This note
covers the following topics: Some homotopy theory, Exact categories,
Q-construction, Fundamental groupoid, Waldhausen's constructions, Additivity,
The K-theory spectrum, Products, Group completion, Q=+ theorem, The defining
acyclic map, Homotopy fibres, Resolution theorem, Dévissage, Abelian category
localization, Coherent sheaves and open subschemes, Product formulas, K-theory
with finite coefficients, Homology, K-theory of graded rings, Homotopy property,
Rigidity, K-theory of finite fields.
This lecture note covers the following topics:Projections and
Unitaries, The K0-Group for Unital C -Algebras, K1-Functor and the Index Map,
Bott Periodicity and the Exact Sequence of K-Theory, Tools for the computation
of K-groups.
This note explains the following topics: Categories and functors, Transformations and
equivalences, Universal properties, Homotopy theory, Simplicial methods,
Homotopy theory of categories, Waldhausen K-theory, Abelian and exact
categories, Quillen K-theory.
This note
covers the following topics: Some homotopy theory, Exact categories,
Q-construction, Fundamental groupoid, Waldhausen's constructions, Additivity,
The K-theory spectrum, Products, Group completion, Q=+ theorem, The defining
acyclic map, Homotopy fibres, Resolution theorem, Dévissage, Abelian category
localization, Coherent sheaves and open subschemes, Product formulas, K-theory
with finite coefficients, Homology, K-theory of graded rings, Homotopy property,
Rigidity, K-theory of finite fields.
This book covers the following topics:
Topological K-Theory, Topological Preliminaries on Vector Bundles, Homotopy,
Bott Periodicity and Cohomological Properties, Chern Character and Chern
Classes, Analytic K-Theory, Applications of Adams operations, Higher Algebraic
K-Theory, Algebraic Preliminaries and the the Grothendieck
Group, The Whitehead and the Steinberg Groups.