This note covers the following
topics: Time-Independent Non-degenerate Perturbation Theory, Dealing with Degeneracy, Degeneracy, Symmetry and
Conservation Laws, Time--dependence, Two state systems, Hydrogen ion and
Covalent Bonding, The Variational Principle, Indistinguishable Particles and
Exchange, Self-consistent field theory, Fundamentals of Quantum Scattering
Theory, Scattering in three dimensions, Quantum Scattering Theory, Partial
Waves.
The contents of
this pdf note include:Quantum light and the two level system, decaying
two level system, Cavity quantum electrodynamics, Fundamentals of laser theory ,
Cooling of atoms, Cavity optomechanics, Cooling of trapped ions, Collective
effects : super/subradiance, Interaction of light with molecules.
This note covers the
following topics: Classical Physics, Waves, Probability Density, The Ultraviolet
Catastrophe, Bragg X-ray Diffraction, Wave-Particle Duality, Particles and
Fields, Heisenberg’s Uncertainty Principle, Wavefunctions - Schrodinger’s
Equation, Quantum Tunnelling, Quantum States and Superposition, Two State
Systems, Wavefunction Collapse, Interpretations of Quantum Physics,
Probabilistic Determinism.
This note covers the following
topics: Time-Independent Non-degenerate Perturbation Theory, Dealing with Degeneracy, Degeneracy, Symmetry and
Conservation Laws, Time--dependence, Two state systems, Hydrogen ion and
Covalent Bonding, The Variational Principle, Indistinguishable Particles and
Exchange, Self-consistent field theory, Fundamentals of Quantum Scattering
Theory, Scattering in three dimensions, Quantum Scattering Theory, Partial
Waves.
This note covers the following topics:
The Early History of Quantum Mechanics, The Wave Function, The Two Slit
Experiment, Wave Mechanics, Particle Spin and the Stern-Gerlach Experiment,
Probability Amplitudes, Vector Spaces in Quantum Mechanics, General Mathematical
Description of a Quantum System, State Spaces of Infinite Dimension, Operations
on States, Matrix Representations of State Vectors and Operators, Probability,
Expectation Value and Uncertainty, Time Evolution in Quantum Mechanics.