This is an exhaustive PDF written by Lars Elden, Linde Wittmeyer-Koch,
and Hans Bruun Nielsen. In fact, this really is an exemplary introduction to
numerical computation. The text begins with the basics like error analysis and
computer arithmetic, which gives a very solid ground for the origin and handling
of numerical errors. It proceeds further to explain more basic topics related to
function evaluation, solutions of nonlinear equations, and interpolation
techniques. Next, it describes procedures for improving numerical estimates
using differentiation and Richardson extrapolation. This is followed by full
details of integration, systems of linear equations, and approximation. Finally,
ordinary differential equations complete a thorough course of study that will
prepare the reader with both the theory and practice that will serve in carrying
out numerical computations.
Author(s): Lars Elden, Linde Wittmeyer-Koch, Hans
Bruun Nielsen
This
PDF is prepared by Gonzalo Galiano Casas and Esperanza Garcia Gonzalo from the
Department of Mathematics at Oviedo University. With a view to keeping things
compact, this document initiates with finite arithmetic and error analysis,
which forms the basis necessary for understanding the issue of numerical
precision and limitations. It considers methods for nonlinear equations,
interpolation, and approximation. Key sections on numerical differentiation and
integration give hands-on tools both for data analysis and the solution of
mathematical problems. It also covers systems of linear equations and
optimization, rounding it out for students and practitioners who might want to
apply the numerical methods through a variety of problems.
Author(s): Gonzalo Galiano Casas, Esperanza Garcia Gonzalo, Dept. of Mathematics, Oviedo University
This
note introduces elementary programming concepts including variable types, data
structures, and flow control. After an introduction to linear algebra and
probability, it covers numerical methods relevant to mechanical engineering,
including approximation, integration, solution of linear and nonlinear equations, ordinary
differential equations, and deterministic and probabilistic approaches.
Author(s): Prof.
Anthony T. Patera, Prof. Daniel Frey and Prof. Nicholas Hadjiconstantinou
This book is a technical
reference to the floating-point environment supported on SPARCTM and x86
platforms running under the Solaris operating system. The book describes the
Floating-Point Environment, the representation and computation of floating point
numbers and how the results of arithmetic operations are rounded. The Software
and Hardware Support section describes how numerical operations are passed
between the hardware and software of the system. The book should be
indispensable to anyone seeking an understanding of how numerical computations
are executed and optimized on Solaris systems. In particular, it will be an
asset worth having in real life for developers and engineers working in the
field of numerical algorithms within this particular environment of computing
and offers a deep view into performance and accuracy considerations.
This
lecture series provides comprehensive foundational knowledge in the field of
numerical computational analysis. Numerical Linear Algebra covers basic matrix
operations and solutions of linear systems. The book further goes into the
Solution of Nonlinear Equations that shows methods for solving equations which
are not linear in form. Finally, it discusses Approximation Theory, showing how
functions and data may be approximated. The lectures also cover Numerical
Solution of ODEs and PDEs, giving ways to solve these two basic kinds of
equations. This resource is intended for students and professionals looking to
gain a solid understanding of basic and applied numerical analysis techniques.