Computer Science BooksArtificial Intelligence Books

Techniques in Artificial Intelligence

Techniques in Artificial Intelligence

Techniques in Artificial Intelligence

This note provides an introduction to artificial intelligence. Topics covered include: representation and inference in first-order logic, modern deterministic and decision-theoretic planning techniques, basic supervised learning methods, and Bayesian network inference and learning.

Author(s):

sNA Pages
Similar Books
Introduction to Artificial Intelligence by Marc Toussaint

Introduction to Artificial Intelligence by Marc Toussaint

Mark Toussaint's 'Introduction to Artificial Intelligence' provides a comprehensive overview of basic and advanced AI concepts. The text delves into research design, probability theory, and the multi-armed robber problem, laying a solid foundation for understanding decision-making processes It requires Monte Carlo Tree Search and games theoretically, providing insight into the process of solving problems. The book talks about dynamic design and reinforcement learning, and shows how AI workers learn and adapt over time. Other topics include constraint satisfaction problems, graphical modeling, and dynamic simulation, highlighting various approaches to dealing with complex, interacting fields The text addresses AI and machine learning and neural network management focusing on the importance of AI presentation Both the theoretical and practical aspects of the I Provides a suitable ground.

s248 Pages
Lecture note on Artificial Intelligence

Lecture note on Artificial Intelligence

St. Ann Engineering and Technology 'Lecture Notes on Artificial Intelligence' provides a comprehensive introduction to basic AI concepts. It begins with an introduction to AI and product design, lays the foundation for understanding the fundamentals and fundamental structure of artificial intelligence and then the presentation delves into the knowledge base, drawing the focus is on how information is structured and used in AI systems. It explores the Definition of Knowledge through Predicate Logic, and explains how formal logic is used to represent complex information and relationships. The section on knowledge measurement describes methods for extracting new information from existing knowledge about the AI system. The presentation is about systems and machine learning, about strategic decision-making methods and adaptive learning in AI. Finally, it discusses expert systems and metaknowledge, explores advanced systems designed to mimic human knowledge, and examines the role of higher-order knowledge in AI applications. This resource provides a comprehensive overview of important AI topics spanning both theoretical and practical aspects of the field.

s173 Pages
Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P. Trappenberg provides a comprehensive insight into AI concepts, presented by Dalhousie University. The essay begins with an introduction and history, providing a foundation for the development of AI , It includes research designs and their applications, followed by Robotics and Motion Planning, which are robotic While exploring the integration of AI in the design, the paper delves into constraint satisfaction problems, dealing with solution methods handles complex constraints, including learning machines and perceptrons, and improves with regression, classification , and maximum likelihood techniques support vector machines, learning theory, and naive Bayes and other generative models, probabilistic reasoning is also available, including Bayesian networks and Markov models Overview of essential AI methods and applications.

s208 Pages
Machine Learning Advanced Techniques and Emerging Applications

Machine Learning Advanced Techniques and Emerging Applications

Hamed Farhadi's online book Machine Learning: Advanced Techniques and Emerging Applications" explores the latest developments in machine learning and their various applications It explores recent developments in machine learning techniques, and focuses on how these innovations are changing various industries. The book emphasizes the integration of these techniques into smart cities, where machine learning enhances urban management and infrastructure through data-driven solutions This includes the role of automation in, including how advanced algorithms simplify manufacturing, improve efficiency and enable customization In terms of providing details , the text explores the role of machine learning in emerging industries, and shows how startups and innovations can use these technologies to gain competitive advantage and drive innovation. Overall, the book provides a comprehensive overview of how advanced machine learning techniques are being used in various .

sNA Pages