Functional Programming Lecture Notes by David Walker
Functional Programming Lecture Notes by David Walker
Functional Programming Lecture Notes by David Walker
David
Walker's 'Functional Programming Lecture Notes' give quite an extended
introduction to functional programming using OCaml. The notes introduce the
reader to the very basics of OCaml and simple manipulations of data, from
thinking in recursion to problem-solving. It covers Polymorphism and
Higher-Order programming, commonly referred to as PolyHO. It will discuss
functions operating on other functions and even data. Pipelines and datatypes
have been explained purely from functional programming paradigms. It first
introduces the functional evaluation model and functional space model, thereby
introducing the reader to the theoretical points of view of functional
programming. Equational reasoning, modules, functors, and modular reasoning are
other topics treated within this context, while more practical aspects concern
mutable data structures, threads, and parallel complexity models. This book will
no doubt be very useful to those readers who would wish to become acquainted
with both the theory and practice of functional programming.
This
is a resource provided by Loyola Marymount University on functional programming.
It starts with a basic explanation and goes further into how one can make a
shift from imperative programming to functional. The key topics it covers are
higher-order functions, which are the backbone for doing functional programming
in order to write abstract code reuse. This paper describes closures and purity,
including side effects, in detail to apprise the reader about the value of
immutability and functional purity. It describes both the functional and
object-oriented programming paradigms, then it points to point-free programming,
and concludes with an overview of the functional programming landscape. This
should be a good reference for students and practitioners alike who want to know
about the basics in functional programming and its theoretical underpinnings.
David
Walker's 'Functional Programming Lecture Notes' give quite an extended
introduction to functional programming using OCaml. The notes introduce the
reader to the very basics of OCaml and simple manipulations of data, from
thinking in recursion to problem-solving. It covers Polymorphism and
Higher-Order programming, commonly referred to as PolyHO. It will discuss
functions operating on other functions and even data. Pipelines and datatypes
have been explained purely from functional programming paradigms. It first
introduces the functional evaluation model and functional space model, thereby
introducing the reader to the theoretical points of view of functional
programming. Equational reasoning, modules, functors, and modular reasoning are
other topics treated within this context, while more practical aspects concern
mutable data structures, threads, and parallel complexity models. This book will
no doubt be very useful to those readers who would wish to become acquainted
with both the theory and practice of functional programming.
These lecture notes by Piyush
P Kurur elaborates on various functional programming topics in depth. The
contents of the following topics are functional programming-introduction,
pattern matching, and some useful algorithms like The Sieve of Eratosthenes and
the Fibonacci Series. Advanced topics include folding of lists, lambda calculus,
modules, type inference, and type classes. Examples of practical applications,
such as an expression evaluator and functions with variable arguments, will
provide learners with a sense of how theoretical material might be applied in
real-world situations. These detailed lecture notes are intended for readers who
would like to go through functional programming in depth - both explanations and
exercises.
This course note, from the
University of Edinburgh and offered online, emphasizes from a very practical
point of view how to apply basic functional programming concepts in a graphical
environment. Major topics to be covered include recursion, abstraction,
higher-order functions, and several different data types-how all these concepts
can be used to solve problems is demonstrated. The note introduces theoretical
aspects but underlines their practical relevance by showing how these can be put
into practice within graphical programming contexts. Learners develop a solid,
theoretically based understanding of functional programming principles and get
real practical experience applying these principles to graphical applications.
This resource takes an integrated approach in the way that it interrelates
theory and practice, hence acting as a bridge from concepts of functional
programming to real-life practice.