This
note will concentrate on modern aspects of superconductivity. Topics covered
includes: Phenomenology of High Tc Cuprates, Symmetry Aspects of Unconventional
Superconductivity, Symmetry Aspects of Unconventional Superconductivity,
Fundamentals and Applications of ARPES, Superconducting Qubits, Modern Aspects
of Superconductivity, Superconductors Near the Mott Transition, Neutron and
X-Ray Scattering Studies of Superconductors, Magnetism and Superconductivity,
Theory of Superconductivity, Iron-Based Superconductors, Optical Properties of
Superconductors, Topological Superconductivity.
This note will introduce the theory,
design, field quality measurements and analysis of superconducting accelerator
magnets. New type of magnet designs for future magnets will also be introduced.
Author(s): Ramesh
Gupta, Animesh Jain and Carl Goodzeit
This note provides a
phenomenological approach to superconductivity, with emphasis on superconducting
electronics. Topics covered include: electrodynamics of superconductors,
London's model, flux quantization, Josephson Junctions, superconducting quantum
devices, equivalent circuits, high-speed superconducting electronics, and
quantized circuits for quantum computing.
This
note will concentrate on modern aspects of superconductivity. Topics covered
includes: Phenomenology of High Tc Cuprates, Symmetry Aspects of Unconventional
Superconductivity, Symmetry Aspects of Unconventional Superconductivity,
Fundamentals and Applications of ARPES, Superconducting Qubits, Modern Aspects
of Superconductivity, Superconductors Near the Mott Transition, Neutron and
X-Ray Scattering Studies of Superconductors, Magnetism and Superconductivity,
Theory of Superconductivity, Iron-Based Superconductors, Optical Properties of
Superconductors, Topological Superconductivity.
This note
explains the following topics: Phenomenological Theories of Superconductivity,
Applications of Ginzburg-Landau Theory, Response, Resonance, and the Electron
Gas, Screening and Dielectric Response, BCS Theory of Superconductivity,
Applications of BCS Theory.
These lectures
are an introduction to those superconductors, all discovered since the 1970s,
which do not appear to be well described by the traditional BCS theory. Topics
covered includes: Reminders of the BCS theory, Superfluid 3 He: basic
description, Definition and diagnostics of exotic superconductivity, Non-cuprate
exotic superconductivity, Cuprates: generalities, and normal state properties,
Exotic superconductivity.