Computer Science BooksNumerical Computation Books

Numerical Computation Guide

Numerical Computation Guide

Numerical Computation Guide

This book is a technical reference to the floating-point environment supported on SPARCTM and x86 platforms running under the Solaris operating system. The book describes the Floating-Point Environment, the representation and computation of floating point numbers and how the results of arithmetic operations are rounded. The Software and Hardware Support section describes how numerical operations are passed between the hardware and software of the system. The book should be indispensable to anyone seeking an understanding of how numerical computations are executed and optimized on Solaris systems. In particular, it will be an asset worth having in real life for developers and engineers working in the field of numerical algorithms within this particular environment of computing and offers a deep view into performance and accuracy considerations.

Author(s):

sNA Pages
Similar Books
Introduction to Numerical Computation

Introduction to Numerical Computation

This is an exhaustive PDF written by Lars Elden, Linde Wittmeyer-Koch, and Hans Bruun Nielsen. In fact, this really is an exemplary introduction to numerical computation. The text begins with the basics like error analysis and computer arithmetic, which gives a very solid ground for the origin and handling of numerical errors. It proceeds further to explain more basic topics related to function evaluation, solutions of nonlinear equations, and interpolation techniques. Next, it describes procedures for improving numerical estimates using differentiation and Richardson extrapolation. This is followed by full details of integration, systems of linear equations, and approximation. Finally, ordinary differential equations complete a thorough course of study that will prepare the reader with both the theory and practice that will serve in carrying out numerical computations.

s383 Pages
Numerical Computation by Peter Bastian

Numerical Computation by Peter Bastian

Numerical Topics in Fluid Dynamics Computation!!! Peter Bastian Authored - This PDF covers advanced numerical computation topics but puts more emphasis on the solution of computational fluid dynamics. The book starts with the modeling of immiscible fluid flow in a composite porous medium, thus laying down the basics for the equations of multiphase fluid flow. It then provides fully implicit methods that have been used to find the finite volume discretization of systems for complex algebraic equations. Two important chapters are the parallelization methods that result in higher productivity of computation and the UG framework used for carrying out grid computations. Numerical results are then presented, which allow deriving some conclusions concerning practical applications and performance. The document will be particularly useful to researchers and engineers studying computational fluid dynamics and related numerical modeling problems.

s236 Pages
Applied Numerical Computing

Applied Numerical Computing

Prof. L. Vandenberghe's lecture note is on applied numerical computing but brings out the practical application aspect. The text covers most areas of numerical linear algebra, nonlinear optimization nonlinear least squares, introduction to floating-point numbers, and rounding errors that are to be needed for understanding the issues of numerical precision. Examples are drawn from signal and image processing, control systems, and machine learning, among other areas, to indicate how these numerical methods are actually applied. This resource aims to fill the gap between theory and practice by providing a practical method for solving computational problems.

sNA Pages
Lectures in Basic Computational Numerical Analysis (PDF 168P)

Lectures in Basic Computational Numerical Analysis (PDF 168P)

This lecture series provides comprehensive foundational knowledge in the field of numerical computational analysis. Numerical Linear Algebra covers basic matrix operations and solutions of linear systems. The book further goes into the Solution of Nonlinear Equations that shows methods for solving equations which are not linear in form. Finally, it discusses Approximation Theory, showing how functions and data may be approximated. The lectures also cover Numerical Solution of ODEs and PDEs, giving ways to solve these two basic kinds of equations. This resource is intended for students and professionals looking to gain a solid understanding of basic and applied numerical analysis techniques.

s168 Pages