(x−y)

(3−x)(3−y) = 0 . (14.7)

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 732 / 1598



Saturation pressure Saturation volume Enthalpy of vaporization Critical exponents Maxwell equal area rule

14 Simple . . .Pressure–potential diagram

1 In order to determine the saturation state of the fluid, we need to
solve Eq. 14.7 for y = y(x) or x = x(y).

3 2 The latter was used in the Matlab function 30:2.5, which calculates
x ∈ [1, 3〉 for a given value of y ∈ 〈0, 1]. The solution is shown graphically in Figure 14.2 on the next page

along with a parametrised pr(vr), µr(vr) diagram3.

6 4 Here the simultaneous solution of p lıq
r = pv

r and µlıq
r = µv

r appears
as the triple point of a manifold with three regions (vapour, liquid and an
unphysical fluid phase for which (∂p/∂v)T > 0).
5 The figures were drawn using the Matlab program 30:1.10. Note that the slope of the graph asymptotically approaches −1 as

it nears the critical point, where xc = yc = 1. 7 This means that one of the densities decreases at the same rate
as the other one increases in the two-phase region i.e. for Tr < 1. The average density of

the two phases therefore has the constant value 1
2 (x + y) ≃ 1.

8 Experimentally it has been demonstrated that the value of x + y is
not quite constant, but nevertheless it is virtually a linear function of Tr

(hence it is also referred to as the rectilinear density) over a wide range
of temperatures.9 This is as far as we can get by looking at the general case, so we

will now move on to a discussion of the asymptotes of the graph.

3 The volume increases from the top right corner down to the bottom left corner of the
figure.
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ρ
lıq r
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pr

µ
r

c.p.

Figure 14.2: ρv
r , ρ

lıq
r saturation graph, with the associated isotherms, ex-

pressed in pr, µr coordinates (drawn with volume as the parameter).
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14 Simple . . .Limit pVdW
r (Tr ≪ 1)

1 At low temperatures the reduced densities can be expressed as
x = 3 − α and y = β, where α and β are small positive numbers. When
substituted into the equilibrium Eq. 14.7 this gives us

0 = ln
((3−α)(3−β)

βα

)
+

(
1 − 6

3−α+β
) 3(3−α−β)

α(3−β) ≃ ln
( 9
βα

) − 3
α ,

if only the dominant terms are included.

2 The asymptotic solution limTr→0(β) = 9
α exp(−3

α ) shows that the
vapour density declines exponentially with falling temperature.

5 3 In that limit case, the temperature Eq. 14.6 can be expressed as

lim
Tr→0

(8TVdW
r ) = 6 (3−α)2−(β)2

2(3−α)
α − 2β

3−β
≃ 9α ,

4 and if we substitute that into the van der Waals equation we get

lim
Tr→0

pVdW
r = 8Tr

3β−1 − 3β2 ≃ 9α
α
3 exp( 3α)−1 ≃

27
exp( 3α)

. Combining these latter two equations allows us to eliminate α, giv-
ing us the temperature-explicit form limTr→0 ln pVdW

r = ln 27 − 27
8 T -1

r ,
which conforms to the Clausius–Clapeyron vapour pressure Eq. 14.2,
with a slope of −b = −27

8 = −∆vaphr

R .
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14 Simple . . .Limit pVdW
r (Tr → 1)

1 Near the critical point, the reduced densities can be expressed as
x = 1 + α and y = 1 − β, where α and β are small positive numbers. If
we substitute these values into the equilibrium Eq. 14.7 we get

ln
((1+α)(2+β)
(1−β)(2−α)

)
+

(
1 − 6

2+α−β
) 3(α+β)
(2−α)(2+β) = 0 .

3 2 Now let us expand ln(1+x) = x +O(x2) and multiply out the terms
in brackets. We can ignore all higher order terms of the kind αβ, α2 and β2:

0 = α+ 1
2 β − (−β − 1

2 α) +
(
1 − 6

2+α−β
) 3(α+β)

4+2β−2α−αβ

≃ 1 +
(
1 − 6

2+α−β
)

1
2+β−α

= 4 − (β − α)2 + 2 + (β − α) − 6

≃ β − α . (14.8)
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14 Simple . . .Limit pVdW
r (Tr → 1) (2)

4 This implies that limTr→1(α) = β, which shows that the vapour and
liquid densities are symmetrical about the point xc = yc = 1.

7 5 This is an important results, which has also been confirmed exper-
imentallyab,
6 see Figure 14.3 on page 714 (cf. Matlab-program 30:1.11).

a The critical volume of a fluid can be estimated using straight-line extrapolation of the
sub-critical vapour and liquid densities, while the critical pressure and temperature can
be measured directly.
b Molar entropy displays a similar symmetry; see Figure 18.9 on page 996. By substituting into the temperature Eq. 14.6 we can obtain the

limit value

lim
Tr→1

8TVdW
r = 6 (1+α)2−(1−α)2

2(1+α)
2−α −

2(1−α)
2+α

= 2(4 − α2) , (14.9)

which can in turn be substituted into the van der Waals equation, to give
us

lim
Tr→1

pVdW
r = 8Tr

3
x−1
− 3x2 =

2(4−α2)
3

1+α−1
− 3(1 + α)2 = 1 − α2 . (14.10)
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14 Simple . . .Limit pVdW
r (Tr → 1) (3)

8 Here we should note that both TVdW
r and pVdW

r are simple functions
of α2.
9 In other words, the phase envelope is parabolic with the critical

point as its origin. If α2 is eliminated from the last two equations, the saturation pressure
can instead be written as a logarithmic function with temperature as its
free variable:

lim
Tr→1

ln(pVdW
r ) = ln(4Tr − 3) ≃ 4(Tr − 1) .

10 If we combine this with the Clausius–Clapeyron vapour pressure
Eq. 14.2 we get the slope limTr→1 ∂ ln pr/∂(1/T) = −4T2

r ≥ −4.
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14 Simple . . .Vapour pressure curve

1 The conclusion is that the slope of the vapour pressure curve varies
in the range −4 < −b < − 27

8 .

3 2 At the small scale of Figure 14.1 this variation is hardly noticeable
and ln(pVdW

r ) = f(1/T) appears to be a straight line. The van der Waals equation therefore gives us a qualitatively ac-
curate representation of the vapour pressure curve, although from ex-
perience we know that the model is insufficiently accurate for quantita-
tive purposes.

5 4 It would be unreasonable to expect otherwise — it is impossible for
two parameters to fully describe all of the thermodynamic systems in
the world. The one-phase region is not adequately represented either, but

once again it is qualitatively accurate, as seen in Figure 14.34.6 As such, only small changes are needed to improve the predictive
accuracy.
7 In 1949, Redlich and Kwonga introduced the first improvement by

making the a term temperature-dependent.
8 Since then, a number of related equations of state have been pub-

lishedbc, but they are all cubicd

9 functions of the volume (or density), and their qualitative properties
are the same.
10 This means that the van der Waals equation of state still remains
an important conceptual model — 140 years after it was formulated.

a Otto Redlich and J. N. S. Kwong. Chem. Rev. (Washington, D. C.), 44:233–244,
1949.
b Giorgio Soave. Fluid Phase Equilib., pages 1197–1203, 1972.
c Ding-Yu Peng and Donald B. Robinson. Ind. Eng. Chem. Fundam., 15(1):59–64,
1976.
d There are now around a hundred closely related models, with the Redlich–Kwong–
Soave and Peng–Robinson (PR) models being two of the best-known ones.

4 W. Duschek, R. Kleinrahm, and W. Wagner. J. Chem. Thermodynamics, 22:841–
864, 1990.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 739 / 1598



Saturation pressure Saturation volume Enthalpy of vaporization Critical exponents Maxwell equal area rule
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Figure 14.3: The saturation pressure of CO2 along with selected isotherms
in the one-phase region (280 K, 313 K and 330 K respectively). Note the sym-
metry of the saturation pressure psat

r around the critical density ρr ,c = 1.
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14 Simple . . .Critical phenomena

1 At sufficiently low temperatures, the molar density of a liquid ap-
proaches a constant value of limTr→0(x) = 3.

2 As the temperature increases, the liquid phase gradually becomes
less significant, until it ceases to exist entirely at the critical point where
limTr→1(x) = limTr→1(y) = 1.

3 In this state there is no fundamental difference between a gas and
a liquid.

4 This idea is supported by Eq. 14.8, which shows that the density
of the two phases is symmetrical about xc = yc = 1 close to the critical
point.
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14 Simple . . .Limit vVdW
r (Tr ≪ 1)

1 As previously mentioned, when the temperature approaches zero,
the specific volume of the liquid tends to a ratio of limTr→0(vVdW

r ) = 1
3 .
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14 Simple . . .Limit vVdW
r (Tr → 1)

1 Close to the critical point, the reduced density of the liquid can be
expressed as x =̂ (v lıq

r )-1 = 1 + α where α is a small number, and from
Eq. 14.9 we can then derive the asymptotic temperature function:

lim
Tr→1

(v lıq
r )VdW = lim

Tr→1

1
1+α = 1

1+
√

4−4Tr
≃ 1 − 2

√
1 − Tr .

2 This makes the logarithm of the saturation volume

lim
Tr→1

ln(v lıq
r )VdW ≃ −2

√
1 − Tr ,

3 while the Racketta equation, which forms the basis for several semi-
empirical correlations, states that ln(v lıq

r )Rackett = ln(zc)·(1−Tr)2/7 where
ln(zc) ≈ −1.2 for nonpolar substances.
4 The parameters in the two equations are different, but qualitatively

there is still a real correspondence between theory and practiceb.

a Harold G. Rackett. J. Chem. Eng. Data., 15(4):514–518, 1970.
b The van der Waals equation indicates that the function should take the form a(1−Tr)b

and also gives us good initial values that can be adjusted to reflect experimental data
(both the proportionality constant ln(zc) and the exponent 2/7 in the Rackett equation
are empirical).
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14 Simple . . .Enthalpy of vaporization

1 The enthalpy of the van der Waals fluid can be expressed as
HVdW = Hıg + Hr,v where the residual term is

Hr,v =
V∫
∞

[
V

(∂p
∂V

)
T ,N + T

(∂p
∂T

)
V ,N

]
dV

=
V∫
∞

[
V

(
−NRT

(V−Nb)2 + 2aN2

V3

)
+ T

( NR
V−Nb

)]
dV

= N2RTb
V−Nb − 2aN2

V .

2 We can substitute in the generalised parameters 3b = vc, a =

3pcv2
c and 8pcvc = 3RTc, and then rewrite the enthalpy expression in

dimensionless form:

hVdW
r =̂ Hıg+Hr,v

NRTc
= hıg

r + Tr
3vr−1 − 9

4vr
.
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14 Simple . . .Enthalpy of vaporization (2)

3 The ideal gas contribution cancels out when calculating the en-
thalpy of vaporization:

∆vaphVdW
r = Tr

3vv
r −1 −

9
4vv

r
− Tr

3v lıq
r −1

+ 9
4v lıq

r

=̂ (y − x)
(

3Tr
(3−x)(3−y) −

9
4

)
.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 745 / 1598



Saturation pressure Saturation volume Enthalpy of vaporization Critical exponents Maxwell equal area rule

14 Simple . . .Limit ∆vaphVdW
r (Tr ≪ 1)

1 In practice, the low-temperature limit limTr→0(∆vaphVdW
r ) = 27

8 can
never be reached, because most liquids freeze at a temperature of
Tr ≈ 0.7. Table 14.4 on the following page therefore gives a comparison
with the heat of vaporization5 measured at the normal boiling point.2 As can be seen from the table, the correlation between the two is

no more than reasonable.

5 Robert C. Reid, John M. Prausnitz, and Thomas K. Sherwood. The Properties of
Gases and Liquids. McGraw-Hill, 3rd edition, 1977.
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Figure 14.4: Enthalpy of vaporization at the normal boiling point compared
with ∆vaphVdW

r = 27
8 = 3.375 calculated from the van der Waals equation.

Tb
[K]

Tc
[K]

∆vaph
[cal/mol]

∆vaph
RTc

∆vaphVdW

[cal/mol]

N2 77.35 126.2 1333 5.32 846
Ar 87.27 150.8 1560 5.21 1011
O2 90.17 154.6 1630 5.31 1037

CH4 111.66 190.4 1955 5.17 1277
Kr 119.74 209.4 2309 5.55 1404

H2O 373.15 647.3 9717 7.55 4341
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14 Simple . . .Limit ∆vaphVdW
r (Tr → 1)

1 Close to the critical point, the reduced densities can be expressed
as x = 1 + α and y = 1 − β, where α and β are small positive numbers:

∆vaphVdW
r = −(α+ β)

(
3Tr

(2−α)(2+β) −
9
4

)
.

2 Now let us substitute in limTr→1(β) = α and limTr→1(4Tr) = 4 − α2

from Eq. 14.9:

lim
Tr→1

∆vaphVdW
r = −2α

(
3Tr

4−α2 − 9
4

)
= 6

√
1 − Tr .

3 The Watsona correlation ∆vaphWatson = a(1 − Tr)b , which states
that b ≈ 0.38 for nonpolar organic compounds, goes a long way towards
confirming this result.

a K. M. Watson. Ind. Eng. Chem., 35:398, 1943.
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14 Simple . . .Critical exponents

1 In Section 48 on page 325 we showed that the van der Waals equa-
tion can be written in its reduced form without the use of any arbitrary
model parameters.

5 2 The underlying theory is based on the critical properties of the fluid
under the conditions (∂p/∂v)T = 0 and (∂2p/∂v∂v)T = 0, calculated at
T = Tc and v = vc, and of course also at p = pc.
3 This produces two equations that contain the two parameters a and

b.
4 Conventionally, the equations are solved with respect to a and b as

functions of Tc and pc. This results in a useful form of the equation of state, which we
have used in this chapter to analyse the fluid’s behaviour in a number
of interesting limit cases.

6 Nevertheless, Figure 14.3, to give a specific example, shows that
the theory is by no means universally applicable.

7 In this section we will look in greater detail at what happens close to
the critical point, and quantify to what extent the van der Waals equation
fails to predict experimental results.
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14 Simple . . .Critical exponents (2)

8 It has been theoretically proven — and experimentally confirmed —
that the energy surface close to the critical point of a vapour–liquid
equilibrium is of a universal form, which is parametrised by what we call
an order parameter.

15 9 The order parameter reflects the characteristic behaviour of the
fluid in phase transitions.
10 By definition it is zero at the critical point and in the surrounding
one-phase region.
11 In two-phase regions it gradually increases with the distance from
the critical point.
12 For reasons of symmetry, we wouldn’t expect the order parameter
to differ between vapour–liquid and liquid–vapour transitions.
13 There is absolutely no reason for it to do so, since there is no ther-
modynamic distinction between a vapour phase and a liquid phase.
14 They are both fluids. For vapour–liquid equilibria, it is natural to use

∣∣∣ρr − 1
∣∣∣ as an order

parameter, provided that it produces symmetrical phase transitions6,
which it indeed does.

17 16 In fact, that order parameter is precisely what explains the rectilin-
ear density graph mentioned in conjunction with Figure 14.2. Outside the two-phase region (using values along the fluid’s critical

isochore moving towards the critical point) it is possible to observe a
gradual phase transition in the fluid.

18 The closer we get to the critical point, the more anomalous the
behaviour of the fluid.
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14 Simple . . .Critical exponents (3)

22 19 This is called a λ transition or a 2nd order phase transition.
20 The name λ transition comes from the variation in heat capacity as
a function of distance from the critical point:
21 when Tr − 1 is used as the measure of distance from the critical
point, the shape of the graph is reminiscent of the Greek letter lambda. In the literature for this field, which incidentally covers a large and

exciting range of research7, the critical anomalies of the fluid are ex-
pressed using divergence formulae:

One phase, ρr = 1 : cv ∝ (Tr − 1)−α , (14.11)

One phase, ρr = 1 :
(∂ρr

∂pr

)
Tr
∝ (Tr − 1)−γ , (14.12)

Critical, Tr = 1 : |pr − 1| ∝ |ρr − 1| +δ , (14.13)

Two phases, Tr < 1 : |ρr − 1| ∝ (1 − Tr)
+β . (14.14)

23 In the next four sections we will derive the classical values of the
exponents α, γ, δ and β, based on our understanding of a van der Waals
fluid.
24 However, the results that we will obtain are not only true for the van
der Waals equation, they are also valid for all explicit equations of state,
regardless of whether or not they are cubic.
25 This is because we are only interested in the exponents in the
above equations— not the proportionality factors.
26 It turns out that the exponents are the same, whether you start out
from the van der Waals equation or from a more advanced (modern)
equation of state.
27 This classical theory is also known as the Landau theory.

6 The theory applies to all phase equilibria that have a single (scalar) order parameter.
For example, ferromagnetic materials display relatively analogous behaviour, which
is described by the order parameter |Mr − 1|, where M is the magnetisation of the
substance.
7 Kenneth G. Wilson received the Nobel prize in 1982 for his contribution to the devel-
opment of renormalisation groups applied to, amongst other things, critical phase tran-
sitions.
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14 Simple . . .Isochoric heat capacity (α)

1 2 From our knowledge of thermodynamic theory, and particularly
from chapters 4 and 8 on Legendre transformations and on the ther-
modynamics of systems of constant composition, we know the general
relationships (∂A/∂T)V ,n = −S and (∂S/∂T)V ,n =̂ CV/T .
3 These equations can also be expressed in reduced coordinates as
(∂ar/∂Tr)vr = −s/R and (∂s/∂Tr)vr =̂ cv/Tr. Eliminating s gives us cv = −RTr (∂2ar/∂Tr∂Tr)vr

. In other words,
the heat capacity of the fluid gives us the second derivative of Helmholtz
energy.

4 For a van der Waals fluid, we can obtain the Helmholtz energy by
combining Eq. 14.5 with equations 14.3 and 14.4.

5 Double differentiation of ar with respect to Tr gives us

cVdW
v = −RTr

(( ∂2µ◦r
∂Tr∂Tr

)
+ 1

Tr

)
= c◦p − R = c◦v (T) .

9 6 Note that the temperature derivative of µ◦ gives us c◦p rather than
c◦v .
7 This is because the standard state is defined at p◦, which implies

that v◦ is a variable with respect to temperature.
8 This topic is discussed more thoroughly in the context of Eq. 7.9 on

page 255. We can therefore conclude that αVdW = 0 in Eq. 14.11.10 This assumes that the heat capacity in the standard state behaves
“normally” close to the critical temperature of the fluid, but this is very
likely to be the case, given that c◦v refers to an ideal gas state.
11 After all, the critical state is a result of the non-ideal nature of the
fluid, and the standard state doesn’t tell us anything about non-ideal
conditions.
12 Although c◦v is a function of temperature, it does not display any
temperature divergence of the type (Tr − 1)−α.
13 c◦v can therefore be considered a constant in this context.
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14 Simple . . .Bulk modulus (γ)

1 The van der Waals equation expressed in reduced Tr, vr coordi-
nates was discussed in Section 48. Here we need the same equation,
but this time as a function of Tr and ρr:

pVdW
r = 8Tr

3vr−1 − 3
vr
=̂

8Trρr

3−ρr
− 3ρ2

r

2 Let us differentiate the pressure with respect to density, and rear-
range the resulting equation in such a way as to isolate Tr − 1 in one of
the numerators:

lim
ρr→1

(∂pr
∂ρr

)VdW

Tr
= 24

(
Tr−1

(3−ρr)2 + 1
(3−ρr)2 −

ρr

4
︸       ︷︷       ︸

0

)
= 6(Tr − 1)

3 The exponent of the expression on the right side of the equation is
1 which means that γVdW = 1 (not −1) in Eq. 14.12.4 The expression above is written for the bulk modulus while

Eq. 14.12 is valid for the isothermal compressibility.
5 These are mutually resiprocal quantities which explains the sign

shift of the exponent.
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14 Simple . . .Critical isotherm (δ)

1 We will start out from the van der Waals equation expressed as a
function of Tr and ρr, just as we did for the bulk modulus.

2 Along the critical isotherm, the equation of state can be factored as
follows:

lim
Tr→1

(pVdW
r − 1) = 3

3−ρr
(ρr − 1)3

3 That gives us δVdW = 3 in Eq. 14.13. In other words, the critical
isotherm describes a third-degree curve with its origin at the critical
point.4 This is why the van der Waals equation and other related equations

are sometimes called “cubic equations of state”.
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14 Simple . . .Phase envelope (β)

1 Based on our discussion of phase equilibrium problems in Sec-
tion 14.1, and with particular reference to Eq. 14.10, it follows that:

2 (ρr − 1) = ±(1 − Tr)
0.5 .

2 The vapour pressure curve describes a parabola with the order
parameter ρr − 1, which means that βVdW = 0.5 in Eq. 14.14.
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Figure 14.5: Critical exponents measured experimentally for selected com-
pounds compared with the classical values calculated from the van der Waals
equation of state.

System α γ δ β

Van der Waals 0 1 3 0.5
Ising 3D 82 0.110(1) 1.237(2) 4.789(2) 0.326(5)
Heisenberg 3D 92 −.1336(2) 1.3960(9) 4.783(3) 0.3689(3)
Ni, Fe, Gd2BrC, Gd2IC,
Tl2Mn2O7, . . . 102

−.1336(2) 1.3960(9) 4.783(3) 0.3689(3)

3 He, 4 He, Xe, CO2,
H2O, O2

112
0.10(0) 1.19(0) 4.35(0) 0.35(5)

122 J. M. H. Levelt Sengers and J. V. Sengers. Phys. Rev. A, 12(6):2622–2627, 1975.
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14 Simple . . .Critical point measurements

1 Table 14.5 gives a summary of what we have learned so far about
phase transitions and how they relate to the van der Waals equation.

3 2 As can clearly be seen from the table, the equation of state does
not accurately describe what happens in real life, but we knew that al-
ready. What is surprising is that the experimental values do not diverge;

instead they suggest that physical quantities exhibit certain universal
behaviour during phase transitions.

8 4 Here we should note that the exponents α–δ vary surprisingly little,
both in response to changes in the chemistry of the system and to the
physical properties defined by the order parameter.
5 Intuitively you would expect there to be a big difference between

vapour–liquid phase transitions and ferromagnetism, but it turns out that
the critical exponents of these phenomena are roughly the same.
6 We are clearly standing at the threshold of a new understanding of

the world.
7 However, the theory that underpins it is unfortunately beyond our

reach, and we will therefore have to limit ourselves to a verbal discus-
sion of the topic. What we can say for sure is that there is no equation with an an-

alytical solution that accurately describes critical phenomena in nature.
In other words, the critical exponents are neither integers (z ∈ Z) nor
simple fractions (q ∈ Q).

13 9 That is what they would need to be for there to be any hope of find-
ing an equation of state with an analytical solution capable of describ-
ing phase transition behaviour.
10 This is because expanding such an equation would always produce
exponents that are rational numbers or integers.
11 That is not the case, and we must therefore give up on trying to find
an all-encompassing universal equation to describe the laws of nature.
12 Our next observation is loosely related to statistical thermodynam-
ics and to the knowledge that some models are easier to deal with than
others. The simplest special case is a gas in which the molecules are con-

stantly moving around without colliding or interacting with each other in
any way. That is what we mean by an ideal gas.
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14 Simple . . .Critical point measurements (2)

15 14 We will assume that the correlation length of the gas is zero, even
at the risk of claiming to know something that we haven’t verified. The second special case is a system in which the molecules (or

atoms) are arranged in a repeating lattice with long-range order. That
is what we mean by a crystalline structure.

17 16 In one sense, the correlation length of the crystal is infinite. The third special case only arises in conjunction with phase transi-
tions.

18 Here the correlation length varies over several orders of magnitude,
which means that this phenomenon is much more significant than the
contributions from the intermolecular forces in the fluid.

19 At the critical point, the correlation length is of the same order of
magnitude as the system itself, or at least big enough to interfere with
the wavelength of visible light.
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14 Simple . . .Critical point measurements (3)

27 20 This phenomenon is called critical opalescence, and results in an
incredible array of colours when white light hits a sample that is in a
near-critical state.
21 In the critical state, there is a balance between the thermal energy
and the potential energy of the fluid.
22 This results in the energy surface losing its curvature.
23 Consequently, it is impossible for there to be a static equilibrium,
as there appears to be at other pressures and temperatures, judging by
observations.
24 The compressibility diverges (tends to infinity) and the fluid appears
to be constantly moving, without ever quite coming to rest.
25 One practical consequence of these conditions is that the force of
gravity becomes relatively more important, leading to large variations in
density that can distort experimental results.
26 Measurements have therefore been taken under zero-gravity con-
ditions in order to validate current theories relating to the field. The conclusion is that theory and practice agree, but that the van

der Waals equation (like other equations of state with analytical solu-
tions) produces inaccurate estimates of the critical exponents.

28 However, the principle that the critical phenomena display universal
scaling behaviour holds true, and there is in fact a general rule that
applies to phase transitions in all substances, as stated in equations
14.11–14.14. Moreover, we also know that

α = 2−β(δ+ 1)

γ = β(δ − 1)
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14 Simple . . .§ 110 § 109 § 111

At 101 K nitrogen has the following saturation state: p = 8.344
bar, ρlıq = 24.360 mol dm-3 and ρv = 1.222 moldm-3. The

critical point exists at pc = 34.000 bar, ρc = 11.210 moldm-3

and Tc = 126.2 K. Calculate the saturation state
expressed in reduced coordinates and draw your result

onto the graph pVdW
r = f(Tr, vr); also see Section 48

on page 325. Comment on the discrepancy between
the calculated volumes of vapour and liquid and the

experimental values.
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14 Simple . . .§ 110 Maxwell equal area rule I

1 The results calculated from the Van der Waals equation have been
drawn in reduced coordinates in Figure 14.6 on the following page using
the Matlab program 30:1.8.

2 Note that the equation overestimates the volume of N2 in the liquid
phase.

5 3 This is a weakness that is common to all cubic equations of state.
4 In the vapour phase the discrepancy is relatively speaking smaller,

because there the molar volume is greater than in the liquid phase. Also note that the areas above and below the phase boundary line
(Tr = 0.8) based on experimental values are roughly equal.6 This is not a coincidence, and for a calculated phase equilibrium

the Maxwell equal area rule states that the two areas will be identical.
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Figure 14.6: The van der Waals equation of state expressed in pr, vr coordi-
nates for Tr = {0.8, 1.0, 1.2}. The horizontal line shows the experimentally es-
tablished two-phase region for nitrogen at Tr = 0.8.
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14 Simple . . .§ 111 § 110 § 112

The Maxwell equal area rule can be expressed as∫ Vv

V lıq(p − psat)(dV)T ,N = 0 and be plotted on a figure
equivalent to 14.6, but with the ordinary volume and
pressure along the axes. Show that this equation

actually holds for a one-component phase equilibrium.
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14 Simple . . .§ 111 Maxwell equal area rule II

1 2 We immediately recognise −p as the partial derivative of Helmholtz
energy with respect to the volume along the chosen isotherm. The integral along this isotherm can be expressed as follows:

Vv∫

V lıq

(p − psat) (dV)Tsat,N = −
Vv∫

V lıq

[(∂A
∂V

)
T ,n + psat

]
dV

= A lıq − A v − psat

(
Vv − V lıq

)

?
= 0 . (14.15)

3 Since the system only has one chemical component, it must also
be true that A = −pV + µN. Moreover, when the vapour and liquid
phases are in equilibrium, p lıq = pv = psat. Hence the equality in 14.15
can be simplified to

(µN)lıq ?
= (µN)v . (14.16)
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14 Simple . . .§ 111 Maxwell equal area rule II (2)

4 The integration has been performed at constant temperature Tsat

and total composition N.
5 Hence, as in 14.16, the mole number can be considered a constant

(common) factor for the vapour and liquid phases. It then follows that

µlıq = µv ,

which is identical to the phase equilibrium criterion for a one-component
system.
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14 Simple . . .§ 112 § 111 § 113

The necessary conditions for thermodynamic equilibrium
in a closed system with only one chemical component,
at a given temperature T , total volume V = Vv +V lıq

and total composition N = Nv + Nlıq, are

Aeq = min
v,n

A(T , v,n) ,

ev = V ,

en = N .

Here e =̂ [1 1], vT =̂ [Vv V lıq] and nT =̂ [Nv Nlıq]. As
was mentioned at the start of this chapter, pv = p lıq

and µv = µlıq are necessary conditions for equilibrium.
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14 Simple . . .§ 112 § 111 § 113 (2)

Show that this is the case. Illustrate the energy surface
using a ρ,A diagram where ρr =̂ v-1

r ∈ 〈0, 3〉.
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Figure 14.7: Helmholtz energy for the isotherms shown in Figure 14.2 on
page 708. The equilibrium state (the tangent plane at minimum energy) is
given for the second lowest isotherm. Note that the standard state has been
chosen for the purposes of clarity, and varies for each isotherm. The parabolic
curve indicates the system’s phase boundaries.
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14 Simple . . .§ 112 Minimum of Helmholtz energy

1 A necessary — but not sufficient — condition for thermodynamic
equilibrium is that (dA)T = 0 for variations in the extensive variables
Vv,Nv and V lıq,Nlıq. Taking the total differential for both phases gives
us

(dA)T = (dA)v
T + (dA)

lıq
T

= −pv dVv + µv dNv − p lıq dV lıq + µlıq dNlıq

= 0 .

2 The limits on the volume and mole number of the closed system
mean that dV lıq = − dVv and dNlıq = − dNv. Substituted into the differ-
ential of A that gives us

(dA)T = −(pv − p lıq)dVv + (µv − µlıq)dNv = 0 .
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14 Simple . . .§ 112 Minimum of Helmholtz energy (2)

3 Since dVv and dNv are independent variables, then it must be the
case that pv = p lıq and µv = µlıq, which is what we needed to show.

4 Figure 14.7 shows selected isotherms in the requested ρ,A dia-
gram, along with the saturation curve of the fluid (see Matlab-program
30:1.10).
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14 Simple . . .Tangent plane

1 Note that the minimum free energy along each isotherm is not in
any way related to the equilibrium state.

2 Helmholtz energy is a function of the standard state of the fluid,
and since standard state properties do not have absolute values, the
minimum of the function won’t be an absolute value either.

4 3 Admittedly we have found the minimum of the Helmholtz energy
function, but we did that by distributing the total mass across two differ-
ent phases. The equilibrium state is therefore characterised by having two

points on a single isotherm that can be connected by a line that is en-
tirely below the rest of the function surface (the graph).

5 From a geometrical point of view, this condition will be met if the
two points have a common tangent.6 It can be shown that the axis intercepts in the diagram are propor-

tional to p and µ respectively, which means that the tangent require-
ment is also equivalent to pv = p lıq and µv = µlıq.
7 This can be considered the result of a differential condition for equi-
librium, whereas the Maxwell equal area rule is an integral formulation
of the same condition.
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Part 15

Multicomponent Phase Equilibrium

see also Part-Contents
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4 Convergence properties
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15 Multicomponent . . .Minimum energy

1 At thermodynamic equilibrium the system has reached a state of
minimum energy.

3 2 This far-reaching postulate is of tremendous importance for our un-
derstanding of matter and energy, but it remains to discuss which of the
energy functions that are being minimised. In Chapter 16 on page 820 it is for example proved that Gibbs

energy of a closed system decreases (due to chemical reactions) till
the minimum value Geq = minn G(T , p,n) is reached.

5 4 This is generally true when the temperature and pressure are con-
stant. If the volume is kept constant and the pressure is varied the

Helmholtz energy will be minimised.

6 Chapter 14 on page 698 illustrates this for the case of a simple
vapour–liquid equilibrium.7 The other energy functions U, H, etc. are minimised at constant

values of their respective canonical variables.
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15 Multicomponent . . .ω phases

1 In general we shall investigate a closed system consisting of π = α,

β, . . . , ψ, ω phases1 and a set of i = 1, 2, . . . , n components which are
common to all the phases.

3 2 Reacting systems with (maybe) disjoint sets of the components in
each of the phases is taken up in Chapter Phase Reactions. For the special case of constant temperature and pressure

(dG)T ,p,n =
∑ω
π=α

∑n
i=1 µ

π
i dNπ

i = 0 is a necessary condition for ther-
modynamic equilibrium.

4 From the mass balance it follows that
∑ω
π=α Nπ

i = Ni and even∑ω
π=α dNπ

i = 0 because the total moles Ni are constant.
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15 Multicomponent . . .ω phases (2)

6 5 The main concern of this chapter is a two-phase system where α
and β may include vapour–liquid, liquid–liquid, solid–liquid and solid–
solid equilibrium. The thermodynamic equilibrium criterion is then simplified to:

(dG)T ,p,n =
n∑

i=1
µαi dNα

i +
n∑

i=1
µβi dNβ

i = 0 ,

dNα
i + dNβ

i = 0 .

Elimination of dNβ
i makes (dG)T ,p,n =

∑n
i=1(µ

α
i − µ

β
i )dNα

i = 0.

7 In the vicinity of an equilibrium point all the dNα
i are independent

quantities2 and the equilibrium relationship is equivalent to:

µαi = µβi , ∀i ∈ [1, n] . (15.1)

1 Phase α is usually the low temperature phase and β, . . . , ψ, ω are phases that become
stable at successively increasing temperatures.
2 At equilibrium dNα

i are fluctuations beyond our control. These fluctuations are quite
inevitable from the laws of quantum mechanics and will be observed in every physically
acceptable system. Thermodynamic equilibria are in other words dynamic, not static.
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15 Multicomponent . . .§ 113 § 112 § 114

Show that the necessary criteria for multiphase equilibrium
at given total entropy S, total volume V and total

composition Ni for each component i, are Tα = T β =

. . . = Tω, pα = pβ = . . . = pω and µα = µβ = . . . = µω.
It is assumed that all the components i ∈ [1, n] are
present in all the phases α, β, . . . ω. Hint: start from

Ueq = min
s,v,ni

U(s, v,n1, · · · ,nn) ,

es = S ,

ev = V ,

eni = Ni , ∀i ∈ [1, n] ,
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15 Multicomponent . . .§ 113 § 112 § 114 (2)

where e =̂ [1 1 . . .1], sT =̂ [Sα Sβ . . .Sω], vT =̂ [Vα Vβ . . .Vω]

and nT
i =̂ [Nα

i Nβ
i . . .N

ω
i ] are phase vectors with as

many elements as there are phases in the system.
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15 Multicomponent . . .§ 113 Phase equilibrium

1 The internal energy of the system is minimised in the equilibrium
state. In this (stationary) state the differential of U must be zero for all
feasible variations in Sπ, Vπ and Nπ

i :

(dU)S,V ,n =
ω∑
π=α

dUπ =
ω∑
π=α

(
Tπ dSπ − pπ dVπ +

n∑
i=1
µπi dNπ

i

)
= 0 .

4 2 Note that U has no absolute minimum.
3 Due to its extensive properties it will → ±∞ when the system size
→∞. The variations in Sπ, Vπ and Nπ

i must therefore be constrained
such that the total entropy, volume and mole numbers (of each compo-
nent) are conserved:

ω∑
π=α

dSπ = 0 ,

ω∑
π=α

dVπ = 0 ,
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15 Multicomponent . . .§ 113 Phase equilibrium (2)

ω∑
π=α

dNπ
i = 0 , ∀i ∈ [1, n] .

6 5 From these n + 2 balance equations we can eliminate dSω, dVω

and dNω
i for all the components i ∈ [1, n]. Substituted into the differential of U:

(dU)S,V ,n =
ψ∑
π=α

[
(Tπ−Tω)dSπ− (pπ−pω)dVπ+

n∑
i=1

(µπi −µ
ω
i )dNπ

i

]
= 0 .

8 7 In the neighbourhood of an equilibrium point the quantities
dSα , . . . , dSψ and dVα , . . . , dVψ and dN1

α , . . . , dSψ
n are truly indepen-

dent variables. If (dU)S,V ,n = 0 then it must be true that:

Tα = Tβ = · · · = Tψ = Tω ,

pα = pβ = · · · = pψ = pω ,

µα1 = µ
β
1 = · · · = µ

ψ
1 = µω1 ,

...

µαn = µ
β
n = · · · = µ

ψ
n = µωn .

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 780 / 1598



Direct substitution Newton–Raphson iteration Chemical potential versus K -value Convergence properties

15 Multicomponent . . .§ 113 Phase equilibrium (3)
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15 Multicomponent . . .Gibbs’ phase rule

1 Despite the fact that temperature, pressure and chemical poten-
tials are uniform at thermodynamic equilibrium we cannot specify these
variables directly.

2 The Gibbs–Duhem’s equation

s dT − v dp + [n1 n2 · · · nn]dµ = 0 .

removes one degree of freedom per phase.

3 The number of independent intensive variables in a system is
therefore F = dim(n) + 2 − dim(e), or in other words F = N + 2 − P,
also known as the Gibbs phase rule for un-reacting systems.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 782 / 1598



Direct substitution Newton–Raphson iteration Chemical potential versus K -value Convergence properties

15 Multicomponent . . .K -values

1 Vapour–liquid equilibria are frequently calculated by an iterative
method which is due to Rachford and Rice3.

2 This is also known as the K -value method because the equilibrium
relations are solved as a set of K -value problems on the form

xβi =̂ Kixαi , ∀i ∈ [1, n] , (15.2)

where xαi and xβi are the mole fractions of component i in α (liquid) and
β (vapour) respectively.

3 We shall later learn that there is a one-to-one relationship between
Ki and the chemical potentials of component i in the two phases.

5 4 This tells us that the K -value method can be applied even when
α and β are two arbitrary phases, but prior to the discussion of exotic
phase equilibria we shall derive a calculation scheme (algorithm) for
Eq. 15.2. The total mass balance is Nα + Nβ = N and the component bal-

ances can be written xαi Nα + xβi Nβ = Ni.
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15 Multicomponent . . .K -values (2)

6 Elimination of Nβ produces xαi Nα + xβi (N − Nα) = Ni and a subse-
quent substitution of xβi from Eq. 15.2 yields:

xαi = Ni
Nα+Ki(N−Nα) =

zi
zα+Kizβ

. (15.3)

3 H. H. Rachford and J. D. Rice. Trans. Am. Inst. Min., Metall. Pet. Eng., 195:327–328,
1952.
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15 Multicomponent . . .Rachford–Rice

1 The corresponding expression for xβi is

xβi = KiNi
Nα+Ki(N−Nα) =

Kizi
zα+Kizβ

, (15.4)

where zα =̂ Nα/(Nα+Nβ) and zβ =̂ Nβ/(Nα+Nβ) are the phase fractions
and zi =̂ Ni/N is the total (feed) mole fraction of component i.

2 Note that the right hand sides of Eqs. 15.3 and 15.4 contain a single
unknown variable zα, or equivalently zβ = 1 − zα.
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15 Multicomponent . . .Rachford–Rice (2)

4 3 Definition-wise
∑n

i xi = 1 in both phases and it is possible to
solve for zα from Eq. 15.3 or 15.4, but practical experience proves
that the algorithm is more stable when the symmetric condition f(zα) =∑n

i=1(x
α
i − xβi ) = 0 is being used. Summing up xαi and xβi from Eqs. 15.3 and 15.4 yields

f(zα) =
n∑

i=1

(1−Ki)zi

zα+Kizβ
=

n∑
i=1

fizi = 0 ,

fi =̂
1−Ki

zα+Kizβ
,

which is easily solved with respect to zα using a Newton–Raphson iter-
ation:

zα,k+1 = zα,k − ( ∂f
∂zα

)-1
f = zα,k +

( n∑
i=1

f2
i zi

)-1
f . (15.5)

5 The recursion formula makes a new zα,k+1 available, which on
back-substitution into Eqs. 15.3 and 15.4 produces new values of xαi
and xβi .
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15 Multicomponent . . .Rachford–Rice (3)

6 These updates (hopefully) improve the Ki-values, and subsequent
iterates in Eq. 15.5 converge finally to the equilibrium state.
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15 Multicomponent . . .§ 114 § 113 § 115

Computerise the function [xα, xβ, zα] = TpKvalue(n, k)
using Eq. 15.5 as your reference algorithm.
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15 Multicomponent . . .§ 114 Rachford–Rice

1 See Matlab function 2.6 in Appendix 30.

3 2 Note that the function interface is more elaborate than has been
asked for in the text. The syntax has notably been extended to TpKvalue(n, k, u,U, v,V)

where U and V are data structures transmitting model specific parame-
ters used by u and v.

5 4 This makes it possible to iterate on non-ideal equilibrium states by
supplying two fugacity (activity) coefficient models u and v. The update of Ki assumes for each iteration that ln kk+1 = ln k +

u(xα,U) − v(xβ,V). Constant Ki values will be assumed if the functions
u and v are expelled from the argument list.
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15 Multicomponent . . .Algorithm

1 2 Note that ∂f/∂zα < 0 in Eq. 15.5 except for the degenerated case
Ki = 1∀i ∈ [1, n] then ∂f/∂zα = 0. A fixed derivative sign means that there is at most one solution in

the domain zα ∈ [0, 1].

5 3 Similar to the Newton–Rapshon method, which is derived in Sec-
tion 15.2, the number of floating point operations in the update of xα is
proportional to n, i.e. the computation time increases linearly with the
number of components in the system.
4 These are the strengths of the K -value method, but it has also an

inherit weakness in that non-ideal equilibria must be solved by nested
iteration. First, Eq. 15.5 is solved with respect to zα at given or estimated Ki

(inner loop).

6 The phase compositions are then updated by the Eqs. 15.3 and
15.4 before new Ki-values can be calculated (outer loop).

7 The double iteration procedure is repeated until the phase compo-
sitions xαi and xβi have converged.8 The Newton–Raphson method in Section 15.2 is without this flaw

because ∆µi (equivalent to Ki) is updated in every iteration avoiding the
outer loopa.

a Also applies to the K -value problem if disregarding the monotonic form of f(zα).

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 790 / 1598



Direct substitution Newton–Raphson iteration Chemical potential versus K -value Convergence properties

15 Multicomponent . . .Newton–Raphson

1 Contrary to the K -value method of Rachford–Rice, the Newton4–
Raphson5s method fulfills the mass balance in every iteration.

2 This requires a feasible starting point where nα+nβ = n is fulfilled.

3 The Newton–Raphson iteration of Eq. 15.1 is then,

µαi +
n∑

j=1

(∂µαi
∂Nα

j

)
T ,p,Nl,j

∆Nα
j = µβi +

n∑
j=1

(∂µβi
∂Nβ

j

)
T ,p,Nl,j

∆Nβ
j ,

−∆Nβ
j = ∆Nα

j ,

or on matrix form:

µα + Gα∆nα = µβ + Gβ∆nβ ,

−∆nβ = ∆nα .

4 Sir Isaac Newton, 1642–1727 by the Julian calendar. English physicist and mathe-
matician.
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15 Multicomponent . . .Algorithm

1 The matrix G =̂ {(∂2G/∂Ni∂Nj)T ,p} is the Hessian6 of Gibbs energy
and ∆n = nk+1 −nk is the composition difference between two (subse-
quent) iterations k + 1 and k .

2 The Newton–Raphson equations can be combined into

(Gα + Gβ)∆nα = −(µα − µβ) ,

or even better: ∆nα = −H-1∆µ where H =̂ Gα + Gβ and ∆µ =̂ µα − µβ.
4 3 It must be realised, however, that the algorithm has to be guided. In particular the mole number updates must be checked for

nα,k+1 = nα,k +∆nα > 0 and nβ,k+1 = nβ,k −∆nα > 0.
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15 Multicomponent . . .Algorithm (2)

5 If the relations are violated it is mandatory to shorten the step size
according to

∆nα = −τH-1∆µ , (15.6)

where τ ∈ 〈0, 1] is calculated such that all the updated mole numbers
are positive.

6 In this way we can ensure that the mass balance is fulfilled in every
iteration.

7 The Newton–Raphson method converges to a state where ∆µ = 0,
but note that the phase models have not been taken into account yet.8 It must therefore be anticipated that ∆µ is calculated from an equa-

tion of state, or an activity model, that describes the system with suffi-
cient accuracy.

6 Ludwig Otto Hesse, 1811–1874. German mathematician.
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15 Multicomponent . . .Ideal mixture Hessian

1 2 The calculation of H may be approximated by the Hessian of an
ideal mixture.
3 The convergence properties will deteriorate close to the solution

compared to the rigorous implementation of H = Gα + Gβ, but the sim-
plicity of the model makes it interesting in its own right. In summary it means that ideal mixing is assumed in the calculation

of H while ∆µ is calculated rigorously. From the definition of an ideal
mixture we can write,

Gıd
ij =

(∂µıd
i

∂Nj

)
T ,p,Nk,j

= ∂
∂Nj

(
µ⋆i + RT ln Ni

N

)
T ,p,Nk,j

= NRT
Ni

(∂(Ni/N)
∂Nj

)
Nk,j

= RT
( δij

Ni
− 1

N

)
,

where the Kronecker7 delta function δij = 1 if i = j and δij = 0 else.
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15 Multicomponent . . .Ideal mixture Hessian (2)

4 On matrix form this formula is written — see also Paragraph 12 on
page 81 in Chapter 3 on page 56:

Gıd =RT
(
n-D − N-1eeT

)
,

e =(1, 1, . . . , 1)T ,

5 Here, n-D is an (inverted) diagonal matrix having 1/Ni along the
main diagonal.

7 6 The simple structure of this matrix makes it possible to calculate
H-1 with an analytical formula as shown below. From the definition H =̂ Gα + Gβ it follows:

Hıd = RT
[
(nα)-D + (nβ)-D −

(
(Nα)-1 + (Nβ)-1

)
eeT

]
.

7 Leopold Kronecker, 1823–1891. German mathematician.
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15 Multicomponent . . .Sherman–Morrison

1 The matrix (nα)-D+(nβ)-D has diagonal elements (Nα
i )

-1+(Nβ
i )

-1 =

Ni/(Nα
i Nβ

i ) and the factor (Nα)-1 + (Nβ)-1 can be rewritten to (Nα +

Nβ)/(NαNβ).

2 This makes the following factorisation of Hıd possible:

Hıd = RT Nα+Nβ

NαNβ

[
diag

(
NαNβ

Nα
i Nβ

i

Ni

(Nα+Nβ)

)
− eeT

]
,

or,

Nα+Nβ

RT Hıd = 1
zαzβ (D

-1 − eeT) ,

D-1 =̂ diag
( zi

xαi xβi

)
, (15.7)

where zα and zβ are phase fractions, xαi and

3 As usual xβi are component mole fractions, and zi is the feed mole
fraction of component i.
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15 Multicomponent . . .Sherman–Morrison (2)

4 Eq. 15.7 indicates that H is a rank one update of D.

5 The inverse of H can then be calculated from the Sherman–

Morrison formula
(
D-1 − eeT

)-1
= D + (1 − eTDe)-1DeeTD, or, equiv-

alently, if we define d =̂ De:

RT
Nα+Nβ

(
Hıd

)-1
= zαzβ

(
D + (1 − eTd)-1ddT

)
. (15.8)
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15 Multicomponent . . .Simplified algorithm

1 From Eqs. 15.6 and 15.8 it is possible to express the simplified two-
phase Newton–Raphson method as

∆nα

Nα+Nβ = −zαzβ
(
D + 1

1−dTe
ddT

)
∆µ

RT . (15.9)

2 Note that zα, zβ, d, D and ∆µ/RT are dimensionless variables.

3 This makes the iteration sequence independent of the system size
for a given total composition z.

4 We may therefore scale the system8 such that Nα+Nβ = 1 without
affecting the mole fractions in the phases α and β.

8 This is just another example on the special properties of extensive functions.
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15 Multicomponent . . .§ 115 § 114 § 116

The Sherman–Morrison formula is widely applicable
and not at all limited to thermodynamic problems.

Verify the formula by proving that H-1H = I. Attempt
to find a more general formula valid for (A − uvT)-1.
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15 Multicomponent . . .§ 115 Sherman–Morrison

1 Straightforward substitution.

2 The general formula for rank one updates is: (A − uvT)-1 = A-1 +

A-1u(1 − vTA-1u)-1vTA-1.
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15 Multicomponent . . .§ 116 § 115 § 117

Computerise the function [xα, xβ, zα] = TpNewton(n, k)
using Eq. 15.9 as your reference algorithm.
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15 Multicomponent . . .§ 116 Newton–Raphson iteration

1 See Matlab function 2.7 in Appendix 30.

3 2 Note that the function interface is more elaborate than has been
asked for in the text. The syntax has notably been extended to TpNewton(n, k, u,U, v,V)

where U and V are data structures transmitting model specific parame-
ters used by u and v.

4 This makes it possible to iterate on non-ideal equilibrium states by
supplying two fugacity (activity) coefficient models u and v.5 The update of ∆µ assumes that for each iteration ∆µ = ∆µıd +

∆µr,p where ∆µıd = ln k + ln xα − ln xβ and ∆µr,p = u(xα,U) − v(xβ,V).
6 Constant ∆µr,p = 0 will be assumed if the functions u and v are

expelled from the argument list.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 802 / 1598



Direct substitution Newton–Raphson iteration Chemical potential versus K -value Convergence properties

15 Multicomponent . . .Ki versus µi Computation time
1 It should be mentioned that the number of floating point operations

in the update is proportional to n.

2 Hence, the computation time increases linearly with the number of
components in the mixture.

3 However, if we had not spent time on the Sherman–Morrison for-
mula, but rather used numerical inversion of H in each iteration, the
computation time would be proportional to n3.

803 / 1598

1 The Rachford–Rice procedure spends time on calculating K -values
while the Newton–Raphson method deals directly with chemical poten-
tials.

2 However, because the two methods aim at solving the same prob-
lem there must be a rational connection between them.

3 The purpose of this section is to show that (and how) Eq. 15.1 on
page 750 can be used to derive some useful relations between Ki and
∆µi.
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15 Multicomponent . . .Fugacity / fugacity

1 For fluid p(V ,T) equations of state µ◦i (T , p◦) is defined as the
chemical potential of a pure ideal gas at the temperature T and pres-
sure p◦.

2 The same standard state applies to both of the phases and from
µαi = µβi it is conventionally written

µ◦i + RT ln
(ϕαi xαi p

p◦

)
= µ◦i + RT ln

(ϕβi xβi p
p◦

)
,

where the left side stands for µαi and the right side stands for µβi .
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15 Multicomponent . . .Fugacity / fugacity (2)

3 The quantity ∆µi/RT which appears in Eq. 15.9 is then

∆µi
RT =̂

µαi −µ
β
i

RT = ln
(Keos

i xαi
xβi

)
, (15.10)

where K eos
i is defined as the ratio between the fugacity coefficients ϕαi

and ϕβi :

K eos
i =

ϕαi
ϕβi
. (15.11)

4 In the context of being an equilibrium constant the K -value is there-
fore quite misleading. Ki(T , p, xα, xβ) is in fact a non-linear function in
temperature, pressure and the compositions of both phases.
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15 Multicomponent . . .§ 117 § 116 § 118

Find experimental data for a typical hydrocarbon vapour–
liquid system and see how close the RK equation
of state matches the measurements. Calculate the

phase diagram using TpKvalue or TpNewton.
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15 Multicomponent . . .§ 117 Natural gas

1 The phase diagram of a typical, albeit synthetic, natural gas9 is
illustrated in Figure 15.1 on the following page.

2 The calculations are shown in Matlab program 30:1.22.

3 The plot is given a high colour density where the liquid and vapour
phases coexist in approximately equal amounts, and a light colour near
the single-phase region (vapour or liquid).4 The dense ridge running along the left edge of the diagram com-

bined with the shallow basin to the right is typical for methane-rich nat-
ural gases.
5 The bubble point is dominated by the large methane content while

the dew point is determined by the trace components comprising the
“heavy tail” of the gas.
6 The Newton–Raphson method does an excellent job in this casea,
7 but note that the dew-point calculations are sensitive to the start

estimate.
8 Increasing the liquid composition of the medium components by

less than one tenth of a mole fraction causes the rightmost part of the
phase boundary to be left out.
9 The K -value method has even larger problems in this part of the

diagram, and needs some type of guidance which is not implemented
here.

a Far better than anticipated. In fact, it does a better job than for a rigorous imple-
mentation of the Hessian. The reason for this somewhat strange behaviour is that the
eigenvalues of the simplified Hessian are strictly positive while the eigenvalues of the
rigorous Hessian change sign wherever thermodynamic instability occurs, see Chap-
ter 21. This is known to cause numerical problems in Newton–Raphson methods.

9 Mario H. Gonzalez and Anthony L. Lee. J. Chem. Eng. Data, 13(2):172–176, April
1968.
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Figure 15.1: Phase diagram of nitrogen–methane–ethane–propane–n-
butane put together from a total of 6093 triangular patches using a recursive
divide–and–conquer algorithm (each triangle is split into four smaller ones un-
til all the vertices are in the same phase domain).
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15 Multicomponent . . .§ 118 § 117 § 119
Physical chemistry
1 In the ages before the modern computer era it was mandatory to

make physical simplifications before any numerical calculation was at-
tempted.

2 One of these simplifications is known as the Lewis mixing rule.

3 Under certain circumstances the fugacity coefficient ϕi will be al-
most independent of the mixture composition.

4 This is always true for an ideal gas mixture and it is valid to a
high degree of approximation for real gases at low pressures or high
temperatures.

5 The approximation also holds at high pressures if ∆Vex ≈ 0 in the
entire pressure and composition region.

6 In the case of ϕi(T , p, x) ≈ ϕ⋆i (T , p) then Ki will be constant in
Eq. 15.11 (at a given temperature and pressure).

7 The K -value method is then superior to the Newton–Raphson iter-
ation because it solves the entire equilibrium problem in R1 and not in
Rn.
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Show that the Lewis mixing rule is exact if Amagat10s
law Vex = 0 is valid over the entire composition and

pressure [0, p] range.

10 Émile Hilaire Amagat, 1841–1915. French chemist.
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15 Multicomponent . . .§ 118 Lewis11 mixing rule

1 Vex = 0 means that V =
∑n

i=1 vi(T , p)Ni.

2 The fugacity coefficient is defined by the Eqs. 13.12 and 13.13, see
page 665. Substituted for the Lewis rule we get

RT lnϕLewıs
i =

p∫

0

(
vi(T , p) − RT

p

)
dp = f(T , p) ,

which shows that ϕi depends on temperature and pressure only be-
cause the partial molar volume is independent of composition.

10 Gilbert Newton Lewis, 1875–1946. American chemist.
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15 Multicomponent . . .Activity / activity

1 In Eq. 15.11 it is common that α is the liquid phase and β the vapour
phase, but this is just one out of many possibilities.

2 We could alternatively assume that α and β are two near-critical
fluids being something in between a vapour and a liquid, or two well-
defined liquid phases.

7 3 There are also examples on supercritical gas–gas equilibria in the
literature.
4 In a thermodynamic sense there is no fundamental difference be-

tween a vapour phase and a liquid phasea,
5 but it is easy to decide whether the phases are of the same type by

looking at the pure component states in the system.
6 If the chemical potentials of the pure components are the same in

both phases, at the temperature and pressure of the system, it can be
concluded that the phases are of the same nature.

a It is intuitive that the density of the vapour phase has to be lower than the density
of the liquid phase, but this is wrong. At high pressures the system H2–He will in fact
invert because the vapour phase is dominated by He which has a higher molecular
weight than H2. If this is the case it is no longer necessary to integrate all the way

from the ideal gas in Eq. 15.11 but rather use the pure component
properties as a reference.

8 In practise this means that the fugacity coefficients can be replaced
by activity coefficients:

K eos
i =

ϕαi
ϕβi

=̂
γαi
γβi

ϕα,⋆i
ϕβ,⋆i

.
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15 Multicomponent . . .Activity / activity (2)

9 Provided the same activity model is used to describe both phases
the Ki-values are

ϕα,⋆i = ϕβ,⋆i ⇒ K eos
i = K ex

i =
γαi
γβi
,

10 because the pure component reference ϕ⋆i is the same in both
phases.
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15 Multicomponent . . .§ 119 § 118 § 120

Find experimental data for a ternary liquid–liquid system
with known NRTL, van Laar or Margules model parameters.

Select a system which has a fairly large solubility region
and a critical end-point inside the ternary region. Use

TpNewton to calculate the phase diagram.
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15 Multicomponent . . .§ 119 Phase separation

1 The phase diagram of cyclohexane–cyclopentane–methanol12 is
illustrated in Figure 15.2 on the next page.

3 2 It is a classic liquid–liquid diagram — quite symmetric and with a
critical end-point inside the triangle. The diagram was successfully calculated using TpNewton, see

Matlab program 1.23 in Appendix 30.

6 4 In this case the measurements were used as start values and the
calculations converged without difficulty even in the vicinity of the critical
point of the mixture.
5 The agreement between the measured and the calculated values

is otherwise extremely good. Still,the K -value method experiences serious problems close to the
critical point.

12 Ternary systems. In Liquid–Liquid Equilibrium Data Collection, volume V, part 2,.
DECHEMA, Frankfurt/Main, 1980. p. 115.
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Figure 15.2: Phase diagram of cyclohexane–cyclopentane–methanol at
298.15 K and 760 mmHg. The iterations are started at interpolated points
in the diagram (ensure safe convergence).
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15 Multicomponent . . .Fugacity / activity

1 In some cases it may be appropriate to employ an equation of state
for the vapour phase and an activity model for the condensed phase.

2 The standard state of the two phases will be different and the phase
diagram will in general not be “closed” at the critical point.

4 3 On the other hand, hybrid models have greater flexibility and are
favourable in the modelling of complex liquids and crystal phases. The starting point is Eq. 15.1 on page 750 which in this case gives:

µ⋆i (T , p) + RT ln(γixαi ) = µ◦i (T , p◦) + RT ln
(ϕixβi p

p◦

)
. (15.12)

6 5 The left hand side denotes µαi and the right hand side µβi . The standard state of β is assumed to be pure ideal gas at the
temperature T and standard pressure p◦.
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15 Multicomponent . . .Fugacity / activity (2)

7 The reference state of phase α is in principle a function of temper-
ature, pressure and composition, but in most cases a pure component
reference is used where limγi = 1.0 as p → psat

i , i.e. the reference
pressure is set equal to the saturation pressure of component i:

µ⋆i (T , p
sat
i ) = µ◦i + RT ln

(ϕsat
i psat

i
p◦

)
. (15.13)
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15 Multicomponent . . .Pure component reference

1 In order to calculate µ⋆i at p , psat
i it is necessary to integrate

(∂µ⋆i /∂p)
T ,n

= v⋆i from the saturation pressure psat
i to the system pres-

sure p.

2 The pure component volume v⋆i is usually a weak function of pres-
sure, and it makes sense to use v⋆i ≃ vsat

i (T) or maybe v⋆i ≈ vi(T ◦, p◦)
because most condensed phases (in the form of a liquid13or maybe a
solid phase) are comparatively incompressible in this regard.

3 A useful estimate of µ⋆i (T , p) is therefore

µ⋆i (T , p) = µ⋆i (T , p
sat
i )+

p∫

psat
i

v⋆i dp ≃ µ⋆i (T , p
sat
i )+vsat

i (p−psat
i ) . (15.14)

13 Provided the state of the liquid is sufficiently removed from the critical point.
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15 Multicomponent . . .Chemical potential

1 which is substituted into Eq. 15.13 and finally combined with the
equilibrium relation in Eq. 15.12. The result is:

µ◦i + RT ln
(ϕsat

i psat
i γixαi
p◦

)
+ vsat

i (p − psat
i ) ≈ µ◦i + RT ln

(ϕixβi p
p◦

)
.

2 ∆µi/RT from the Newton–Raphson algorithm in Eq. 15.9 may now
be written on the same form as in Eq. 15.10 provided Ki is calculated
as

K vle
i =

ϕsat
i psat

i γi

ϕip
exp

(vsat
i (p−psat

i )

RT
)
, (15.15)

The exponential term is known as the Poynting14 factor of Ki.3 This factor is often neglected at low pressures, but only if Ki � 1.
4 If this is not true the Poynting-factor may dominate Ki down to 5 −

10 bar.

14 John Henry Poynting, 1852–1914. English physicist.
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15 Multicomponent . . .Raoult15s law

1 For an approximately pure liquid component i it is reasonable to set
ϕi = ϕsat

i , γi = 1 and p = psat
i .

2 The mixture is by definition ideal and Ki appears to be a simple
function of temperature and pressure:

K Raoult
i = lim

xi→1
K vle

i =
psat

i
p

14 François-Marie Raoult, 1830–1901. French chemist.
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15 Multicomponent . . .Henry16s law

1 In the same mixture it may also be appropriate to use a hypothetical
vapour pressure Hji for all diluted components j, the value of which is
chosen such that the phase equilibrium is reproduced faithfully:

K Henry
j = lim

xj→0
K vle

j =
Hji

p

15 William Henry, 1775–1836. English chemist.
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15 Multicomponent . . .§ 120 § 119 § 121

Find experimental data for a close to ideal binary
vapour–liquid system with known NRTL, Wilson, van

Laar or Margules model parameters. Use TpKvalue or
TpNewton to calculate the phase diagram. Comment

on the practical applicability of Raoult’s law versus
the accuracy of pure component data.
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15 Multicomponent . . .§ 120 Ideal mixture

1 The phase diagram of hexane–toluene17 is illustrated in Fig-
ure 15.3 on the next page.

2 The calculations make use of the Matlab program 1.24 in Ap-
pendix 30.

4 3 The system is almost ideal, but there are nevertheless some no-
table deviations between the experimental and the calculated values. Correcting for non-ideality makes some improvement (compare σ1

and σ2 in the left subfigure), but the largest error is actually hidden in
the vapour pressure of toluene.

5 By increasing the vapour pressure 2% the agreement is improved
even further (compare σ3 and σ4 in the right subfigure), while Raoult’s
law still shows a significant deviation from the measurements.6 This shows that Raoult’s law is of limited value even for nearly ideal

systems.
7 In fact, the pure component parameters are maybe more important
for the mixture properties than the phase model itself.

17 Aliphatic hydrocarbons: C4–C6. In Vapor–Liquid Equilibrium Data Collection, volume
I, part 6a,. DECHEMA, Frankfurt/Main, 1980. p. 593.
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Figure 15.3: Phase diagram of hexane–toluene at 760 mmHg. Calculated
curves show Raoult’s law (stipled) and van Laar activity (solid). The right
subfigure shows the effect of increasing the vapour pressure of toluene by
2%. The sum-of-squares are denoted σ1, σ2, σ3 and σ4.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 826 / 1598



Direct substitution Newton–Raphson iteration Chemical potential versus K -value Convergence properties

15 Multicomponent . . .Acitivity / activity

1 When α and β are condensed phases it is often appropriate to
neglect the influence of pressure on the system properties.

2 This is quite typical for metallurgical melts and refractory systems
where the process conditions are close to atmospheric. 3 In general, pressure explicit equations of state are not conceivable

for these systems and activity models are often used for both phases:

µα,⋆i (T ) + RT ln(γαi xαi ) = µ
β,⋆
i (T) + RT ln(γβi xβi ) . (15.16)

4 The reference state is usually chosen such that limγi = 1 for xi →
1. At the melting

point18 Ti the following is true:

µα,⋆i (Ti) = µ
β,⋆
i (Ti) . (15.17)

18 Or phase transition point if the two phases are solid.
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15 Multicomponent . . .Pure component reference

1 In order to find µ⋆,βi at T , Ti it is necessary to integrate
(∂µ⋆,βi /∂T)p,n = −s⋆,βi from the melting temperature Ti to the system
temperature T .

2 The molar entropy of phase change depends on the temperature,
but as a first approximation it can be assumed that ∆s⋆i = (h⋆,βi −h⋆,αi )/

Ti is approximately constant for the phase transition α→ β:

µ
β,⋆
i (T) =µ

β,⋆
i (Ti) −

T∫

Ti

sβ,⋆i dT

=µα,⋆i (Ti) −
T∫

Ti

sβ,⋆i dT +
T∫

Ti

sα,⋆i dT −
T∫

Ti

sα,⋆i dT

=µα,⋆i (T) −
T∫

Ti

∆s⋆i dT
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15 Multicomponent . . .Pure component reference (2)

≃µα,⋆i (T) − ∆h⋆i
Ti

(T − Ti) . (15.18)
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15 Multicomponent . . .Chemical potential

1 Note that Eq. 15.17 is used in the transposition from the first to the
second line.

2 The integral which is added and subtracted in the second line puts
the expression on the wanted form after it has been combined with
Eq. 15.16:

µα,⋆i (T) + RT ln(γαi xαi ) ≈ µ
α,⋆
i (T) + RT ln(γβi xβi ) −

∆h⋆i
Ti

(T − Ti) .

3 ∆µi/RT required by the Newton–Raphson algorithm in Eq. 15.9
can finally be written as in Eq. 15.10 provided Ki is calculated as:

K sle
i =

γαi
γβi

exp
[
∆h⋆i

R

(
1
Ti
− 1

T

)]
. (15.19)
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15 Multicomponent . . .§ 121 § 120 § 122

Find experimental data for a binary alloy (or a binary salt)
with full solubility in the solid phase. Choose a system

with fitted Margules or Redlich–Kister model parameters.
Calculate the phase diagram using TpNewton or TpKvalue.

How important is the temperature dependency of ∆s⋆i
in this context?
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15 Multicomponent . . .§ 121 Metallurgy

1 Figure 15.4 on page 806 illustrates the high-temperature portion
of the gold–copper19 phase diagram, see Matlab program 30:1.25.

2 The agreement between the measured and calculated values is
generally good even though it is not possible to calculate the entire
diagram — neither with TpNewton nor with TpKvalue.

3 The problem is quite persistent, and although the starting values
are chosen judiciously there is a substantial region around the congru-
ence point where things go wrong.

8 4 The flaw is due to the (large) negative deviations from ideality which
is observed in the two phases.
5 This does in turn cause an oscillatory iteration sequence.
6 Quite surprisingly, maybe, because the phase calculations in Fig-

ure 15.2 on page 789 converges nicely over the entire composition
range.
7 However, the latter system benefits from having a positive deviation

from ideality. The Hessian matrix for the assumed ideal mixture will then over-
estimate the curvature of the energy surface and therefore yield a con-
servative step size in TpNewton (and a safe, albeit very slow, conver-
gence).
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15 Multicomponent . . .§ 121 Metallurgy (2)

9 With negative deviations from ideality the curvature of the enrgy
surface is under-estimated and the step size may eventually grow so
large that the iterations start oscillating around the solution point20.

19 H. Okamoto, D. J. Chakrabarti, D. E. Laughlin, and T. B. Massalski. Bull. Alloy Phase
Diagrams, 8(5):454–473, 1987.
20 An exactly calculated Hessian would stabilise the Newton–Raphson method.
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Figure 15.4: Phase diagram of gold–copper showing a negative deviation
from ideality. Both TpNewton and TpKvalue has convergence problems close
to the azeotrope.
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15 Multicomponent . . .First order convergence Consistency
1 Concerning the accuracy of the calculations it is not easy to argue

that ∆s⋆i varies over the temperature domain.

2 The simplification which is part of the pure component reference
is dominated by the activity model, and the calculated phase diagram
looks very promising.

3 But, a single phase diagram is not sufficient to claim any kind of
thermodynamic consistency.

4 To do this we have to verify all types of calorimetric quantities,
vapour pressures, cryoscopic measurements, etc.

5 A systematic study at this level would indeed reveal the noted in-
consistency, as well as several minor ones.
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Morphology
1 While azeotropes are common for vapour–liquid phase diagrams,

the analogous phenomena of congruent melting is quite rare among the
alloys — at least when disconnected from the formation of stoichiomet-
ric solid compounds, or the homogenous phase splitting for one of the
phasesa.

2 It has nevertheless been chosen to present an exotic system here
to stress the fact that phase diagrams are classified according to their
morphology, and that the calculation method is quite independent of the
phase models.

3 The thermodynamics of phase equilibria does not make any dif-
ference between vapour, liquid and solid phases in this regardb, but in
practise the number of empirical model parameters is often higher in
the description of crystalline phases as compared to the same descrip-
tion of vapour and liquid phases of simple organic cmpounds.

4 In the gold–copper case there are e.g. six binary parameters
needed for the solid phases, while only three is needed for the liquid.

836 / 1598

a The gold–copper system exhibits solid phase separation at T < 400 ◦C.
b Even though the equilibrium conditions 15.11, 15.15 and 15.19 look quite differently.

1 2 A sequence of iterative calculations has (convergence) order m and
(convergence) factor h if the sequence approximates limk→∞ log ‖xk+1−
x∞‖ = log(h) + m log ‖xk − x∞‖. The K -value method is typically of first order, but close to the critical

point the convergence factor h → 1 which means xk+1 ≃ xk .

3 Thus, convergence is severely hampered and it may be difficult to
decide whether the sequence converges or not.

4 To broaden the applicability of first order methods it has been sug-
gested to accelerate the iteration step along the strongest eigendirec-
tion of the Jacobi21 matrix. This is known as the Dominant Eigenvalue
Method, see Appendix 27.

21 Carl Gustav Jacob Jacobi, 1804–1851. German mathematician.
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Figure 15.5: Convergence properties of the quasi Newton–Raphson method
when using an ideal Hessian in the calculation of the bottom (h1) and top (hn)
tie-lines in Figure 15.2. The latter is close to the critical point. Solid lines
illustrate 1st order convergence. Note that h → 1 for the near-critical point.
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15 Multicomponent . . .Second order convergence

1 The Newton–Raphson method is of second order — details con-
cerning the convergence factor is discussed in Appendix 26.

2 This means that the number of significant digits will double in each
iteration provided that iteration k is sufficiently close to the solution
point.

4 3 The local convergence properties are irreproachable, but the
method needs quite good start estimates. But, the simplifications in Section 15.2 makes m = 1 unless for

ideal mixtures where the Hessian is exact.

5 Figure 15.5 illustrates what influence the simplification has on the
calculation of the bottom and top tie-lines of Figure 15.2.
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15 Multicomponent . . .Second order convergence (2)

6 The iteration sequence approaches a line with slope 1, which is
typical for first order methods, and for the near-critical point the conver-
gence factor also approaches 1, in the sense that hn = 0.965 is pretty
close to unity in this context.
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Part 21

Material Stability

see also Part-Contents
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21 Material . . .Note 21.1

1 The question of material stability is crucial to the understanding
of complex phase behaviour, and, as an indispensable analytical tool,
to the calculation of thermodynamic equilibrium states. It turns out,
however, that the subject is quite complex, and that a full theoretical
treatment requires a rather abstract notation. In order to achieve a
good understanding of the basic concepts without sacrificing too much
physical insight, we will therefore restrict our analysis to U, and possibly
its Legendre transforms A , H and G, but it should be stressed that
similar analyses could be carried out based on S, V , etc.
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21 Material . . .Note 21.2

1 Let us start with a closed system held at constant entropy, volume
and composition, the internal energy of which is U(x), where xT = (S ,
V ,N1, . . . ,Nn). It is perhaps easier to grasp the theory by looking at
a single-phase system. However, this is not a requirement, and no
changes are needed for multi-phase systems. Let us consider what
happens when a new phase, with state variables y ∈ Ω | 0 < y < x, is
formed within the system boundary. Of particular interest to us is the
change in internal energy ∆U(x, y) =̂ U(y) + U(x − y) − U(x) caused
by the phase formation. A perturbation in U(x) combined with an Euler
integration of U(y) yields1:

∆U(x, y) = Uy · y − Ux · y + 1
2! Uxx · y · y − 1

3! Uxxx · y · y · y + . . .

=̂ Ũ +
∑

k=2

(−1)k

k ! δk U (21.1)
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21 Material . . .Note 21.2 (2)

For convenience, the following shorthand notation has been adopted2:

δk U = Uk
x · yk = Ux...x · y · · · y =

n∑
j=1
· · ·

n∑
i=1

∂k U
∂xi ···∂xj

yi · · · yj

1 Direct Euler integration is also possible: ∆U = (Uy −Ux−y) · y − (Ux − Ux−y) · x
2 The inner product · binds to the operand on the left, thereby avoiding nested paren-
theses.
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21 Material . . .Note 21.3

1 The tangent plane distance function Ũ =̂ (Uy − Ux) · y defined in
21.1 is fundamental to the global stability analysis set out below, while
the factors δ2U, δ3U, etc. are closely related to the local instabilities
known as spinodal, critical, and tricritical points. The exact conditions
for these states are quite involved, and will be discussed in the next
section.
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21 Material . . .Note 21.4

1 To prove that the system is in global equilibrium it must be verified
that ∆U(x, y) ≥ 0, ∀y ∈ Ω, but it is not necessary to scan the entire
function domain; the system is globally stable if all the stationary values
of ∆U have a positive sign. A necessary condition for the stationary
state is (∂∆U/∂y) = 0, which in the current context translates to Uy =

Ux−y
3. Substituted into the integrated form of ∆U (see footnote on

page 1163 on Euler integration), this gives the final stability criterion
(Uy − Ux) · x ≥ 0, which correctly identifies the equilibrium state as the
lowest of all feasible tangent planes. However, this does not give us
any clue as to how or where we should start our calculations. Note that
there may be several phases yi and in general each phase has a finite
region of attraction4.
3 Also referred to as the general condition for phase equilibrium.
4 The extent of the region also depends on the numerical algorithm being used.
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21 Material . . .Note 21.5

1 To investigate this problem further let {y0, y1, . . . , ym} be the set of
all stationary states5. But, how can we determine this set? There is
no definitive answer, so we shall specifically look for regions where the
stability criterion is violated. Let si ∈ [0, 1] be a distance parameter and
let ∆U(si) = U(siyi) + U(x − siyi) − U(x) be the parametrised internal
energy change. The values si = 0 and si = 1 correspond to the system
x and to the stationary state yi respectively. A Taylor series of ∆U in
the parameter si can be written

∆U(si) = si(Uyi − Ux) · yi +
1
2 s2

i U2
x−αiyi

· y2
i

=̂ siŨi +
1
2 s2

i Q(x, αiyi)

where the quadratic Q represents Lagrange’s Taylor Series Remainder.
If the Hessian6 U2

x−αiyi
is positive (semi)definite for all αi ∈ [0, 1] it follows
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21 Material . . .Note 21.5 (2)

that Q is non-negative. Hence, if ∆U(yi) < 0 it must be true that Ũi < 0.
The reverse is also true because limsi→0 ∆U/si = Ũi. The question of
global stability can therefore be resolved by calculating min Ũ in each
region of attraction7:

stable Ũ ≥ 0 ∀yi ∈ Ω
metastable Ũ < 0 ∃yi ∈ Ω

If the tangent plane distance is everywhere non-negative, the system is
stable, and if this is not the case, the energy can be lowered by using yi

as an initial estimate for the new phase, see Section 21.3 on page 1185.

5 Any value y ∝ x represents a so-called trivial solution and is excluded from the set.
6 Ludwig Otto Hesse, 1811–1874. German mathematician.
7 Normally unknown at the outset — global stability constitutes a difficult problem.
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21 Material . . .Note 21.6

1 Assume that x is now a single-phase system in Eq. 21.1 and that
Ũ = 0 for some vector y → 0 describing a new incipient phase that is
formed within the system boundary. If moreover δ2U → 0+, the sys-
tem is stable to local perturbations, whereas if δ2U → 0−, the sys-
tem is intrinsically unstable, and an increase in y will eventually lead to
Ũ < 0. If δ2U = 0 the system will be stabilised by the new phase y

when δ3U → 0+, and de-stabilised when δ3U → 0−. This can obviously
be generalised, but it is not very conclusive, because y → 0 does not
tell us how far y is from x in a thermodynamic sense8. We shall there-
fore rewrite Eq. 21.1 as a Taylor series with one single reference com-
position x, rather than using two distinct compositions x and y. This is
to understand what happens if (or when) some of the lower order terms

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1238 / 1598



Global stability Local stability The tangent plane test Intrinsic stability criteria

21 Material . . .Note 21.6 (2)

in the series vanish, and to properly understand the zero phase fraction
lines. The total energy of the composite system is:

U(x, y) = U(y) + U(x − y) (21.2)

8 We do not know whether y approaches the trivial solution y ∝ x or not.
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21 Material . . .Note 21.7

1 To proceed we need Taylor expansions for U(y) and U(x − y),
both starting at the same composition x, or, more precisely, somewhere
along vector x. The trial vector of state variables is first decomposed
into one component along x and another component x̄, defined such
that −αxi < x̄i < −αxi + xi :

y =̂ αx + x̄, α ∈ 〈0, 1〉
Next, remember that U,Ux,Uxx, . . . are homogeneous functions of order
1, 0,−1, . . . This means that the expansion can be started anywhere
along vector x provided that the derivatives9 are properly scaled:

U(y) = αU(x) + α0Ux · x̄ + 1
2 α

-1Uxx · x̄ · x̄ + 1
3! α

-2Uxxx · x̄ · x̄ · x̄ + . . .

= αU(x) +
∑

k=1

1
k ! α

1−k Uk
x · x̄k (21.3)

9 Note that by default the derivatives are evaluated in state x.
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21 Material . . .Note 21.8

1 The expansion of U(y) is also valid for U(x − y) if the new variable
β is defined such that

x − y = x − (αx + x̄) = (1 − α)x − x̄ =̂ βx − x̄

Hence, by replacing α→ β and x̄→ −x̄ we get the expression

U(x − y) = βU(x) +
∑

k=1

1
k ! β

1−k Uk
x · (−x̄)k (21.4)

for free. From Eqs. 21.2, 21.3 and 21.4 the expansion of the total energy
reads10:

U(x, y) = U(x) +
∑

k=2

1
k !

[
α1−k − (−β)1−k

]
Uk

x · x̄k (21.5)

The first index k = 1 is skipped because α0 − β0 = 0 for all α, β ∈ 〈0, 1〉,
i.e. the Taylor series is independent of the slope of the energy surface11.
Of particular interest here is the term α1−k − (−β)1−k , which is strictly
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21 Material . . .Note 21.8 (2)

positive for the even indices k = 2, 4, . . ., and of variable sign for the odd
indices k = 3, 5, . . .. The sign of an odd-powered term can therefore be
switched by exchanging the values of α and β. Whenever the leading
terms of the series vanish, this implies that the even and odd terms
vanish in pairs. A concise explanation is given below.

10 Where α+ β = 1, as defined above.
11 The energy gained by one phase is, to a first approximation, the same as that lost
by the other phase.
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21 Material . . .Note 21.9

1 Consider a Taylor series where n is an odd, non-zero term, and
all the terms 2, 3, . . . , n − 1 are zero. If the sign of the n’th term is
switched the value of the leading approximation changes from positive
to negative, or vice versa. This behaviour has no physical interpretation,
and it can be concluded that Un

x · x̄n must vanish as well. However, as
illustrated in Figure 21.1 on the following page, exchanging the values
of α and β will in general change x̄ to x̄ + εx and it must be proved that
this change does not distort the lower order terms:
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x1x1

x2x2 xx

yy

x̄

x̄

x̄

x̄

x
−

y

x
−

y εx

α

α β

β
α→ β
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Figure 21.1: The effect of exchanging the (Taylor expansion) phase sizes α
and β in a trial two-phase system. The overall vector of state variables x is
fixed (closed system). The difference between the two sub-figures lies in the
εx term.
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21 Material . . .Proof

1 Assume that n is an odd number 3, 5, . . . and that Uk
x · x̄k = 0 for

all k ∈ [2, n〉. We shall prove that adding an arbitrary vector εx to x̄

does not change any of the terms Uk
x · x̄k for k ∈ [2, n]. Using binomial

coefficients we can write

Un
x · (εx + x̄)n =

n∑
k=0

(n
k
)
εn−k Un

x · xn−k · x̄k

The derivatives are known to be homogeneous functions of order
1, 0,−1, . . . which implies the following reduction scheme:

Un
x · xn−k = (2 − n)(2 − n − 1) · · · (2 − k − 1)Uk

x

= Uk
x

k+1∏
i=n

(2 − i)
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21 Material . . .Proof (2)

Combining the two equations yields the intermediate result

Un
x · (x̄ + εx)n =

n∑
k=0

ck Uk
x · x̄k

where the ck have values:

ck = εn−k (n
k
) k+1∏

i=n
(2 − i), k ∈ [0, n〉

cn ≡ 1

Remember that Uk
x · x̄k = 0 for all k ∈ [2, n〉. Furthermore, c0 = c1 = 0

for k < 2 because (2 − i) = 0 somewhere in the product. Hence, we
can conclude that only the n’th term survives the summation:

Un
x · (εx + x̄)n = Un

x · x̄n, ∀ε > 0[0.8]
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21 Material . . .Note 21.10

1 In retrospect it is easy to see that εx vanishes due to the first order
homogeneity of U when implemented in a Taylor series without any first
order term. Anyway, the conclusion is that Un−1

x · x̄n−1 and Un
x · x̄n must

vanish in pairs of even and odd indices if the leading terms k ∈ [2, n − 2〉
are zero1213.
12 Michael Modell and Robert C. Reid. Thermodynamics and Its Applications. Prentice
Hall, 2nd edition, 1983.
13 There is a textbook alternative12 to the analysis outlined above. Let α → 0 in
Eq. 21.5. As β = 1 − α >> α the equation simplifies to limα→0 (

∆U
α
) =

∑
k=2

1
k ! Uk

x ·
(

x̄
α

)k
.

Here, ∆U(x,y) is a homogeneous function in α for a constant perturbation vector x̄
α ,

and the original system x acts as a thermodynamic reservoir, making it possible to
study the properties of the new phase y in isolation. Consider again a Taylor series
where all the terms 2,3, . . . , n − 1 (even number) are approaching zero. If the direction
of x̄ is flipped, the sign of the n’th term will also switch, and it can be shown that Un

x · x̄n

must vanish. However, changing the direction of x̄ severely changes the composition
of the new phase y, and it is not clear (to me) that this has been properly accounted
for in the analysis. I therefore find this argument weaker than my own.Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1247 / 1598
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21 Material . . .Note 21.11

1 Rather than Un−1
x · x̄n−1 and Un

x · x̄n we could just as well talk about
δn−1U and δnU, because they must also vanish in the same circum-
stances. Therefore, when δ2U ≥ 0 for all feasible y, the phase is in-
trinsically stable (but it can still be globally metastable). When δ2U < 0
for some vector y the phase is intrinsically unstable, and if δ2U = 0 the
phase is said to be at a spinodal point. If δ3U = 0 for the same vector
y, the state is called critical. In the same manner, higher order critical
points can be defined where Un−1

x · yn−1 = Un
x · yn = 0 for n = 5, 7, . . . To

conclude this section we will summarise our findings:

unstable δ2U < 0 for some y

critical
δ2U = 0
δ3U = 0

for some y

tricritical
δ2U = 0
δ3U = 0

,
δ4U = 0
δ5U = 0

for some y

tetracritical
δ2U = 0
δ3U = 0

,
δ4U = 0
δ5U = 0

,
δ6U = 0
δ7U = 0

for some y
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21 Material . . .Note 21.11 (2)
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21 Material . . .Note 21.12

1 In theory it is easy to set δ2U, δ3U, etc. to zero, but what about in
reality? Matrix algebra can be used to analyse δ2U, but it is not helpful
for the higher order terms. To get an idea of the numerical complexity it
is useful to calculate the number of different terms involved. The partial
derivative Uk

x contains nk elements, but only a fraction14 of these are
independent. One obvious reason for this is the commutative symmetry
of the partial derivative:

∂k U
∂xk∂xj ···∂xi

= ∂k U
∂xi∂xj ···∂xk

14 E.g. for k = n = 10 there are 1010 elements, but only 43758 independent ones!
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21 Material . . .Note 21.13

1 Thus, the sampling of k indices without regard to order from a
population of n = dim(x) components (with replacement of the indices)
gives rise to

(n+k−1
k

) ≡ (n+k−1)!
k !(n−1)!

potentially different terms in Uk
x . However, the homogeneity of U re-

duces the number further because

Uk
x · x = (2 − k)Uk−1

x

For each derivative Uk
x there exist as many relations as there are inde-

pendent terms in Uk−1
x , hence the number of independent terms in Uk

x

is limited to
(n+k−1

k
) − (n+k−2

k−1
) ≡ (n+k−2)!

k !(n−2)! , k , n ≥ 2
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21 Material . . .Note 21.14

1 From the numbers calculated in the table below we can immedi-
ately identify the 2-variable case as particularly interesting — only one
extra term is needed to describe each derivative, regardless of the value
of k . This finding becomes even more interesting in Section 21.4, where
we will find that the 2-variable case is sufficient in all but some highly
degenerate cases (e.g. critical azeotropes).

k = 2 k = 3 k = 4 · · · k

n = 2 1 1 1 · · · 1
1

n = 3 3 4 5 · · · k+1
1

n = 4 6 10 15 · · · (k+1)(k+2)
2

...
...

...
...

. . .
...

n (n−1)n
2

(n−1)n(n+1)
6

(n−1)n(n+1)(n+2)
24 · · · (n+k−2)!

k !(n−2)!
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21 Material . . .Note 21.14 (2)
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21 Material . . .Note 21.15

1 In theory it is possible to formulate a tangent plane test based on
internal energy, but most models use the canonical variables T ,V ,N
or T , p,N, and it is more practical to formulate the test in terms of
Helmholtz energy or Gibbs energy. Assume therefore that we have
a phase (assembly) defined by

A = gTx

where A is the Helmholtz energy and xT = (V , nT). The system tem-
perature T is constant. If the phase (assembly) is stable then Ã ≥ 0 for
all feasible values of the vector of state variables y:

Ã(x, y) = [g(y) − g(x)]Ty > 0 (21.6)
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21 Material . . .Note 21.15 (2)

Note the difference in notation from Eq. 21.1. Here it is more natural to
use g for the gradient rather than Ax, in keeping with the notation used
in linear algebra.
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21 Material . . .Note 21.16

1 To verify that Ã ≥ 0 for all feasible y ∈ Ω our best option is to
investigate the outcome of the minimisation problem

min
y

(Ã)T ∨ aTy = c

for several trial values of y. This minimisation problem is linearly con-
strained15 and the method of Lagrange multipliers is the perfect tool:

L(x, y, λ) = Ã − λ(aTy − c)

15 The constraint specification aTy = c is arbitrary, but nevertheless crucial to the
formulation of the problem, because Ã is a homogeneous function, and as such has a
singular Hessian matrix in the direction of y. Adding a rank-one constraint makes the
Hessian invertible (loosely speaking).
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21 Material . . .Note 21.17

1 The stationary point of L is given by ∂L/∂y = 0, or when written
out in more detail:

0 = ∂Ã
∂y
− ∂λ(aTy−c)

∂y

= H(y)y + g(y) − g(x) − λa

= g(y) − g(x) − λa (21.7)

The stationary value of Ã can be calculated from Eqs. 21.6 and 21.7:

Ã◦ = g(y)Ty − g(x)Ty = λaTy = λc (21.8)
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21 Material . . .Note 21.18

1 Hence, the phase is stable if λc ≥ 0 at every stationary point of
L(x, y, λ), and metastable if λc < 0. If metastability occurs, Helmholtz
energy can be lowered by including the new phase y at the expense
of x, but this begs the question: how big should we make this new
phase? The final answer lies, of course, in the subsequent equilibrium
calculation, but we have to start the iterations somewhere. It requires
only a minimum of effort to study the second order variation of Ã along
the (optimum) vector of state variables y,

Ã(x, y) = αg(y)Ty − αg(x)Ty + α2

2! yTH(x)y + . . .
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21 Material . . .Note 21.18 (2)

where α ∈ [0, αmax〉 is a step length parameter under our control. A min-
imum in Helmholtz energy requires that ∂Ã/∂α = 0 and simple differen-
tiation gives the following phase size estimate

α◦ =
g(y)Ty−g(x)Ty

yTH(x)y
=̂ −λc

Q(x,y) (21.9)
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21 Material . . .Note 21.19

1 At the limit of phase stability α◦ will approach the true equilibrium
value, but deep inside the phase boundary we may expect α◦ > αmax.
We must therefore keep a close eye on the estimate in Eq. 21.9 and
restrict α if appropriate. Also note that the estimate breaks down if the
phase (assembly) x is unstable in the direction of y, i.e. when Q(x, y) <

0. A more elaborate line search is then essential.
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21 Material . . .Note 21.20

1 This is as far as the general theory goes; the next question is how
to proceed with actual calculations. A Newton iteration starting at a
feasible point y0 , x yields the recurrence formula,




y

−λ




k+1

=




H(y) a

aT 0



-1

k




g(x) − g(y)

c




k

but to continue we need the constraint vector a. The most intuitive
choice is to fix the volume of the new phase such that y1 = x1 = V
and to let the mole numbers vary freely. This corresponds to aT = eT

1 =

(1, 0, . . .) and λ being a vector with one single element interpreted as
the difference in negative pressure π between the two states x and y.
Inserting a = e1 into Eq. 21.7 gives the solution

p(x) − p(y) = π
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21 Material . . .Note 21.20 (2)

µ(x) − µ(y) = 0
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21 Material . . .Note 21.21

1 There is no mechanical equilibrium in this case, although the con-
ditions for chemical equilibrium are fulfilled16. The stationary value of
Ã◦ in Eq. 21.8 simplifies to

Ã◦ = πeT
1y = πy1 = πV

because y1 = x1 = V . Knowing only one stationary point we can argue
that the phase (assembly) x is metastable if −π > 0 and possibly17

stable if −π ≤ 0. Finally, for a = e1 the phase fraction estimate simplifies
to (see Eq. 21.9 on page 1190)

α◦ = −πV
Q(x,y)

16 The situation will change if a different a is chosen. E.g. aT = (0,1, . . . , 1) releases
the chemical equilibrium and fixes the mechanical equilibrium.
17 If we are going to rely on a single solution point, we should really check for intrinsic
stability first. This topic will be covered in the next section.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1263 / 1598



Global stability Local stability The tangent plane test Intrinsic stability criteria

21 Material . . .Note 21.22

1 The Lagrange formulation is very neat in the general case, but if
the mixture is nearly ideal the direct substitution of variables becomes
a viable alternative. The minimisation problem can now be written

min
y

(G̃)T ,p ∨ eTy = 1

where y represents the mole numbers in the mixture. Let y1,...,n−1 be the
n − 1 first components of y and let S be a matrix that maps this vector
onto y:

y = en +




I

−eT


 y1,...,n−1 =̂ en + Sy1,...,n−1
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21 Material . . .Note 21.23

1 The variation in y is easily calculated as δy = Sδy1,...,n−1, and
because eTS = 0T it follows that eTδy = 0. Clearly, this operation
conserves the total number of moles in the mixture and the minimi-
sation problem can de facto be written in an unconstrained form as
miny1,...,n−1(G̃)T ,p. The chain rule of differentiation yields

( ∂G̃
∂y1,...,n−1

)
=

( ∂nT

∂y1,...,n−1

) (∂G̃
∂y

)
= ST[µ(y) − µ(x)] = 0

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1265 / 1598



Global stability Local stability The tangent plane test Intrinsic stability criteria

21 Material . . .Note 21.24

1 If we can assume that the mixture behaves ideally then µ(y) −
µ(x) = ∆µ + ln(y), where ∆µ is a constant vector at the given
temperature and pressure. The condition for a stationary point is
ST[∆µ + ln(y)] = 0, or when written out in full: ∆µ1,...,n−1 − ∆µne +

ln(y1,...,n−1) − ln(yn)e = 0. Direct substitution of the first n − 1 variables
gives the update formula:

y
(k+1)
1,...,n−1 = y

(k)
n exp(∆µn)exp(−∆µ1,...,n−1)

The calculation converges in one step for ideal mixtures, whereas the
Lagrange formulation would require several iterations (typically 5–10).
Another nice feature is that the mole numbers are always positive due
to the exponential on the right hand side.
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21 Material . . .§ 153 § 152 § 1

Write a modified update formula for the direct substitution
of mole numbers in an ideal gas at fixed temperature.

The volume is a free variable and can be set to any value.

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1267 / 1598



Global stability Local stability The tangent plane test Intrinsic stability criteria

21 Material . . .§ 153 Ideal gas

1 Assume that, in the previous derivation, Helmholtz energy is used
to replace Gibbs energy and ST =̂ [I 0], where the last column (of zeros)
corresponds to the (constant) variable V . Because the iteration is now
performed at constant volume rather than at constant pressure, all of the
mole variables will be updated simultaneously: n(k+1) = n(k) exp(−∆µ).
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21 Material . . .Note 21.25

1 Intrinsic stability of a phase requires that the quadratic Uxx ·y ·y ≥ 0
for all y ∈ Ω. This is a classical formulation of a problem familiar from
courses in linear algebra, the solution to which can be stated in several
equivalent ways:

1 The eigenvalues of Uxx are non-negative.
2 The pivots in the Cholesky factorisation of Uxx are non-negative.
3 The principal sub-determinants of Uxx are non-negative.
4 Uxx is a semi-definite matrix of rank n − 1.
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21 Material . . .Note 21.26

1 The second formulation is suited to simple matrix algebra and for
this reason it is the route followed here. For a single-component system
a step-by-step elimination18 of the rows in Uxx yields




USS USV USN

UVS UVV UVN

UNS UNV UNN



=




1 0 0
α 1 0
β 0 1







USS USV USN

0 AVV AVN

0 ANV ANN




(21.10)

=




1 0 0
α 1 0
β γ 1







USS USV USN

0 AVV AVN

0 0 GNN




(21.11)

where the following parameters have been used:

α =̂
UVS
USS

, β =̂ UNS
USS

, γ =̂ ANV
AVV

18 Because Uxx is a symmetric matrix of rank n − 1 we can write the full Cholesky
factorisation of an intrinsically stable, single-component system, as Uxx = LLT where
LT =

(
u uα uβ
0 a aγ

)
and u =

√
USS and a =

√
AVV
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21 Material . . .Note 21.27

1 Note that the last pivot in the elimination (GNN in this case) will
always be 0 due to the homogeneous nature of U. To prove that
Eqs. 21.10–21.11 are correct, we must prove that the Cholesky19 fac-
torisation of a thermodynamic Hessian (in the extensive variables) is
equivalent to a series of Legendre transformations applied to the origi-
nal function20. It is possible to prove this in general terms, but to make
the theory more accessible to the casual reader we shall carry out a
less general factorisation. From Chapter 4 we know that A(T ,V ,N) is
related to U(S ,V ,N) such that AX = UX , assuming constant temper-
ature and entropy respectively. This relation holds for any X ∈ {V ,N}.
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21 Material . . .Note 21.27 (2)

The differentials of AX at constant temperature, and of UX with no re-
strictions on the variables, are:

(dAX )T = AXV dV + AXN dN (21.12)

dUX = UXS dS +UXV dV + UXN dN (21.13)

19 André-Louis Cholesky, 1875–1918. French mathematician.
20 The marvels of thermodynamics are quite fascinating!
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21 Material . . .Note 21.28

1 In order to compare the two differentials it is necessary to eliminate
the (differential) entropy in the second equation such that the tempera-
ture is held constant. Using the definition T =̂ US it follows that

0 = (dUS)T = USS dS + USV dV + USN dN (21.14)

From Eq. 21.14 it is straightforward to eliminate dS in Eq. 21.13, and
furthermore to collect similar terms into

(dUX)T =
(
UXV − UXS

USV
USS

)
dV +

(
UXN − UXS

USN
USS

)
dN
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21 Material . . .Note 21.29

1 The above equation can be compared term-by-term with Eq. 21.12,
which yields

AXY = UXY − UXS
USY
USS

(21.15)

for any Y ∈ {V ,N}. Substitution of X ,Y ∈ {V ,N} into the formula above
verifies the first step of the Cholesky factorisation 21.10–21.11. Further-
more, because the differentiation outlined in Eqs. 21.12–21.15 is valid
for any Legendre sequence U(S ,V ,N) → A(T ,V ,N) → G(T ,−p,N)

etc., proof by induction verifies that the factorisation can be completed
as indicated21.
21 The factorisation of positive semi-definite matrices has not yet been discussed.
The question is where the zero pivots of Uxx appear when a stable phase changes
(continuously) into an unstable one. The outcome is that the last pivot changes its sign
before the second last pivot does, which in turn changes its sign before the third last
pivot, etc. This holds for all non-degenerate states. In the current case GNN = 0 is the
last pivot and the sign shift will therefore show up in AVV first, before it eventually also
shows up in USS .
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21 Material . . .Note 21.30

1 The intrinsic stability of a phase can then be stated in terms of just
1 second derivative, rather than n(n + 1)/2 as would be expected from
matrix theory alone22. It should also be noted that the transformation
sequence is arbitrary, and that the factorisation could start with UVV or
UNN rather than USS . Thus, for a single-component system the stability
conditions can be written in 6 different ways,

USS > 0, AVV > 0

USS > 0, ANN > 0

UVV > 0, HSS > 0

UVV > 0, HNN > 0

UNN > 0, XSS > 0

UNN > 0, XVV > 0

Tore Haug-Warberg (ChemEng, NTNU) KP8108 Advanced Thermodynamics 23 February 2012 1275 / 1598



Global stability Local stability The tangent plane test Intrinsic stability criteria

21 Material . . .Note 21.30 (2)

where X denotes the unnamed energy function X(S ,V , µ). These
relations are equivalent to those derived from the principal sub-
determinants of the original Hessian. The left-hand column is clearly
related to the determinants of the submatrices of order one (main diag-
onal elements), and with the help of Eq. 21.15 the determinants of the
submatrices of order two can be written:

USSUVV −USVUVS =USSAVV = HSSUVV > 0

USSUNN −USNUNS =USSANN = XSSUNN > 0

UVVUNN −UVNUNV =UVVHNN = XVVUNN > 0

22 This does not imply that only 1 coefficient in the original matrix is needed for the
stability analysis. The Legendre transforms will effectively bring all of the coefficients
into action.
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21 Material . . .Note 21.31

1 There is also one final criterion relating to the whole matrix, and
several additional criteria from the Legendre transforms, but they are all
zero because the Hessian is singular for any values of S, V and N. The
criteria given in the right-hand column above are therefore conclusive
and are violated simultaneously at the limit of material stability. This
limit of stability is often referred to as the spinodal. The criteria derived
from the submatrices of order one define a new spinodal inside the
outer one.
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21 Material . . .Note 21.32

1 A final note on quadratic forms is appropriate. We know that for a
stable system the quadratic Uxx · y · y ≥ 0 for all y ∈ Ω. This has been
stressed many times already, but so far it has only been a theoretical
result. To give a practical demonstration we can calculate the inner
product from the factorisation in Eq. 21.11:

U2
SVN ·y

2 = USS

(
yS +

UVS
USS

yV +
UNS
USS

yN

)2
+AVV

(
yV + ANV

AVV
yN

)2
+GNN (yN)

2
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21 Material . . .Note 21.33

1 Clearly, the quadratic is non-negative only if the leading factors USS

and AVV are positive. The Euler properties of U make GNN = 0 so the
quadratic is always zero in the direction of x, but otherwise it should
be strictly positive. For a multicomponent system the quadratic can be
generalised to

U2
x · y2 =

∑
i=1

U(i−1)
xixi

(
yi +

∑
j>i

(
U(i−1)

xixi

)-1
U(i−1)

xixj
yj

)2

where U(i−1) is used to denote the (i − 1)’th Legendre transform of
internal energy and U(0) =̂ U. With regard to the leading factors U(i−1)

xixi
in

this formula the picture gets quite complex, and even for a binary system
there are 24 different possibilities. The most common formulation is:

USS =
(∂T
∂S

)
V ,N1,N2

=̂ T
CV
> 0
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21 Material . . .Note 21.33 (2)

AVV =− (∂p
∂V

)
T ,N1,N2

=̂ 1
Vβ > 0

GN1N1 =
(∂µ1

∂N1

)
T ,p,N2

> 0
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