This note explains the following topics:
Fourier Transform, Fourier Inversion and Plancherel’s Theorem, The Little wood
Principle and Lorentz Spaces, Relationships Between Lorentz Quasinorms and Lp
Norms, Banach Space Properties of Lorentz Spaces, Hunt’s Interpolation Theorem,
Proofs of Interpolation Theorems, Interpolation and Kernels, Boundedness of
Calderon Zygmund Convolution Kernels, Lp Bounds for Calderon Zygmund
Convolution Kernels, The Mikhlin Multiplier Theorem, The Mikhlin Multiplier
Theorem and Properties of Littlewood Paley Projections, Littlewood Paley
Projections and Khinchines Inequality, The Fractional Chain Rule, Introduction
to Oscillatory Integrals, Estimating Oscillatory Integrals With Stationary
Phase, Oscillatory Integrals in Higher Dimensions.
This note explains the following topics:
Fourier Transform, Fourier Inversion and Plancherel’s Theorem, The Little wood
Principle and Lorentz Spaces, Relationships Between Lorentz Quasinorms and Lp
Norms, Banach Space Properties of Lorentz Spaces, Hunt’s Interpolation Theorem,
Proofs of Interpolation Theorems, Interpolation and Kernels, Boundedness of
Calderon Zygmund Convolution Kernels, Lp Bounds for Calderon Zygmund
Convolution Kernels, The Mikhlin Multiplier Theorem, The Mikhlin Multiplier
Theorem and Properties of Littlewood Paley Projections, Littlewood Paley
Projections and Khinchines Inequality, The Fractional Chain Rule, Introduction
to Oscillatory Integrals, Estimating Oscillatory Integrals With Stationary
Phase, Oscillatory Integrals in Higher Dimensions.
This note explains the following topics:
linearly related sequences of difference derivatives of discrete orthogonal
polynomials, identity for zeros of Bessel functions, Close-to-convexity of
some special functions and their derivatives, Monotonicity properties of
some Dini functions, Classification of Systems of Linear Second-Order
Ordinary Differential Equations, functions of Hausdorff moment sequences,
Van der Corput inequalities for Bessel functions.
First
seven chapters of this monograph discuss the techniques involved in symbolic
calculus have their origins in symplectic geometry. Remaining chapters
explains wave and heat trace formulas for globally defined semi classical differential operators on manifolds and
equivariant versions of these results involving Lie group actions.
This note is for students to have
mastered the knowledge of complex function theory in which the classical
analysis is based. The main theme of this course note is to explain some
fundamentals of classical transcendental functions which are used
extensively in number theory, physics,engineering and other pure and applied
areas.