Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
This note covers the following topics: Stretching Interactions,
The Force-Field, Stretch Energy, Bend Energy, Torsional Energy, van der Waals
Energy, Electrostatic Energy, Fitting Atomic Charges, The Fluctuating Charge
Model, Other Polarizable Models, Parameterizing the Force Fields and Heats of
Formation.
Advanced text on Jack Simons' book deals with the concepts and applications
of theoretical chemistry. It deals with foundational quantum mechanics, model
problems, and characterization of energy surfaces. The book also discusses the
practical tools and methods used in theoretical chemistry, like quantum
dynamics, statistical mechanics, and chemical dynamics. It primarily focuses on
the computational techniques that support both theoretical research in chemistry
and discuss topics such as electronic structure, chemical kinetics, relationship
between the theory and experimental data.
It
describes in detail the role of theory in chemistry. Key concepts covered
include chemical kinetics, oxidation numbers, electronegativity, and application
of various theoretical methods like quantum dynamics and classical Newtonian
dynamics. This note also underlines the importance of an interface between the
laboratory and theory inasmuch as experimental measurements interact with the
theoretical models. It discusses advanced topics such as mixed classical and
quantum dynamics, the Car-Parrinello method, and their applications to large
biomolecules and polymers, giving insight into the scope and methods used in
modern theoretical chemistry.