This book
explains the following topics: General Curve Theory, Planar Curves, Space
Curves, Basic Surface Theory, Curvature of Surfaces, Surface Theory, Geodesics
and Metric Geometry, Riemannian Geometry, Special Coordinate Representations.
This note explains the following
topics: From Kock–Lawvere axiom to microlinear spaces, Vector
bundles,Connections, Affine space, Differential forms, Axiomatic structure of
the real line, Coordinates and formal manifolds, Riemannian structure,
Well-adapted topos models.
The purpose of this course note is the study of curves and surfaces ,
and those are in general, curved. The book mainly focus on geometric aspects of
methods borrowed from linear algebra; proofs will only be included for those
properties that are important for the future development.