This note covers the following topics: Manifolds as subsets of Euclidean space, Abstract Manifolds, Tangent Space and the Differential, Embeddings and Whitney’s Theorem, The de Rham Theorem, Lie Theory, Differential Forms, Fiber Bundles.
Author(s): Rui Loja Fernandes
This note explains the following topics: From Kock–Lawvere axiom to microlinear spaces, Vector bundles,Connections, Affine space, Differential forms, Axiomatic structure of the real line, Coordinates and formal manifolds, Riemannian structure, Well-adapted topos models.
Author(s): Ryszard Pawe Kostecki
This note covers the following topics: Manifolds, Oriented manifolds, Compact subsets, Smooth maps, Smooth functions on manifolds, The tangent bundle, Tangent spaces, Vector field, Differential forms, Topology of manifolds, Vector bundles.
Author(s): Eckhard Meinrenken
This note explains the following topics: Linear Transformations, Tangent Vectors, The push-forward and the Jacobian, Differential One-forms and Metric Tensors, The Pullback and Isometries, Hypersurfaces, Flows, Invariants and the Straightening Lemma, The Lie Bracket and Killing Vectors, Hypersurfaces, Group actions and Multi-parameter Groups, Connections and Curvature.
Author(s): Mark E. Fels
This note covers the following topics: Discrete Curves, Curves and curvature, Flows on curves, Elastica, Darboux transforms, Discrete Surfaces, Abstract discrete surfaces, Polyhedral surfaces and piecewise flat surfaces, Discrete cotan Laplace operator, Delaunay tessellations, Line congruences over simplicial surfaces, Polyhedral surfaces with parallel Gauss map, Willmore energy.
Author(s): Alexander I. Bobenko
The purpose of this course note is the study of curves and surfaces , and those are in general, curved. The book mainly focus on geometric aspects of methods borrowed from linear algebra; proofs will only be included for those properties that are important for the future development.
Author(s): Asst. Prof. Martin Raussen
This book describes the fundamentals of metric differential geometry of curves and surfaces.
Author(s): C. E Weatherburn
This book is addressed to the reader who wishes to cover a greater distance in a short time and arrive at the front line of contemporary research. This book can serve as a basis for graduate topics courses. Exercises play a prominent role while historical and cultural comments relate the subject to a broader mathematical context.
Author(s): Ovsienko and Tabachnikov
This note contains on the following subtopics of Differential Geometry, Manifolds, Connections and curvature, Calculus on manifolds and Special topics.
Author(s): Wulf Rossmann
This is a useful note for Differential Geometry. This note covers Curves, Surfaces and Manifolds
Author(s): Mohammad Ghomi
This note contains on the following subtopics of Symplectic Geometry, Symplectic Manifolds, Symplectomorphisms, Local Forms, Contact Manifolds, Compatible Almost Complex Structures, Kahler Manifolds, Hamiltonian Mechanics, Moment Maps, Symplectic Reduction, Moment Maps Revisited and Symplectic Toric Manifolds.
Author(s): Ana Cannas da Silva
This note covers the following topics: Matrix Exponential; Some Matrix Lie Groups, Manifolds and Lie Groups, The Lorentz Groups, Vector Fields, Integral Curves, Flows, Partitions of Unity, Orientability, Covering Maps, The Log-Euclidean Framework, Spherical Harmonics, Statistics on Riemannian Manifolds, Distributions and the Frobenius Theorem, The Laplace-Beltrami Operator and Harmonic Forms, Bundles, Metrics on Bundles, Homogeneous Spaces, Cli ord Algebras, Cli ord Groups, Pin and Spin and Tensor Algebras.
Author(s): Jean Gallier
These notes are an attempt to summarize some of the key mathematical aspects of differential geometry,as they apply in particular to the geometry of surfaces in R3. Covered topics are: Some fundamentals of the theory of surfaces, Some important parameterizations of surfaces, Variation of a surface, Vesicles, Geodesics, parallel transport and covariant differentiation.
Author(s): Markus Deserno
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
This note covers the following topics: Linear Algebra, Differentiability, integration, Cotangent Space, Tangent and Cotangent bundles, Vector fields and 1 forms, Multilinear Algebra, Tensor fields, Flows and vectorfields, Metrics.
Author(s): Lars Andersson
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
This book is a monographical work on natural bundles and natural operators in differential geometry and this book tries to be a rather comprehensive textbook on all basic structures from the theory of jets which appear in different branches of differential geometry.
Author(s): Ivan Kolar, Jan Slovak and Peter W. Michor
This book explains about following theorems in Plane Geometry: Brianchon's Theorem, Carnot's Theorem, Centroid Exists Theorem, Ceva's Theorem, Clifford's Theorem, Desargues's Theorem, Euler Line Exists Theorem, Feuerbach's Theorem, The Finsler-Hadwiger Theorem, Fregier's Theorem, Fuhrmann's Theorem, Griffiths's Theorem, Incenter Exists Theorem, Lemoine's Theorem, Ptolemy's Theorem.
Author(s): Shalosh B. Ekhad
This book covers the following topics: Manifolds And Lie Groups, Differential Forms, Bundles And Connections, Jets And Natural Bundles, Finite Order Theorems, Methods For Finding Natural Operators, Product Preserving Functors, Prolongation Of Vector Fields And Connections, General Theory Of Lie Derivatives.
Author(s): Ivan Kolar, Jan Slovak and Peter W. Michor
This book covers the following topics: Basic Differential Geometry Of Surfaces, The Weierstrass Representation, Minimal surfaces on Punctured Spheres, The Scherk Surfaces, Minimal Surfaces Defined On Punctured Tori, Higher Genus Minimal Surfaces.
Author(s): Matthias Weber
This book covers the following topics: Smooth Manifolds, Plain curves, Submanifolds, Differentiable maps, immersions, submersions and embeddings, Basic results from Differential Topology, Tangent spaces and tensor calculus, Riemannian geometry.
Author(s): Dmitri Zaitsev
This note covers the following topics: Curves, Surfaces: Local Theory, Holonomy and the Gauss-Bonnet Theorem, Hyperbolic Geometry, Surface Theory with Differential Forms, Calculus of Variations and Surfaces of Constant Mean Curvature.
Author(s): Theodore Shifrin
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA
Currently this section contains no detailed description for the page, will update this page soon.
Author(s): NA