This note covers the following topics: Natural Numbers, Principles of
Counting, Integers and Abelian groups, Divisibility, Congruences, Linear
Diophantine equations, Subgroups of Abelian groups, Commutative Rings, A little
Boolean Algebra, Fields, Polynomials over a Field, Quotients of Abelian groups,
Orders of Abelian groups, Linear Algebra over, Nonabelian groups, Groups of
Symmetries of Platonic Solids, Counting Problems involving Symmetry, Proofs of
theorems about group actions, Homomorphisms between groups, The Braid Group, The
Chinese remainder theorem, Quotients of polynomial rings, The finite Fourier
transform.
This note explains basic concepts like sets and relations and progressing
to advanced topics such as group theory, rings, and fields also it covers
fundamental theorems like Lagranges theorem and explores key concepts like
permutations and quotient groups.
This PDF covers the
following topics related to Abstract Algebra : The Integers, Groups, Cyclic
Groups, Permutation Groups, Cosets and Lagrange’s Theorem, Matrix Groups and
Symmetry, Isomorphisms, Homomorphisms, The Structure of Groups, Group Actions,
Vector Spaces.
This note
explains the following topics: What is Abstract Algebra, The integers mod n,
Group Theory, Subgroups, The Symmetric and Dihedral Groups, Lagrange’s Theorem,
Homomorphisms, Ring Theory, Set Theory, Techniques for Proof Writing.
This note describes the following
topics: Peanos axioms, Rational numbers, Non-rigorous proof of the fundamental
theorem of algebra, polynomial equations, matrix theory, Groups, rings, and
fields, Vector spaces, Linear maps and the dual space, Wedge products and some
differential geometry, Polarization of a polynomial, Philosophy of the Lefschetz
theorem, Hodge star operator, Chinese remainder theorem, Jordan normal
form,Galois theory.
This note
explains the following topics: Sets and Functions, Factorization and the
Fundamental Theorem of Arithmetic, Groups, Permutation Groups and Group Actions,
Rings and Fields, Field Extensions and Galois Theory, Galois Theory.
This note covers the following topics:
Set theory, Group theory, Ring theory, Isomorphism theorems, Burnsides formula,
Field theory and Galois theory, Module theory, Commutative algebra, Linear
algebra via module theory, Homological algebra, Representation theory.