This
multi-topic resource covers key spectroscopy techniques used in the analysis of
molecular and atomic systems. The note encompasses a detailed introduction to
electronic spectroscopy, IR spectroscopy, and NMR spectroscopy, including both
proton and carbon types, mass spectrometry, electron spin resonance (ESR), and
Mössbauer spectroscopy. There is also a detailed description of every technique
in its basic principles, experimental setup, and applications in different
fields like chemistry, materials science, and biochemistry. The note also
focuses on how these spectroscopic methods are applied to understand molecular
structures, chemical bonding, and dynamic processes. Perfect for students and
researchers, the book provides both a theoretical background and practical
insights into the more general applications of spectroscopy in modern scientific
research.
Author(s): Sathyabama Institute of Science and Technology
This note provides an overview of the principles and applications
of Laser-Induced Breakdown Spectroscopy, a powerful technique for elemental
analysis. Prof. Yalc discusses the physics that underlies LIBS, including the
formation and evolution of laser plasmas, and shows the components of a LIBS
system, including lasers, optics, and detection systems. The note explores
further the use of laser plasma excitation for spectrochemical analysis, which
is applicable to gases, liquids, solids, and particles. A special issue like
double pulse LIBS, resonance-enhanced LIBS, and laser-induced fluorescence (LIF-LIBS)
are also covered. The importance of this note lies in the recent advances and
applications in the areas of materials science as well as environmental
analysis.
This note
focuses on how spectroscopic techniques can be integrated to determine the
structure of unknown molecules. It starts off with an overview of the
electromagnetic spectrum and basic 1H NMR, moving on to much advanced discussion
about how NMR can be combined with other methods such as IR, UV, and mass
spectrometry for an overall structural analysis. It goes over chemical shifts of
protons, coupling constants, and the use of 2D NMR for obtaining detailed
structural information. Other topics discussed include multinuclear NMR, dynamic
NMR and conformational, as well as chemical exchange rates measurement. This
note is perfect for students and researchers who want to use several
spectroscopic methods in the determination of the structure of a compound.