This lecture note covers the following topics:
Points and Lines, Vectors, Points, and Column Matrices, Matrix Addition, Vector
Addition, Vector Length, Vector Direction, Scaling and Unit Vectors, The Dot
Product, Length and the Dot Product, The Angle between Two Vectors, The Angle
between 3D Vectors, Projecting one Vector onto Another, Vector Cross Product,
Matrices and Simple Matrix Operations, Matrix-Column Matrix Multiplicaton,
Matrix-Matrix Multiplication and Identity Matrix and Matrix Inverse.
This
comprehensive lecture note by Prof. Vijay M. Shekat comprehensively explains the
basics that surround the fundamental concepts in computer graphics. The basics
of computer graphics, such as the principles and application of graphics
primitives, are explained-entities required to display a picture. The note
throws light on the 2D transformations and viewing techniques that form an
important approach toward manipulating and displaying two-dimensional graphics.
The text also covers 3D concepts and object representation, which are important
in acquiring knowledge about the complexity of three-dimensional modeling. The
discussion covers 3D transformations and viewing, and a deep view is taken in
how objects are manipulated and viewed in three-dimensional space. Advanced
topics are also covered and may include recent developments and sophisticated
techniques of computer graphics, making this note very useful for students and
professionals who want to learn both the basics and the advanced aspects of the
subject.
The
book of Bindiya Patel from Biyani College Jaipur provides a more organized
way of approaching the concept of computer graphics. The notes start with
discussing graphics applications and raster graphics, hence laying a foundation
of how images are created and manipulated on digital systems. Key topics that
will be discussed include transformations-essential processes to change
graphical objects-and output primitives-the basic elements used in drawing. Some
of the notes also cover clipping algorithms, which are very important in showing
only visible parts of the graphics. It explains the different methods for
visible surface detection, answering how a particular surface in a scene would
be visible or invisible. It also describes curves and surfaces-important in the
case of higher degree shapes-and briefly describes image processing to integrate
computer graphics with other visual technologies.
The
set of lecture notes provides an overview of some important topics related to
computer graphics. It starts with the application of computer graphics,
extending to various areas where graphical techniques are indispensable. The
lecture notes discuss the basic algorithms for drawing lines like Bresenham's
algorithm and go further to give details on two-dimensional transformation, such
as scaling, rotation, and translation. Concepts about 2D viewing and
representation of 3D objects with their transformation have been discussed. This
is done by explaining methods for visible-surface detection. Finally, an
understanding of some general concepts of the way dynamic visual content is
produced and manipulated in computer animation is provided.
This
note is concentrated on computer graphics, integrated with multimedia,
applications, and systems. It covers basic graphics system architecture and the
output primitives that are commonly used to display images. Also, it explains
the basic two-dimensional geometric transformations and viewing techniques,
three-dimensional object representation, and transformation. The illumination
model and methods of rendering surfaces will also be discussed to highlight how
the properties of light and material result in visual appearance. It also covers
topics relevant to the multimedia components-digital audio and digital
images-since working with graphics now increasingly involves their integration
in a combined fashion for multimedia presentation.
Author(s): Sri Ramesh Chandra Sahoo,Smt. Sumitra
Mahapatra, Ms. Sasmita Panigrahi
Notes
from Seoul National University, this set provides an excellent introduction to
some of the more theoretical and practical aspects of computer graphics. It
covers the more basic areas of scan conversion and clipping - both important
areas in rendering and image processing. Detailed discussions on Windows
programming, sampling techniques, 2D and 3D geometric transformations, and
viewing methods are included. The curriculum also covers DirectX for device
creation and vertex rendering, hidden surface removal, and matrix usage. It
considers texture mapping and lighting, curve, and surface modeling. The
material gains a good understanding of both fixed and programmable pipelines and
thus would be useful to students and professionals interested in practical
implementation related to computer graphics technologies.
These
lecture notes, by Prof. Wojciech Matusik and Prof. Fredo Durand, summarize the
algorithms, software, and hardware used in computer graphics. The notes will
introduce essential concepts: ray tracing and the graphics pipeline, to render
realistic images. Further, various transformations will be introduced, along
with the generation of shadows and texture mapping. Further topics in the
curriculum include methods of sampling, global illumination, and splines in
order to give a wide view on rendering and image synthesis, while animation and
color theory are added to the completion of visual representation understanding.
These notes are ideal for those seeking indepth studies of advanced graphics
techniques and their applications, from basic principles to complex rendering
and illumination models.
Author(s): Prof. Wojciech Matusik and Prof.
Fredo Durand