This book explains the
following topics: Derivatives, Derivatives, slope, velocity, rate of
change, Limits, continuity, Trigonometric limits, Derivatives of
products, quotients, sine, cosine, Chain rule, Higher derivatives,
Implicit differentiation, inverses, Exponential and log, Logarithmic
differentiation, hyperbolic functions, Applications of
Differentiation, Linear and quadratic approximations ,Curve
sketching, Max-min problems, Newton’s method and other applications,
Mean value theorem, Inequalities, Differentials, antiderivatives,
Differential equations, separation of variables, Integration,
Techniques of Integration.
Author(s): Prof. David Jerison,
Massachusetts Institute of Technology
This note covers the following topics: Real Numbers,Complex numbers, Sequences and their limits, Limits and Continuity,
Differentiation, Applications of Differentiation, Primitives and Indefinite
Integrals.
This PDF book covers the following topics related to Calculus :
Functions and Graphs, Limits, Derivatives, Applications of Derivatives,
Integration, Applications of Integration.
Author(s): Edwin Jed Herman, University of
Wisconsin-stevens Point, Gilbert Strang, Massachusetts Institute of
Technology
This book explains the
following topics: Derivatives, Derivatives, slope, velocity, rate of
change, Limits, continuity, Trigonometric limits, Derivatives of
products, quotients, sine, cosine, Chain rule, Higher derivatives,
Implicit differentiation, inverses, Exponential and log, Logarithmic
differentiation, hyperbolic functions, Applications of
Differentiation, Linear and quadratic approximations ,Curve
sketching, Max-min problems, Newton’s method and other applications,
Mean value theorem, Inequalities, Differentials, antiderivatives,
Differential equations, separation of variables, Integration,
Techniques of Integration.
Author(s): Prof. David Jerison,
Massachusetts Institute of Technology
This is a set of
exercises and problems for a standard beginning calculus. A fair
number of the exercises involve only routine computations, many of
the exercises and most of the problems are meant to illuminate
points that in my experience students have found confusing.
These notes are
intended as a brief introduction to some of the main ideas and
methods of calculus. Topics covered includes: Functions and Graphs,
Linear Functions, Lines, and Linear Equations, Limits, Continuity,
Linear Approximation, Introduction to the Derivative, Product,
Quotient, and Chain Rules, Derivatives and Rates, Increasing and
Decreasing Functions, Concavity, Optimization, Exponential and
Logarithmic Functions, Antiderivatives, Integrals.
This note emphasizes
careful reasoning and understanding of proofs. It assumes knowledge of
elementary calculus. Topics covered includes: Integers and exponents, Square
roots, and the existence of irrational numbers, The Riemann condition,
Properties of integrals, Integrability of bounded piecewise-monotonic functions,
Continuity of the square root function, Rational exponents, The fundamental
theorems of calculus, The trigonometric functions, The exponential and logarithm
functions, Integration, Taylor's formula, Fourier Series.
This note covers following
topics: The Real Numbers, Basic Geometry And Trigonometry, The Complex Numbers,
Functions Of One Variable, Derivatives, Properties And Applications Of
Derivatives, Antiderivatives And Differential Equations, The Integral, Infinite
Series, Vector Valued Functions, Limits And Derivatives, Line Integrals,
Functions Of More Than One Variable, Linear Algebra, Vector Calculus.
This
note covers following topics: Continuity and Limits, Continuous Function, Derivatives, Derivative as a
function, Differentiation rules, Derivatives of elementary functions,
Trigonometric functions, Implicit differentiation, Inverse Functions,
Logarithmic functions and differentiation, Monotonicity, Area between two
curves.