Introduction to Microelectronic Fabrication Processes
Introduction to Microelectronic Fabrication Processes
Introduction to Microelectronic Fabrication Processes
The target
audience of this note is undergraduate chemical engineering and electronics and
communication engineering students. The focus will be on the various modules
relevant for chip manufacturing. Topics covered includes: Lithography, Depostion
Techniques, Removal Techniques, FEOL, Diffusion, Ion Implantation, Oxidation, ,
process Integration, Testing, Yield, Tools and Techniques.
This note covers the following topics: Fundamental circuit
concepts and analysis techniques , First and second order circuits, impulse and
frequency response, Op Amps, Diode and FET: Device and Circuits, Amplification,
Logic, Filter.
This note covers the following topics:
Semiconductor and Solid State Physics, Crystal Structure and Growth, Defects in
Semiconductors and Internal Gettering, Silicon Dioxide and Thermal Oxidation,
Current-Voltage Analysis, Thickness Measurement, Ultra Thin Oxides, Impurity
Diffusion, Sheet Resistance and Diffusion Profiles, Electrical Characteristics
of pn-Junctions, Atomic Processes of Diffusion, Ion Implantation, Implanted and
Diffused Profiles.
This note covers the
following topics: Basic Physics of Semiconductors, Diode Circuits, Physics of
Bipolar Transistors, Bipolar Amplifiers, Physics of MOS Transistors, CMOS
Amplifiers, Operational Amplifier as a Blac Box.
The target
audience of this note is undergraduate chemical engineering and electronics and
communication engineering students. The focus will be on the various modules
relevant for chip manufacturing. Topics covered includes: Lithography, Depostion
Techniques, Removal Techniques, FEOL, Diffusion, Ion Implantation, Oxidation, ,
process Integration, Testing, Yield, Tools and Techniques.
Understanding
semiconductor devices is critical in designing and improving many types of
systems. This note provides an understanding of the most fundamental aspects of
semiconductor materials and provide the mathematical formulation for
understanding how advanced devices work.
This lecture notes teach the
fundamentals of non-linear circuit elements including diodes, and transistors (BJT
and FET) , how they are used in circuits and real world applications.