Introduction to Arithmetic Geometry by Andrew V. Sutherland
Introduction to Arithmetic Geometry by Andrew V. Sutherland
Introduction to Arithmetic Geometry by Andrew V. Sutherland
This note explains the following topics: Diophantine equations ,
Algebraic curves, The projective plane , Genus, Birational equivalence, The
elliptic curve group law , Rational points on elliptic curves, The Sato-Tate
conjecture, The Birch and Swinnerton-Dyer conjecture, Fermat’s Last Theorem,
Jacobians of curves.
This note covers
introduction, p adic numbers, Newton polygons, Multiplicative seminorms and
berkovich space, The berkovich affine and projective line, Analytic spaces and
function, Berkovich spaces of curves and integration.
This note explains the following topics: Diophantine equations ,
Algebraic curves, The projective plane , Genus, Birational equivalence, The
elliptic curve group law , Rational points on elliptic curves, The Sato-Tate
conjecture, The Birch and Swinnerton-Dyer conjecture, Fermat’s Last Theorem,
Jacobians of curves.
The aim
of these notes is to describe some examples of modular forms whose Fourier
coefficients involve quantities from arithmetical algebraic geometry.