Mathematics Books Topology BooksDifferential Topology Books

Differential Algebraic Topology

Differential Algebraic Topology

Differential Algebraic Topology

This book presents some basic concepts and results from algebraic topology. Topics covered includes: Smooth manifolds revisited, Stratifolds, Stratifolds with boundary: c-stratifolds, The Mayer-Vietoris sequence and homology groups of spheres, Brouwer’s fixed point theorem, separation and invariance of dimension, Integral homology and the mapping degree, A comparison theorem for homology theories and CW-complexes, Kunneth’s theorem, Singular cohomology and Poincare duality, Induced maps and the cohomology axioms, The Chern classes, Pontrjagin classes and applications to bordism, Constructions of stratifolds.

Author(s):

s168 Pages
Similar Books
Differential     Topology by Andrew Kobin

Differential Topology by Andrew Kobin

This note covers Smooth manifolds, Regular values, Transversality and embeddings, Vector bundles.

s52 Pages
Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint

This PDF covers the following topics related to Differential Topology : Smooth manifolds and smooth maps, Tangent spaces and derivatives, Regular values, The fundamental theorem of algebra, The theorem of Sard and Brown, Manifolds with boundary, The Brouwer fixed point theorem, Proof of Sard's theorem, The degree modulo 2 of a mapping, Smooth homotopy and smooth isotopy, Oriented manifolds, The Brouwer degree, Vector fields and the Euler number, Framed cobordism, the Pontryagin construction, The Hopf theorem, Exercise.

s77 Pages
Introduction   to Differential Topology by Uwe Kaiser

Introduction to Differential Topology by Uwe Kaiser

This book gives a deeper account of basic ideas of differential topology than usual in introductory texts. Also many more examples of manifolds like matrix groups and Grassmannians are worked out in detail. Topics covered includes: Continuity, compactness and connectedness, Smooth manifolds and maps, Regular values and Sards theorem, Manifolds with boundary and orientations, Smooth homotopy and vector bundles, Intersection numbers, vector fields and Euler characteristic.

s110 Pages
Introduction To Differential Topology

Introduction To Differential Topology

The first half of the book deals with degree theory, the Pontryagin construction, intersection theory, and Lefschetz numbers. The second half of the book is devoted to differential forms and deRham cohomology.

s306 Pages