Mathematics Books Riemannian Geometry Books

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

This book covers the following topics: Differentiable Manifolds, Differential Forms, Riemannian Manifolds, Curvature, Geometric Mechanics, Relativity.

Author(s):

s272 Pages
Similar Books
Riemannian Geometry by Eckhard Meinrenken

Riemannian Geometry by Eckhard Meinrenken

This PDF covers the following topics related to Riemannian Geometry : Manifolds, Examples of manifolds, Submanifolds, Tangent spaces,Tangent map, Tangent bundle, Vector fields as derivations, Flows of vector fields, Geometric interpretation of the Lie bracket, Lie groups and Lie algebras, Frobenius’ theorem, Riemannian metrics, Existence of Riemannian metrics, Length of curves, Connections and parallel transport, Geodesics, The Hopf-Rinow Theorem, The curvature tensor, Connections on vector bundles.

s58 Pages
Riemannian Geometry University of Chicago

Riemannian Geometry University of Chicago

This PDF covers the following topics related to Riemannian Geometry : Smooth manifolds, Some examples, Riemannian metrics, Geodesics, Curvature, Lie groups and homogeneous spaces, Characteristic classes, Hodge theory, Minimal surfaces.

s54 Pages
Lecture     Notes Riemannian Geometry By Andreas Strombergsson

Lecture Notes Riemannian Geometry By Andreas Strombergsson

This note explains the following topics: Manifolds, Tangent spaces and the tangent bundle, Riemannian manifolds, Geodesics, The fundamental group. The theorem of Seifert-van Kampen, Vector bundles, The Yang-Mills functional, Curvature of Riemannian manifolds, Jacobi Fields, Conjugate points.

s241 Pages
Riemannian manifolds with geometric structures

Riemannian manifolds with geometric structures

The main aim of this book is to get a way of union of various differential geometric structures on Riemannian manifolds in one scheme.

s187 Pages