This note covers
the following topics: introduction to biomechanics, what is biomechanics,
anatomical terminology, mechanical terminology, vectors, vertical jump,
mechanics in biomechanics, linear kinetics, linear kinematics, projectile
motion, projectile motion examples, angular kinematics, angular kinetics, center
of gravity, anatomical biomechanics, biomechanics of biological material,
biomechanics of the skeletal system, biomechanics of joints, biomechanics of
tendons and ligaments, biomechanics of the muscular system.
This PDF covers the following topics
related to Biomechanics in Sport : Muscle Action in Sport and Exercise,
Locomotion, Jumping and Aerial Movement, Throwing and Hitting, Injury Prevention
and Rehabilitation, Special Olympic Sports.
Biomechanics is
the study of the structure, function and motion of the mechanical aspects of
biological systems, at any level from whole organisms to organs, cells and cell
organelles, using the methods of mechanics. This PDF covers the following topics
related to Biomechanics : Fluid Mechanics, Human Locomotion, Hard
and Soft Tissue Mechanics, Kinesiology of Sports.
Author(s): Sathyabama Institute of Science and Technology
The first section of the book, General
notes on biomechanics and mechanobiology, comprises from theoretical
contributions to Biomechanics often providing hypothesis or rationale for a
given phenomenon that experiment or clinical study cannot provide. It deals with
mechanical properties of living cells and tissues, mechanobiology of fracture
healing or evolution of locomotor trends in extinct terrestrial giants. The
second section, Biomechanical modelling, is devoted to the rapidly growing field
of biomechanical models and modelling approaches to improve our understanding
about processes in human body.
This note introduces the student to the fundamental tools,
techniques, and concepts employed in musculoskeletal biomechanics research.
Topics covered includes: History of Biomechanics, Viscoelasticity, Joint
Coordinate Systems, Cell Mechanics, Bone, Muscle, Joints, Spine, Hip, Shoulder,
and Elbow.
This course develops and applies scaling laws and
the methods of continuum mechanics to biomechanical phenomena over a range of
length scales. This lecture note explains the following topics: structure of
tissues and the molecular basis for macroscopic properties, chemical and
electrical effects on mechanical behavior, cell mechanics, motility and
adhesion, biomembranes, biomolecular mechanics and molecular motors.
Experimental methods for probing structures at the tissue, cellular, and
molecular levels will also be investigated.
Author(s): Prof. Roger D. Kamm, Prof.
Patrick Doyle and Maxine Jonas
This is a landmark
book because it shows the usefulness and importance of mechanics in the analysis
and understanding of animal behavior. As such it should be of interest and use
to individuals working in biomechanics as well as to the vertebrate zoologist
and comparative anatomist.