Category Theory Lecture Notes for ESSLLI (PDF 133P)
Category Theory Lecture Notes for ESSLLI (PDF 133P)
Category Theory Lecture Notes for ESSLLI (PDF 133P)
This note covers the following topics related to
Category Theory: Functional programming languages as categories, Mathematical structures as
categories, Categories of sets with structure, Categories of algebraic
structures, Constructions on categories, Properties of objects and arrows,
Functors, Diagrams and naturality, Products and sums, Cartesian closed
categories, Limits and colimits, Adjoints, Triples, Toposes, Categories with
monoidal structure.
This note covers the following topics: Preliminaries, Categories, Properties of objects
and arrows, Functors, Diagrams and naturality, Products and sums, Cartesian
closed categories, Limits and colimits, Adjoints, Triples, Toposes and
Categories with monoidal structure.
Author(s): Department of Mathematics
and Statistics,McGill University
This PDF book covers the
following topics related to Category Theory : Categories, Functors, Natural
Transformations, Universal Properties, Representability, and the Yoneda Lemma,
Limits and Colimits, Adjunctions, Monads and their Algebras, All Concepts are
Kan Extensions.
This
note covers the following topics related to Category Theory: Categories,
Functors and Natural Transformations, subcategories, Full and Faithful Functors,
Equivalences, Comma Categories and Slice Categories, Yoneda Lemma, Grothendieck
universes, Limits and Colimits, Adjoint Functors, Adjoint Functor Theorems,
Monads, Elementary Toposes, Cartesian Closed Categories, Logic of Toposes and
Sheaves.
This book explains the following topics: Categories, functors, natural
transformations, String diagrams, Kan extensions, Algebras, coalgebras,
bialgebras, Lambda-calculus and categories.
This book
explains the following topics related to Category Theory:Foundations, Graphs,
Monoids, Categories, Constructions on categories, Functors, Special types of
functors, Natural transformations, Representable functors and the Yoneda Lemma,
Terminal and initial objects, The extension principle, Isomorphisms,
Monomorphisms and epimorphisms, Products, Adjoint functors and monads.
This book emphasizes
category theory in conceptual aspects, so that category theory has come to be
viewed as a theory whose purpose is to provide a certain kind of conceptual
clarity.
Purpose of this course note
is to prove that category theory is a powerful language for understanding and
formalizing common scientific models. The power of the language will be tested
by its ability to penetrate into taken-for-granted ideas, either by exposing
existing weaknesses or flaws in our understanding, or by highlighting hidden
commonalities across scientific fields.