Mathematics Books Topology BooksAlgebraic Topology Books

Algebraic Topology Lecture Notes by Christian Bar

Algebraic Topology Lecture Notes by Christian Bar

Algebraic Topology Lecture Notes by Christian Bar

This note expplains the following topics: set theoretic topology, Homotopy theory and homology theory.

Author(s):

s172 Pages
Similar Books
Algebraic   Topology Lecture Notes by Christian Bar

Algebraic Topology Lecture Notes by Christian Bar

This note expplains the following topics: set theoretic topology, Homotopy theory and homology theory.

s172 Pages
Lectures on Algebraic Topology by Haynes Miller

Lectures on Algebraic Topology by Haynes Miller

This PDF Lectures covers the following topics related to Algebraic Topology : Singular homology, Introduction: singular simplices and chains, Homology, Categories, functors, and natural transformations, Basic homotopy theory, The homotopy theory of CW complexes, Vector bundles and principal bundles, Spectral sequences and Serre classes, Characteristic classes, Steenrod operations, and cobordism.

s307 Pages
Algebraic Topology A Comprehensive Introduction

Algebraic Topology A Comprehensive Introduction

This book explains the following topics: Introduction, Fundamental group, Classification of compact surfaces, Covering spaces, Homology, Basics of Cohomology, Cup Product in Cohomology, Poincaré Duality, Basics of Homotopy Theory, Spectral Sequences. Applications, Fiber bundles, Classifying spaces, Applications, Vector Bundles, Characteristic classes, Cobordism, Applications.

s318 Pages
Algebraic Topology I   Iv.5 Stefan Friedl

Algebraic Topology I Iv.5 Stefan Friedl

The contents of this book include: Topological spaces, General topology: some delicate bits, Topological manifolds and manifolds, Categories, functors and natural transformations, Covering spaces and manifolds, Homotopy equivalent topological spaces, Differential topology, Basics of group theory, The basic Seifert-van Kampen Theorem , Presentations of groups and amalgamated products, The general Seifert-van Kampen Theorem , Cones, suspensions, cylinders, Limits, etc .

s2076 Pages
Notes On The Course Algebraic Topology

Notes On The Course Algebraic Topology

This note covers the following topics: Important examples of topological spaces, Constructions, Homotopy and homotopy equivalence, CW -complexes and homotopy, Fundamental group, Covering spaces, Higher homotopy groups, Fiber bundles, Suspension Theorem and Whitehead product, Homotopy groups of CW -complexes, Homology groups, Homology groups of CW -complexes, Homology with coefficients and cohomology groups, Cap product and the Poincare duality, Elementary obstruction theory.

s181 Pages
Algebraic Topology by Andreas Kriegl

Algebraic Topology by Andreas Kriegl

This note explains the following topics: Building blocks and homeomorphy, Homotopy, Simplicial Complexes,CW-Spaces, Fundamental Group , Coverings, Simplicial Homology and Singular Homology.

s125 Pages
Introduction To Algebraic Topology And Algebraic Geometry

Introduction To Algebraic Topology And Algebraic Geometry

This note provides an introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for doing research in algebraically integrable systems and in the geometry of quantum eld theory and string theory. Covered topics are: Algebraic Topology, Singular homology theory, Introduction to sheaves and their cohomology, Introduction to algebraic geometry, Complex manifolds and vector bundles, Algebraic curves.

s138 Pages
Algebraic Topology by Michael Starbird

Algebraic Topology by Michael Starbird

Much of topology is aimed at exploring abstract versions of geometrical objects in our world. The concept of geometrical abstraction dates back at least to the time of Euclid. All of the objects that we will study in this note will be subsets of the Euclidean spaces. Topics covered includes: 2-manifolds, Fundamental group and covering spaces, Homology, Point-Set Topology, Group Theory, Graph Theory and The Jordan Curve Theorem.

s127 Pages