This
note covers the following topics: introduction, electrolytic conductance, the
theory of electrolytic conductance, the migration of ions, free energy and
activity, oxidation-reduction systems, acids and bases, the determination of
hydrogen ions, neutralization and hydrolysis, amphoteric electrolytes,
polarization and overvoltage, the deposition and corrosion of metals,
electrolytic oxidation and reduction, electrokinetic phenomena.
This lecture note provides an exposure into electrochemistry
with all its facets, ranging from the fundamentals like redox reactions and
Faraday's laws to advanced concepts in industrial electrochemistry. Topics range
from equilibrium electrochemistry to electrochemical cells, and from energy
conversion and storage systems like batteries and fuel cells, analytical methods
and sensors, to corrosion protection. The applications of electrochemistry are
also brought into display, be it in the fields of energy storage, corrosion
processes, or latest technologies. Anyone looking to learn about the
electrochemical basis of energy systems and environmental processes will find
this resource indispensable.
This book
makes a deep dive into the physical principles underlying electrochemical
processes, mainly focusing on the electrical double layer (EDL), solute
transport, and electrokinetics. In this text, there is coverage of models that
describe the EDL, such as the Gouy-Chapman-Stern model, and extends into more
complex phenomena such as combined mass transport and chemical reactions,
reverse osmosis, and electrodialysis. It also goes into the physics of
electrochemical systems at the microscopic level, both non-Faradaic and Faradaic
processes. The book applies to fields like bioelectrochemistry and environmental
chemistry and even briefly discusses some experimental methods and numerical
modeling used in electrochemical research.
This textbook discusses the
electrochemistry of solids with particular emphasis on the properties of solid
materials in electrochemical systems. It deals with basic aspects of solid-state
reactions, assembly and geometry of solid oxide fuel cells, polymer electrolyte
membrane fuel cells, and batteries, with emphasis on the reactivity and kinetic
properties of solid materials such as sintering, creep, and demixing. Its
advanced applications involve the understanding of electrolysis cells,
solid-state processes as components of energy conversion, and storage
technologies in relation to the efficiency and potential impact. To this end,
the researcher or student with material should work with individuals
demonstrating a propensity for materials but may not have expressed specific
interests regarding their electrochemical characteristics or the opportunity of
putting such properties toward potential work in energy systems. Accordingly,
the book considers the perspectives of both theory and practical application.
This series of lectures deals with
great detail about advanced electrochemical concepts like both Faradaic and non-Faradaic
processes, mass transfer controlled reactions, and electrochemical
thermodynamics. Issues deal with the Butler-Volmer model for electrode kinetics,
liquid junction potentials, and selective electrodes. The note also deals with
the techniques that include sampled current voltammetry and cyclic voltammetry,
and thus one can analyze the quasireversible and irreversible electrode
reactions. This resource is appropriate for more advanced students and
researchers aiming to dive deeper into electrochemical processes and techniques
of analysis.