This note describes
the following topics: The Legendre transform, Euler’s Theorem on
Homogeneous Functions, Postulates, Equations of state, State changes at constant
composition, Closed control volumes, Dynamic systems, Open control volumes, Gas
dynamics, Departure Functions, Simple vapour–liquid equilibrium, Multicomponent
Phase Equilibrium, Chemical equilibrium, Simultaneous reactions, Heat engines,
Entropy production and available work, Plug flow reacto, Material Stability,
Thermofluids, T, s and p, v-Diagrams for Ideal Gas Cycles, SI units and
Universal Constants , Newton–Raphson iteration,Direct Substitution, Linear
Programming.
Thermodynamics is the science that deals with heat and work and
those properties of substance that bear a relation to heat and work.
Thermodynamics is the study of the patterns of energy change. Most of this
course will be concerned with understanding the patterns of energy
change.The contents include: Introduction, Limitations of First Law, Pure
Substances and Gas Laws, Gas Mixtures and Psychrometry, Power Cycles.
Author(s): Mrs. N Santhisree, Assistant
Professor, Department of Mechanical Engineering, Institute of Aeronautical
Engineering
Thermodynamics is the study of how heat
moves around in macroscopic objects. The contents of this book include:
Basics of Thermodynamics, Introduction, The zeroth law of Thermodynamics,
The first law of Thermodynamics, Thermodynamical processes, Carnot engine,
The second law of Thermodynamics, Practical Thermodynamics , free energy,
Statistical Mechanics of Simple Systems, Paramagnetic solid, Simple harmonic
oscillators, Polyatomic ideal gases, Thermodynamics of Radiation,
Thermodynamics of Real Gases.
This note explains the following topics: The Zeroth Law of
Thermodynamics, Temperature Scales,Ideal and Real Gases, Enthalpy and
specific heat, Van der Waals Equation of State,TD First Law Analysis to
Non-flow Processes, Second Law of Thermodynamics, Ideal Rankine Cycle, Air
standard Otto Cycle.
This
note describes the following topics: Energy transfer, Entropy and second law of thermodynamics, Thermodynamic
functions and potentials, Microcanonical statistical mechanics, Canonical
statistical mechanics, Phase changes of a pure substance, Binary solutions.
Author(s): Eric Brunet, Thierry Hocquet and Xavier Leyronas
This note describes
the following topics: The Legendre transform, Euler’s Theorem on
Homogeneous Functions, Postulates, Equations of state, State changes at constant
composition, Closed control volumes, Dynamic systems, Open control volumes, Gas
dynamics, Departure Functions, Simple vapour–liquid equilibrium, Multicomponent
Phase Equilibrium, Chemical equilibrium, Simultaneous reactions, Heat engines,
Entropy production and available work, Plug flow reacto, Material Stability,
Thermofluids, T, s and p, v-Diagrams for Ideal Gas Cycles, SI units and
Universal Constants , Newton–Raphson iteration,Direct Substitution, Linear
Programming.
This note covers the following
topics: Based on the basic principles of thermodynamics, fluid mechanics and
heat transfer, analysis on the refrigeration system and air-conditioning system
will be practiced. Topics covered includes: Basic of thermodynamic cycle,
Compressor, Heat Exchanger, Expansion devices, Absorbing refrigerating system,
Heat pump, coolant, cooling system, App, Cooling load, Design of air
conditioning system, Energy and Environment, Air cleaning, Alternative Energy.
This note
covers the following topics: Property relationships for pure substances and
Mixtures, Thermodynamic Relations, Ideal Gas Mixtures, Combustion
Thermodynamics, Gas Power Cycles, Vapour Power Cycles, Refrigeration Cycles,
Reciprocating Compressors, Compressible Flows and Steam Nozzles.
The objective of
this course note is to survey practical and theoretical problems in classical
thermodynamics. Topics covered includes: Thermodynamic system and control
volume, Properties and state of a substance, Properties of a pure substance,
Work and heat, The first law of thermodynamics, First law analysis for a control
volume, The second law of thermodynamics, Entropy, Second law analysis for a
control volume, Cycles, Mathematical foundations.