Mathematics Books Category Theory Books

Brief notes on category theory (PDF 36P)

Brief notes on category theory (PDF 36P)

Brief notes on category theory (PDF 36P)

This note explains the following topics related to Category Theory: Duality, Universal and couniversal properties, Limits and colimits, Biproducts in Vect and Rel, Functors, Natural transformations, Yoneda'a Lemma, Adjoint Functors, Cartesian Closed Categories, The Curry-Howard-Lambek Isomorphism, Induction and Coinduction, Stream programming examples and Monads.

Author(s):

s36 Pages
Similar Books
Introduction To Category Theory And Categorical Logic

Introduction To Category Theory And Categorical Logic

This note covers the following topics related to Category Theory: Categories, Functors and Natural Transformations, subcategories, Full and Faithful Functors, Equivalences, Comma Categories and Slice Categories, Yoneda Lemma, Grothendieck universes, Limits and Colimits, Adjoint Functors, Adjoint Functor Theorems, Monads, Elementary Toposes, Cartesian Closed Categories, Logic of Toposes and Sheaves.

s117 Pages
Category Theory A Programming Language Oriented Introduction

Category Theory A Programming Language Oriented Introduction

This book explains the following topics: Categories, functors, natural transformations, String diagrams, Kan extensions, Algebras, coalgebras, bialgebras, Lambda-calculus and categories.

s145 Pages
Category Theory by Prof. Dr. B. Pareigis

Category Theory by Prof. Dr. B. Pareigis

This book explains the following topics related to Category Theory:Foundations, Graphs, Monoids, Categories, Constructions on categories, Functors, Special types of functors, Natural transformations, Representable functors and the Yoneda Lemma, Terminal and initial objects, The extension principle, Isomorphisms, Monomorphisms and epimorphisms, Products, Adjoint functors and monads.

s90 Pages
Computational Category Theory

Computational Category Theory

This book emphasizes category theory in conceptual aspects, so that category theory has come to be viewed as a theory whose purpose is to provide a certain kind of conceptual clarity.

s263 Pages
Lecture NotesCategory Theory

Lecture NotesCategory Theory

Category theory, a branch of abstract algebra, has found many applications in mathematics, logic, and computer science. Like such fields as elementary logic and set theory, category theory provides a basic conceptual apparatus and a collection of formal methods useful for addressing certain kinds of commonly occurring formal and informal problems, particularly those involving structural and functional considerations. This course  note is intended to acquaint students with these methods, and also to encourage them to reflect on the interrelations between category theory and the other basic formal disciplines.

sNA Pages
Category Theory for Program Construction by Calculation (PDF 122P)

Category Theory for Program Construction by Calculation (PDF 122P)

This note covers the following topics related to Category Theory: Notation, Basic Definitions, Sum and Product, Adjunctions, Cartesian Closed Categories, Algebras and Monads.

s122 Pages
Notes on Category Theory (PDF 416P)

Notes on Category Theory (PDF 416P)

These notes are targeted to a student with significant mathematical sophistication and a modest amount of specific knowledge. Covered topics are: Mathematics in Categories, Constructing Categories, Functors and Natural Transformations, Universal Mapping Properties, Algebraic Categories, Cartesian Closed Categories, Monoidal Categories, Enriched Category Theory, Additive and Abelian Categories, 2-Categories and Fibered Categories.

s416 Pages
Category Theory Lecture Notes for ESSLLI (PDF 133P)

Category Theory Lecture Notes for ESSLLI (PDF 133P)

This note covers the following topics related to Category Theory: Functional programming languages as categories, Mathematical structures as categories, Categories of sets with structure, Categories of algebraic structures, Constructions on categories, Properties of objects and arrows, Functors, Diagrams and naturality, Products and sums, Cartesian closed categories, Limits and colimits, Adjoints, Triples, Toposes, Categories with monoidal structure.

s133 Pages
Brief notes on category theory (PDF 36P)

Brief notes on category theory (PDF 36P)

This note explains the following topics related to Category Theory: Duality, Universal and couniversal properties, Limits and colimits, Biproducts in Vect and Rel, Functors, Natural transformations, Yoneda'a Lemma, Adjoint Functors, Cartesian Closed Categories, The Curry-Howard-Lambek Isomorphism, Induction and Coinduction, Stream programming examples and Monads.

s36 Pages
Introduction to The Theory of Categories

Introduction to The Theory of Categories

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Higher Dimensional   Categories an illustrated guide book

Higher Dimensional Categories an illustrated guide book

This work gives an explanatory introduction to various definitions of higher dimensional category. The emphasis is on ideas rather than formalities; the aim is to shed light on the formalities by emphasising the intuitions that lead there. Covered topics are: Penon, Batanin and Leinster, Opetopic, Tamsamani and Simpson, Trimble and May.

s182 Pages
Higher Operads, Higher Categories

Higher Operads, Higher Categories

Higher dimensional category theory is the study of n categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations.

sNA Pages
Category Theory Steve     Awodey (PDF 314P)

Category Theory Steve Awodey (PDF 314P)

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Basic     Category Theory (PDF 88p)

Basic Category Theory (PDF 88p)

This note covers the following topics: Categories and Functors, Natural transformations, Examples of natural transformations, Equivalence of categories, cones and limits, Limits by products and equalizers, Colimits, A little piece of categorical logic, The logic of regular categories.

s88 Pages