Computer Science Bookscomputer algorithm Books

Advanced Algorithms by Prof. Michel Goemans

Advanced Algorithms by Prof. Michel Goemans

Advanced Algorithms by Prof. Michel Goemans

Advanced Algorithms" by Prof. Michel Goemans is an advanced-level text focused on sophisticated algorithmic methods for doctoral students and researchers. Advanced subjects like Fibonacci heaps, network flows, and dynamic trees are explained in detail, together with linear programming-the Goldberg-Tarjan min-cost circulation algorithm, approximation algorithms, max-cut problems, and conic programming. Goemans explains such advanced concepts in great detail, merging theory and practice. This text will be useful for anyone interested in deeply understanding modern algorithms and how they may be implemented and includes a conceptual framework for rigorous solutions to complex computational problems.

Author(s):

sNA Pages
Similar Books
Advanced Algorithms by BMS College of Engineering

Advanced Algorithms by BMS College of Engineering

This PDF deals with some advanced topics in the design of algorithms, focusing on Dynamic Programming. The application domains of DP are discussed and cover classic problems, including Matrix Chain Multiplication, that is, finding an optimal order to multiply many matrices, and Rod Cutting, which is just a typical 4-inch rod problem. Its notes include insights into the steps of DP, its recursive tree structures, and problem-solving through the bottom-up approach. The wide de-balcony of these topics helps the reader understand how DP can be applied to a variety of optimization problems and demonstrates both theoretical and practical aspects of algorithm design.

s152 Pages
Advanced Algorithms by Anupam Gupta

Advanced Algorithms by Anupam Gupta

These all are very extensive notes on fairly advanced topics in algorithms—both theoretical and practical. Here we deal with discrete algorithms for minimum spanning trees, arborescences (directed spanning trees), dynamic algorithms for problems in graph connectivity, and the shortest path. Other topics discussed in the paper are the combinatorial, algebraic algorithms for graph matching techniques and their corresponding challenges developed within high-dimensional spaces via the technique of dimension reduction and streaming algorithms. Other topics but not triangulated within include the approximate max-flows, online learning, and interior-point methods. The notes thus present a framework in its totality for learning and analyzing super advanced algorithms and thus become a good source to glean insights for an ocean of problems in computer science.

s309 Pages
Lecture Notes On Design And Analysis Of Algorithms

Lecture Notes On Design And Analysis Of Algorithms

Lecture Notes on Design and Analysis of Algorithms by Mr. S.K. Sathua, Dr. M.R. Kabat, and Dr. R. Mohanty, published November 14, 2020, is an 80-page document that provides a vital summary of some of the significant notions of algorithms. It first of all provides the basics of the growth of functions and recurrences, while techniques for the solution of these recurrences include substitution and recursion trees. These notes introduce the Master Method for analyzing divide and conquer algorithms and provide worst-case analysis of merge sort, quick sort, and binary search. Other topics it covers are heaps, heap sort, priority queues, and sorting lower bounds, thus proving very valuable for comprehending core principles in algorithm analysis and design.

s80 Pages
Design And Analysis Of Algorithms by Herbert Edelsbrunner

Design And Analysis Of Algorithms by Herbert Edelsbrunner

Design and Analysis of Algorithms is a book by Herbert Edelsbrunner that gives a detailed description of the basic principles and techniques of algorithms. The book offers basic data structures and some graph algorithms, making it one of the best platforms to understand how to design and analyze algorithms. It emphasizes the developers developing a good and efficient algorithm, followed by the analysis of complexity. It contains basic data structures such as trees, graphs, and several strategies of algorithmic problem-solving. Edelsbrunner's approach in the text marries theoretical insights with the practical details that are absolutely necessary to implement his algorithms. So, his book will be of great use to students, researchers, and practitioners concerned with algorithms in computer science. The book will help the readers to incite strong skills in algorithmic techniques and their applications and create an overview necessary for a deeper understanding of computational efficiency and problem solving.

s95 Pages
Advanced Algorithms Lectures by Shuchi Chawla

Advanced Algorithms Lectures by Shuchi Chawla

Advanced Algorithms Lectures by Shuchi Chawla give an insight into advanced techniques in the design and analysis of algorithms. The lectures cover topics such as greedy algorithms, dynamic programming, and network flow applications. Advanced topics, including randomized algorithms and Karger's min-cut algorithm, NP-completeness, together with linear programming, primal-dual algorithms, and semi-definite programming, are discussed. Chawla also deals with models like Probably Approximately Correct (PAC) and boosting within this framework. This set of lectures comprehensively covers advanced algorithmic methodologies along with their applications and constitutes an excellent resource for students and researchers interested in advanced classes of algorithmic techniques and their applications to pressing real-world problems.

s195 Pages
Approximation Algorithms

Approximation Algorithms

The lecture notes on Approximation Algorithms by Shuchi Chawla focus on techniques of designing algorithms that produce near-optimal solutions to complex optimization problems for which finding an exact solution is computationally infeasible. These lecture notes cover general underlying techniques of approximation algorithms, comprising basic building blocks and the foundation needed to deal with problems which are difficult to solve exactly due to computational complexity. These notes by Chawla provide an outline of various methods for approaching different optimization problems and ways of solving them when exact algorithms are not practical. Further, this resource is likely to be extremely helpful with respect to devising and applying approximation algorithms returning good solutions within a reasonable amount of time; hence, this is a must for scholars and practitioners faced with hard optimization problems.

sNA Pages