This lecture note covers the following topics: emission and absorption of
light, spectral lines, Atomic orders of magnitude, Basic structure of atoms, The
Central Field Approximation, Many-electron atoms, Energy levels, Corrections to
the Central Field, Spin-Orbit interaction, The Vector Model, Two-electron atoms,
Symmetry and indistinguishability, Nuclear effects on energy levels, Isotope
effects, Atoms in magnetic fields.
This note explains atomic nature of matter,
Chart of the nuclides, Mass defect and binding energy, Modes of radioactive
decay, Radioactivity, Neutron interactions, Nuclear fission, Energy release from
fission and interaction of radiation with matter.
The contents of this notes include : Semiclassical Radiative Transitions,
Quantum Optics, Quantum States of Light, Radiative Transitions, Open Systems,
Precision Atomic Experiments.
This note covers the
following topics: Planck's energy distribution law, Relation between Einstein
coe cients, Waves and particles, Schrodinger equation, Particle in a box, Ground
state of the hydrogen atom, Harmonic oscillator 1-D, Hydrogen atom and central
forces, Interaction of atoms with electromagnetic radiation, Spin of the
electron.
This note covers the
following topics: Hydrogen Atom, Hydrogen Atom Fine Structure, Helium Atom,
Multielectron atoms, Hartree-Fock theory, Interaction with Radiation, Lineshapes,
Photoelectric Effect, Introduction to Lasers, Diatomic Molecules and
Scattering.