Dynamics
is the study of motion through phase space. The phase space of a given
dynamical system is described as an N-dimensional manifold, M. The topics
covered in this pdf are: Reference Materials, Dynamical Systems,
Bifurcations, Two-Dimensional Phase Flows, Nonlinear Oscillators,
Hamiltonian Mechanics, Maps, Strange Attractors, and Chaos, Ergodicity and
the Approach to Equilibrium, Front Propagation, Pattern Formation, Solitons,
Shock Waves.
Author(s): Daniel
Arovas, Department of Physics, University of California, San Diego
This note describes the following topics: Equation of motion, Equations of motion for an inviscid fluid,
Bernoulli equation, The vorticity field, Two dimensional flow of a homogeneous,
incompressible, inviscid fluid and boundary layers in nonrotating fluids.
Dynamics
is the study of motion through phase space. The phase space of a given
dynamical system is described as an N-dimensional manifold, M. The topics
covered in this pdf are: Reference Materials, Dynamical Systems,
Bifurcations, Two-Dimensional Phase Flows, Nonlinear Oscillators,
Hamiltonian Mechanics, Maps, Strange Attractors, and Chaos, Ergodicity and
the Approach to Equilibrium, Front Propagation, Pattern Formation, Solitons,
Shock Waves.
Author(s): Daniel
Arovas, Department of Physics, University of California, San Diego
This note explains the following topics: Introduction to the
dynamics and vibrations of lumped-parameter models of mechanical systems,
Work-energy concepts, Kinematics, Force-momentum formulation for systems of
particles and rigid bodies in planar motion, Lagrange's
equations for systems of particles and rigid bodies in planar motion,
Virtual displacements and virtual work, Linearization of equations of
motion, Linear stability analysis of mechanical systems.
Author(s): Prof. Nicholas Hadjiconstantinou, Prof. Peter So, Prof. Sanjay Sarma and Prof.
Thomas Peacock
Molecular dynamics is a
computer simulation technique where the time evolution of a set of interacting
particles is followed by integrating their equation of motion. Topics covered
includes: Classical mechanics, Statistical averaging, Physical models of the
system, The time integration algorithm, Average properties, Static properties,
Dynamic properties.
This note explains the
following topics: Mechanisms, Gruebler’s equation, inversion of mechanism,
Kinematics analysis, Inertia force in reciprocating parts, Friction clutches,
Brakes and Dynamometers, Gear trains.
This note covers the
following topics: Kinematics of Particles, Rectilinear, Curvilinear x-y,
Normal-tangential n-t, Polar r-theta, Relative motion, Force Mass Acceleration,
Work Energy, Impulse Momentum, Kinematics of Rigid Bodies, Rotation, Absolute
Motion, Relative Velocity, Relative Acceleration, Motion Relative to Rotating
Axes, Force Mass Acceleration and Kinetics of Rigid Bodies.