Mathematics Books Mathematical Analysis Books

Homeomorphisms in Analysis

Homeomorphisms in Analysis

Homeomorphisms in Analysis

Currently this section contains no detailed description for the page, will update this page soon.

Author(s):

sNA Pages
Similar Books
Foundations   of Mathematical Analysis

Foundations of Mathematical Analysis

This note covers Basic concepts in mathematical analysis and some complements, Real numbers and ordered fields, Cardinality, Topologies, Construction of some special functions.

s122 Pages
Analysis I by Vicky Neale

Analysis I by Vicky Neale

The contents include: Introduction, Axioms for arithmetic in R, Properties of arithmetic in R, Ordering the real numbers, Inequalities and arithmetic, The modulus of a real number, The complex numbers, Upper and lower bounds, Supremum, infimum and completeness, Existence of roots, More consequences of completeness, Countability, More on countability, Introduction to sequences, Convergence of a sequence, Bounded and unbounded sequences, Complex sequences, Subsequences, Orders of magnitude, Monotonic sequences, Convergent subsequences, Cauchy sequences, Convergence for series, More on the Comparison Test, Ratio Test, Integral Test, Power series, Radius of convergence, Differentiation Theorem.

s114 Pages
Introduction to Analysis by Donald J. Estep

Introduction to Analysis by Donald J. Estep

The contents include: Introduction, Metric Spaces, Compactness, Cauchy Sequences in Metric Spaces, Sequences in Rn, Continuous Functions on Metric Spaces, Sequences of Functions.

s79 Pages
Mathematical Analysis Volume I by Elias Zakon

Mathematical Analysis Volume I by Elias Zakon

This text is an outgrowth of lectures given at the University of Windsor, Canada. Topics covered includes: Set Theory, Real Numbers. Fields, Vector Spaces, Metric Spaces, Function Limits and Continuity, Differentiation and Anti differentiation.

s365 Pages
Introduction To Mathematical Analysis

Introduction To Mathematical Analysis

This book explains the following topics: Some Elementary Logic, The Real Number System, Set Theory, Vector Space Properties of Rn, Metric Spaces, Sequences and Convergence, Cauchy Sequences, Sequences and Compactness, Limits of Functions, Continuity, Uniform Convergence of Functions, First Order Systems of Differential Equations

s284 Pages
The Convenient Setting of Global Analysis

The Convenient Setting of Global Analysis

This book covers the following topics: Calculus of smooth mappings, Calculus of holomorphic and real analytic mappings, Partitions of unity, Smoothly realcompact spaces, Extensions and liftings of mappings, Infinite dimensional manifolds, Calculus on infinite dimensional manifolds, Infinite dimensional differential geometry, Manifolds of mappings and Further applications.

sNA Pages