Mathematics Books Riemannian Geometry Books

Riemannian Geometry by Eckhard Meinrenken

Riemannian Geometry by Eckhard Meinrenken

Riemannian Geometry by Eckhard Meinrenken

This PDF covers the following topics related to Riemannian Geometry : Manifolds, Examples of manifolds, Submanifolds, Tangent spaces,Tangent map, Tangent bundle, Vector fields as derivations, Flows of vector fields, Geometric interpretation of the Lie bracket, Lie groups and Lie algebras, Frobenius’ theorem, Riemannian metrics, Existence of Riemannian metrics, Length of curves, Connections and parallel transport, Geodesics, The Hopf-Rinow Theorem, The curvature tensor, Connections on vector bundles.

Author(s):

s58 Pages
Similar Books
Riemannian Geometry by Shiping Liu USTC

Riemannian Geometry by Shiping Liu USTC

This PDF covers the following topics related to Riemannian Geometry : Introduction, Riemannian Metric, Geodesics, Connections, Curvatures, Space forms and Jacobi fields, Comparison Theorem, Candidates for Synthetic Curvature Conditions.

s218 Pages
Riemannian Geometry by Eckhard Meinrenken

Riemannian Geometry by Eckhard Meinrenken

This PDF covers the following topics related to Riemannian Geometry : Manifolds, Examples of manifolds, Submanifolds, Tangent spaces,Tangent map, Tangent bundle, Vector fields as derivations, Flows of vector fields, Geometric interpretation of the Lie bracket, Lie groups and Lie algebras, Frobenius’ theorem, Riemannian metrics, Existence of Riemannian metrics, Length of curves, Connections and parallel transport, Geodesics, The Hopf-Rinow Theorem, The curvature tensor, Connections on vector bundles.

s58 Pages
An     Introduction to Riemannian Geometry with Applications to Mechanics and     Relativity

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

This book covers the following topics: Differentiable Manifolds, Differential Forms, Riemannian Manifolds, Curvature, Geometric Mechanics, Relativity.

s272 Pages
Riemannian manifolds with geometric structures

Riemannian manifolds with geometric structures

The main aim of this book is to get a way of union of various differential geometric structures on Riemannian manifolds in one scheme.

s187 Pages