Fourier analysis and distribution theory by Pu Zhao Kow
Fourier analysis and distribution theory by Pu Zhao Kow
Fourier analysis and distribution theory by Pu Zhao Kow
This PDF covers
the following topics related to Fourier Analysis : Fourier series, Weak
derivatives, 1-dimensional Fourier series, n-dimensional Fourier series,
Pointwise convergence and Gibbs-Wilbraham phenomenon,Absolute convergence and
uniform convergence, Pointwise convergence: Dini's criterion,. Cesàro
summability of Fourier series, Fourier transform, Motivations, Schwartz space,
Fourier transform on Schwartz space, The space of tempered distributions,The
space of compactly supported distributions, Convolution of functions, Tensor products, Convolution of
distributions, Convolution between distributions and functions, Convolution of
distributions with non-compact supports, etc.
Author(s): Pu-Zhao Kow, Department
of Mathematics and Statistics, University of Jyvaskyla, Finland
This PDF book covers the following topics related to Fourier analysis
: Mathematical Preliminaries, Sinusoids, Phasors, and Matrices, Fourier Analysis
of Discrete Functions, The Frequency Domain, Continuous Functions, Fourier
Analysis of Continuous Functions, Sampling Theory, Statistical Description of
Fourier Coefficients, Hypothesis Testing for Fourier Coefficients, Directional
Data Analysis, The Fourier Transform, Properties of The Fourier Transform,
Signal Analysis, Fourier Optics.
Author(s): L.N. Thibos, Indiana University School of
Optometry
This PDF covers
the following topics related to Fourier Analysis : Introduction, Introduction to
the Dirac delta function, Fourier Series, Fourier Transforms, The Dirac delta
function, Convolution, Parseval’s theorem for FTs, Correlations and
cross-correlations, Fourier analysis in multiple dimensions, Digital analysis
and sampling, Discrete Fourier Transforms & the FFT, Ordinary Differential
Equations, Green’s functions, Partial Differential Equations and Fourier
methods, Separation of Variables, PDEs in curved coordinates.
This PDF covers the following topics related to Fourier Analysis :
Introduction, Fourier series, The Fourier transform, The Poisson Summation
Formula, Theta Functions, and the Zeta Function, Distributions, Higher
dimensions, Wave Equations, The finite Fourier transform.
Author(s): Peter Woit, Department of Mathematics, Columbia
University
This PDF covers the following topics related to Fourier Analysis :
Introduction, The Dirac Delta Function, The Fourier Transform, Fourier’s
Theorem, Some Common Fourier Transforms, Properties of the Fourier Transform,
Green’s Function for ODE, The Airy Function, The Heat Equation, The Wave
Equation, The Fourier Series 16 4.1 Derivation, Properties of Fourier Series,
The Heat Equation, Poisson Summation, Parseval’s Identity, The Fourier
Transform, Causal Green’s Functions , Poisson’s Equation, The Brane World and
Large Extra Dimensions, Appendix: Some Mathematical Niceties.
This PDF covers
the following topics related to Fourier Analysis : Fourier series, Weak
derivatives, 1-dimensional Fourier series, n-dimensional Fourier series,
Pointwise convergence and Gibbs-Wilbraham phenomenon,Absolute convergence and
uniform convergence, Pointwise convergence: Dini's criterion,. Cesàro
summability of Fourier series, Fourier transform, Motivations, Schwartz space,
Fourier transform on Schwartz space, The space of tempered distributions,The
space of compactly supported distributions, Convolution of functions, Tensor products, Convolution of
distributions, Convolution between distributions and functions, Convolution of
distributions with non-compact supports, etc.
Author(s): Pu-Zhao Kow, Department
of Mathematics and Statistics, University of Jyvaskyla, Finland
This note explains the following
topics: Infinite Sequences, Infinite Series and Improper Integrals, Fourier
Series, The One-Dimensional Wave Equation, The Two-Dimensional Wave Equation,
Fourier Transform, Applications of the Fourier Transform, Bessel’s Equation.
This lecture note
describes the following topics: Classical Fourier Analysis, Convergence
theorems, Approximation Theory, Harmonic Analysis on the Cube and Parseval’s
Identity, Applications of Harmonic Analysis, Isoperimetric Problems, The
Brunn-Minkowski Theorem and Influences of Boolean Variables, Influence of
variables on boolean functions , Threshold Phenomena.