This
note covers the following topics: Protein Structure and Dynamics, Statistical
Mechanics of Proteins, Steered Molecular Dynamics of Proteins, Simulating
Membrane Channels, Quantum Chemistry of Proteins, Parameters for Classical Force
Fields, Bioinformatics of Proteins, Simulation of Lipids and Modeling Large
Systems.
Author(s): University Of Illinois At Urbana-champaign
Authored by
Ryan J. Yoder, The Ohio State University; this is a PDF which explores
applications of computational chemistry to challenging problems including
chemical warfare and renewable energy. It outlines novel strategies which
quinone methide precursors function as therapies and molecular baskets as
bioscavengers of nerve agents. In addition, the book explores how to design
iridium-based catalysts for the dehydrogenation of fatty acids and gives an
overview of how computational chemistry intersects with more down-to-earth
applications concerning health and environmental sustainability. To this end, it
outlines the directions for future research; hence, it is a must-read for those
interested in applied chemistry.
It's a free
online resource from the University of Utah, that covers all the fundamental and
advanced topics in computational chemistry-from Schrödinger equation to
time-dependent methods in spectroscopy. The material discusses molecular
dynamics and quantum-based theories applicable to condensed matter, giving
insight to the ways of behaviors of stressed out metals, so it covers all
aspects: the students will come to a genuine understanding of modern electronic
structure methods. By combining the theory with practical applications, this
helps aspiring chemists shape their knowledge and skills.