This note describes the following topics: Feedback basic
concepts, Macromodeling, Op Amp with resistive components, Measurement and
simulation, High Sensitivity Transconductance Converter, Op Amp static and
dynamic properties, Integrator modeling via Simulink, Op Amp non-idealities,
System Level Closed Loop Amplifiers, Biquad Filters using integrators, Active-RC
Inverting based ,Filter Software, Sinusoidal Oscillators, Signal Generators,
voltage regulators and Stability Considerations.
This note describes the following topics: Feedback basic
concepts, Macromodeling, Op Amp with resistive components, Measurement and
simulation, High Sensitivity Transconductance Converter, Op Amp static and
dynamic properties, Integrator modeling via Simulink, Op Amp non-idealities,
System Level Closed Loop Amplifiers, Biquad Filters using integrators, Active-RC
Inverting based ,Filter Software, Sinusoidal Oscillators, Signal Generators,
voltage regulators and Stability Considerations.
The goal of this text, as its name implies, is to allow the reader to
become proficient in the analysis and design of circuits utilizing modern linear
ICs. It progresses from the fundamental circuit building blocks through to
analog/digital conversion systems. The text is intended for use in a second year
Operational Amplifiers course at the Associate level, or for a junior level
course at the Baccalaureate level.
This note covers the following topics related
to operational amplifier: History, OP AMP Construction/design, OP Amp
Application Circuits, Effect of Input offset voltage, Effect of Slew Rate and
Packaging.
Author(s): Cheng Zhang, Nan Xia, Alexander Gollin,
Kenneth Young and Patrick Powers
This note covers the
following topics related to operational amplifier: Properites and Modeling of
Feedback Systems, Linear System Response, Stability, Compensation, Nonlinear
Systems, Direct-Coupled Amplifiers, Operational-Amplifier Design Techniques,
Integrated-Circuit Operational Amplifiers, Basic and Advanced Applications.
Author(s): James K. Roberge and Kent
H. Lundberg, Massachusetts Institute of Technology