This manuscript provides a brief introduction to Real and
(linear and nonlinear) Functional Analysis. Topics covered
includes: Banach and Hilbert spaces, Compact operators, The main
theorems about Banach spaces, Bounded linear operators, Lebesgue
integration, The Lebesgue spaces Lp, The Fourier transform,
Interpolation, The Leray-Schauder mapping degree, The stationary
Navier-Stokes equation and Monotone operators.
This
note covers the following topics related to functional analysis: Normed Spaces, Linear Operators, Dual Spaces, Normed Algebras, Invertibility,
Characters and Maximal Ideals.
This note explains
the following topics: Metric and topological spaces, Banach spaces, Consequences
of Baire's Theorem, Dual spaces and weak topologies, Hilbert spaces, Operators
in Hilbert spaces, Banach algebras, Commutative Banach algebras, and Spectral
Theorem.