Computer Science BooksArtificial Intelligence Books

Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Dr. A.S. The PDF of Prashant Kumar's paper titled Lecture Notes On Artificial Intelligence provides an in-depth analysis of the basic concepts of AI. It begins with AI Techniques which introduce the techniques used in artificial intelligence. The notes include Level of the Model, detailing the various levels of abstraction in AI systems. Problem space and search include problem definition as a state space search and associated methods. Processes are analyzed, including their problem characteristics and product characteristics. The book addresses research design issues and presents heuristic search methods such as generate-and-test, hill climbing, best-first search, problem-reduction, constraint satisfaction, and means-end analysis in this Symbolic Reasoning Under Uncertainty and Game Playing this outcome was also discussed, showing the role of AI in strategic decision making. Finally, learning: learning by imagination is discussed, focusing on the fundamentals of how AI systems acquire knowledge through repetition.

Author(s):

s128 Pages
Similar Books
Lecture note on Artificial Intelligence

Lecture note on Artificial Intelligence

St. Ann Engineering and Technology 'Lecture Notes on Artificial Intelligence' provides a comprehensive introduction to basic AI concepts. It begins with an introduction to AI and product design, lays the foundation for understanding the fundamentals and fundamental structure of artificial intelligence and then the presentation delves into the knowledge base, drawing the focus is on how information is structured and used in AI systems. It explores the Definition of Knowledge through Predicate Logic, and explains how formal logic is used to represent complex information and relationships. The section on knowledge measurement describes methods for extracting new information from existing knowledge about the AI system. The presentation is about systems and machine learning, about strategic decision-making methods and adaptive learning in AI. Finally, it discusses expert systems and metaknowledge, explores advanced systems designed to mimic human knowledge, and examines the role of higher-order knowledge in AI applications. This resource provides a comprehensive overview of important AI topics spanning both theoretical and practical aspects of the field.

s173 Pages
Digital notes on Artificial Intelligence

Digital notes on Artificial Intelligence

Department of Information Technology's 'Digital Notes on Artificial Intelligence' at Malla Reddy College of Engineering and Technology provides a comprehensive overview of AI concepts. It begins with an introduction to AI, setting up more advanced topics . The essays include a variety of search methods, including A Search, and overcome challenges such as partial discovery searches. Techniques such as Alpha-Beta Pruning have been introduced in order to optimize the search process. The text explores ways of understanding including forward and backward chains, and delves into the syntax and semantics of first-order meaning. This includes all knowledge technologies, decision-making, and classical planning including state space exploration. In addition, it involves practice in random environments, multidimensional design, probabilistic reasoning using Bayes rules, Bayesian networks, Dempster-Shafer theorem The presentation goes on to say useful things on such as learning decision trees and the importance of knowledge in curriculum design.

s143 Pages
Artificial Intelligence and Games

Artificial Intelligence and Games

The PDF entitled Artificial Intelligence and Games, by Georgios N. Yannakakis and Julian Togelius explores the integration of AI techniques in the game industry. It begins with an overview of AI Methods, describing the basic algorithms and techniques that it is used in a gaming environment. The paper then explores various ways in which AI can be used in games, including game improvement and enhancing player interaction. The game as a game focuses on how AI can be used to control the characters and have intelligent opponents. It covers information on Generating Content, techniques for creating dynamic and customized game environments and levels. Player modeling describes methods for understanding and predicting player behavior to shape game experiences. The Game AI Panorama section provides a comprehensive overview of current trends and applications in Game AI. Finally, Frontiers of Game AI Research explores emerging topics and future directions in the field, highlighting new areas of research.

s359 Pages
Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Dr. A.S. The PDF of Prashant Kumar's paper titled Lecture Notes On Artificial Intelligence provides an in-depth analysis of the basic concepts of AI. It begins with AI Techniques which introduce the techniques used in artificial intelligence. The notes include Level of the Model, detailing the various levels of abstraction in AI systems. Problem space and search include problem definition as a state space search and associated methods. Processes are analyzed, including their problem characteristics and product characteristics. The book addresses research design issues and presents heuristic search methods such as generate-and-test, hill climbing, best-first search, problem-reduction, constraint satisfaction, and means-end analysis in this Symbolic Reasoning Under Uncertainty and Game Playing this outcome was also discussed, showing the role of AI in strategic decision making. Finally, learning: learning by imagination is discussed, focusing on the fundamentals of how AI systems acquire knowledge through repetition.

s128 Pages