The topics discussed
in this lecture notes include: Probability Amplitudes and Quantum States,
Operators and Observables, Position and Momentum Representations,Time Evolution
in Quantum Mechanics,Wave mechanics, Harmonic Oscillators,Transformations and
Symmetries,Heisenberg picture and Heisenberg equation of motion, Rotational
invariance and angular momentum as a good quantum number,Position representation
and angular momentum, Angular momentum and magnetic moments,Spin and total
angular momentum,QM systems composed of two parts, Product States vs entangled
states, Addition of angular momenta, EPR experiment and Bell inequalities,
Position representation, Energy eigenvalues and emission spectra of hydrogen,
Explicit form of the wave functions.
Author(s): F.H.L. Essler, The Rudolf
Peierls Centre for Theoretical Physics, Oxford University
This book online
covers the following topics related to Quantum Mechanics : Introduction, 1D Wave
Mechanics, Higher Dimensionality Effects, Bra-ket Formalism, Some Exactly
Solvable Problems, Perturbation Theories, Open Quantum Systems, Multiparticle
Systems, Introduction to Relativistic Quantum, Making Sense of Quantum
Mechanics.
The topics discussed
in this lecture notes include: Probability Amplitudes and Quantum States,
Operators and Observables, Position and Momentum Representations,Time Evolution
in Quantum Mechanics,Wave mechanics, Harmonic Oscillators,Transformations and
Symmetries,Heisenberg picture and Heisenberg equation of motion, Rotational
invariance and angular momentum as a good quantum number,Position representation
and angular momentum, Angular momentum and magnetic moments,Spin and total
angular momentum,QM systems composed of two parts, Product States vs entangled
states, Addition of angular momenta, EPR experiment and Bell inequalities,
Position representation, Energy eigenvalues and emission spectra of hydrogen,
Explicit form of the wave functions.
Author(s): F.H.L. Essler, The Rudolf
Peierls Centre for Theoretical Physics, Oxford University
This
lecture note explains the following topics: Schrodinger’s Equation, Piecewise
Potentials, Linear Algebra and Function Space, Angular Momentum and Spin,
Multiple Particles, Perturbation Theory – Fine Structure, Time Dependent
Perturbation Theory, Relativistic Quantum Mechanics: The Dirac Equation.