This
note covers the following topics: nature of light, features of a wave, huygens
principle, refraction, curved mirrors, ray tracing with mirrors, refraction at a
spherical interface, single lens systems, compound optical systems, propagation
of light, images, lenses, optical instruments using lenses, interference and
diffraction, small angle approximation.
This note covers the
following topics: Models in Optics, Scalar Diffraction, Operation of Simple
Lens, Imaging of Extended Objects, Measurement of Imaging Properties,
Examples of Optical Systems, The Photographic Process, Holography,
Holographic Interferomerty, Holographic Applications, Optical Processing,
Spatial Light Modulators and Applications.
This
book is divided in four sections. The book presents several physical effects and
properties of materials used in lasers and electro-optics in the first chapter
and, in the three remaining chapters, applications of lasers and electro-optics
in three different areas are presented.
This lecture note is intended to provide theoretical background to
understand and predict a host of optical phenomena that become possible when
nonlinearity in the optical response of a material is included in the
description. It includes a detailed description of several of these phenomena,
their experimental observation and photonic devices based on them.
This book covers the
following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel
Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle,
Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.