Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
This note provides an overview of the principles and applications
of Laser-Induced Breakdown Spectroscopy, a powerful technique for elemental
analysis. Prof. Yalc discusses the physics that underlies LIBS, including the
formation and evolution of laser plasmas, and shows the components of a LIBS
system, including lasers, optics, and detection systems. The note explores
further the use of laser plasma excitation for spectrochemical analysis, which
is applicable to gases, liquids, solids, and particles. A special issue like
double pulse LIBS, resonance-enhanced LIBS, and laser-induced fluorescence (LIF-LIBS)
are also covered. The importance of this note lies in the recent advances and
applications in the areas of materials science as well as environmental
analysis.
This note aims to have a detailed
explanation of Nuclear Magnetic Resonance (NMR) spectroscopy focusing on its
applications in the study of molecular structure, especially proteins and other
biomolecules. Key topics explored include the electromagnetic spectrum, the
vector model of NMR, magnetization properties, and NMR excitation. The note
further introduces advanced concepts like chemical shift, nuclear shielding, and
spin-spin coupling as all forms necessary for interpreting NMR spectra. There
have been introductions of multi-dimensional NMR techniques that use them in
protein structure determination, and this book is very useful for researchers
and students to understand the theoretical and applied aspects of NMR
spectroscopy.
James Keeler's note on NMR spectroscopy is rather solid in presenting
principles of NMR along with its application to chemical structure analysis. It
covers key topics like energy levels involved in NMR, the vector model, Fourier
transformation, and data processing. The note explains how NMR spectrometers
work and introduces more advanced techniques like two-dimensional NMR, which
permits the analysis of far more detailed complex molecular structures.
Additional topics covered include relaxation processes, phase cycling, and
gradient pulses to give a full understanding of NMR spectroscopy to students and
researchers looking to master this powerful analytical tool.