Computer Science BooksArtificial Intelligence Books

Introduction to Artificial Intelligence by Marc Toussaint

Introduction to Artificial Intelligence by Marc Toussaint

Introduction to Artificial Intelligence by Marc Toussaint

Mark Toussaint's 'Introduction to Artificial Intelligence' provides a comprehensive overview of basic and advanced AI concepts. The text delves into research design, probability theory, and the multi-armed robber problem, laying a solid foundation for understanding decision-making processes It requires Monte Carlo Tree Search and games theoretically, providing insight into the process of solving problems. The book talks about dynamic design and reinforcement learning, and shows how AI workers learn and adapt over time. Other topics include constraint satisfaction problems, graphical modeling, and dynamic simulation, highlighting various approaches to dealing with complex, interacting fields The text addresses AI and machine learning and neural network management focusing on the importance of AI presentation Both the theoretical and practical aspects of the I Provides a suitable ground.

Author(s):

s248 Pages
Similar Books
Introduction to Artificial Intelligence by Marc Toussaint

Introduction to Artificial Intelligence by Marc Toussaint

Mark Toussaint's 'Introduction to Artificial Intelligence' provides a comprehensive overview of basic and advanced AI concepts. The text delves into research design, probability theory, and the multi-armed robber problem, laying a solid foundation for understanding decision-making processes It requires Monte Carlo Tree Search and games theoretically, providing insight into the process of solving problems. The book talks about dynamic design and reinforcement learning, and shows how AI workers learn and adapt over time. Other topics include constraint satisfaction problems, graphical modeling, and dynamic simulation, highlighting various approaches to dealing with complex, interacting fields The text addresses AI and machine learning and neural network management focusing on the importance of AI presentation Both the theoretical and practical aspects of the I Provides a suitable ground.

s248 Pages
Digital Notes on Artificial Intelligence by Sri Indu College of Engineering and Technology

Digital Notes on Artificial Intelligence by Sri Indu College of Engineering and Technology

Sri Indu College of Engineering Technology, Digital Notes on Artificial Intelligence provides a focused overview of basic AI concepts. The book begins with problem solving through analysis, teaching algorithms and methods for effective implementation and execution difficult problem solving. It then discusses knowledge and reasoning, discusses methods of representation, and introduces logical reasoning to support intelligent decision-making. The section on classical planning examines sequential strategies for achieving specific goals, with an emphasis on structured approaches to problem solving. Finally, comments on knowledge and learning deficits are discussed, focusing on ways to deal with incomplete or ambiguous information and options that AI systems can take to improve their performance improve over time This resource provides a clear and well-structured introduction to important AI topics, built on computer science technology It should provide a solid foundation for students and professionals.

s140 Pages
Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P. Trappenberg provides a comprehensive insight into AI concepts, presented by Dalhousie University. The essay begins with an introduction and history, providing a foundation for the development of AI , It includes research designs and their applications, followed by Robotics and Motion Planning, which are robotic While exploring the integration of AI in the design, the paper delves into constraint satisfaction problems, dealing with solution methods handles complex constraints, including learning machines and perceptrons, and improves with regression, classification , and maximum likelihood techniques support vector machines, learning theory, and naive Bayes and other generative models, probabilistic reasoning is also available, including Bayesian networks and Markov models Overview of essential AI methods and applications.

s208 Pages
Explorations in Artificial Intelligence and Machine Learning

Explorations in Artificial Intelligence and Machine Learning

Professor Roberto V. Jikari's PDF titled 'Exploring Artificial Intelligence and Machine Learning' provides a comprehensive overview of key concepts in AI and ML It begins with an introduction to machine learning, with algorithms and methods that it begins to include. The paper then examines The Bayesian Approach to Machine Learning, emphasizing theoretical possibilities and statistical methods. It provides a comprehensive review of Hidden Markov Models, and explains their use in sequential forecasting. The introduction to reinforcement learning is about how employees learn optimal behavior through interaction with their environment. Deep Learning for Feature Representation discusses advanced techniques for extracting meaningful features from data using deep networks. The section on Neural Networks and Deep Learning explores neural network design and training in detail. Finally, the text discusses AI in general, focusing on the challenges and implications of building highly intelligent machines.

s178 Pages