Fourier analysis and distribution theory by Pu Zhao Kow
Fourier analysis and distribution theory by Pu Zhao Kow
Fourier analysis and distribution theory by Pu Zhao Kow
This PDF covers
the following topics related to Fourier Analysis : Fourier series, Weak
derivatives, 1-dimensional Fourier series, n-dimensional Fourier series,
Pointwise convergence and Gibbs-Wilbraham phenomenon,Absolute convergence and
uniform convergence, Pointwise convergence: Dini's criterion,. Cesàro
summability of Fourier series, Fourier transform, Motivations, Schwartz space,
Fourier transform on Schwartz space, The space of tempered distributions,The
space of compactly supported distributions, Convolution of functions, Tensor products, Convolution of
distributions, Convolution between distributions and functions, Convolution of
distributions with non-compact supports, etc.
Author(s): Pu-Zhao Kow, Department
of Mathematics and Statistics, University of Jyvaskyla, Finland
This PDF covers
the following topics related to Fourier Analysis : Introduction, Introduction to
the Dirac delta function, Fourier Series, Fourier Transforms, The Dirac delta
function, Convolution, Parseval’s theorem for FTs, Correlations and
cross-correlations, Fourier analysis in multiple dimensions, Digital analysis
and sampling, Discrete Fourier Transforms & the FFT, Ordinary Differential
Equations, Green’s functions, Partial Differential Equations and Fourier
methods, Separation of Variables, PDEs in curved coordinates.
This page covers the following topics related to
Fourier Analysis : Introduction, Fourier Series, Periodicity, Monsieur Fourier,
Finding Coefficients, Interpretation, Hot Rings, Orthogonality, Fourier
Transforms, Motivation, Inversion and Examples, Duality and Symmetry, Scaling
and Derivatives, Convolution.
Author(s): Jeffrey Chang, Graduate Student, Department of
Physics, Harvard University
This PDF covers the following topics related to Fourier Analysis :
Introduction, Fourier series, The Fourier transform, The Poisson Summation
Formula, Theta Functions, and the Zeta Function, Distributions, Higher
dimensions, Wave Equations, The finite Fourier transform.
Author(s): Peter Woit, Department of Mathematics, Columbia
University
This PDF covers the following topics related to Fourier Analysis :
Introduction, The Dirac Delta Function, The Fourier Transform, Fourier’s
Theorem, Some Common Fourier Transforms, Properties of the Fourier Transform,
Green’s Function for ODE, The Airy Function, The Heat Equation, The Wave
Equation, The Fourier Series 16 4.1 Derivation, Properties of Fourier Series,
The Heat Equation, Poisson Summation, Parseval’s Identity, The Fourier
Transform, Causal Green’s Functions , Poisson’s Equation, The Brane World and
Large Extra Dimensions, Appendix: Some Mathematical Niceties.
This PDF covers
the following topics related to Fourier Analysis : Fourier series, Weak
derivatives, 1-dimensional Fourier series, n-dimensional Fourier series,
Pointwise convergence and Gibbs-Wilbraham phenomenon,Absolute convergence and
uniform convergence, Pointwise convergence: Dini's criterion,. Cesàro
summability of Fourier series, Fourier transform, Motivations, Schwartz space,
Fourier transform on Schwartz space, The space of tempered distributions,The
space of compactly supported distributions, Convolution of functions, Tensor products, Convolution of
distributions, Convolution between distributions and functions, Convolution of
distributions with non-compact supports, etc.
Author(s): Pu-Zhao Kow, Department
of Mathematics and Statistics, University of Jyvaskyla, Finland
This lecture note
describes the following topics: Classical Fourier Analysis, Convergence
theorems, Approximation Theory, Harmonic Analysis on the Cube and Parseval’s
Identity, Applications of Harmonic Analysis, Isoperimetric Problems, The
Brunn-Minkowski Theorem and Influences of Boolean Variables, Influence of
variables on boolean functions , Threshold Phenomena.
Aim of this note is to provide
mathematical tools used in applications, and a certain theoretical background
that would make other parts of mathematical analysis accessible to the student of physical science.
Topics covered includes: Power series and trigonometric series, Fourier
integrals, Pointwise convergence of Fourier series, Summability of Fourier
series, Periodic distributions and Fourier series, Metric, normed and inner
product spaces, Orthogonal expansions and Fourier series, Classical orthogonal
systems and series, Eigenvalue problems related to differential equations,
Fourier transformation of well-behaved functions, Fourier transformation of
tempered distributions, General distributions and Laplace transforms.