This note covers the following topics: What are Computer Graphics
and Image Processing, digital image, Image capture , Image display, Sampling,
Human visual system, Simultaneous contrast, Classifying colours, Colour vision,
Chromatic metamerism, Storing images in memory, Hermite cubic, Douglas and
Pucker’s algorithm, Clipping, Polygon filling, Clipping polygons, Bounding
boxes, Curves in 3D.
The
book of Bindiya Patel from Biyani College Jaipur provides a more organized
way of approaching the concept of computer graphics. The notes start with
discussing graphics applications and raster graphics, hence laying a foundation
of how images are created and manipulated on digital systems. Key topics that
will be discussed include transformations-essential processes to change
graphical objects-and output primitives-the basic elements used in drawing. Some
of the notes also cover clipping algorithms, which are very important in showing
only visible parts of the graphics. It explains the different methods for
visible surface detection, answering how a particular surface in a scene would
be visible or invisible. It also describes curves and surfaces-important in the
case of higher degree shapes-and briefly describes image processing to integrate
computer graphics with other visual technologies.
The
following textbook by Arignar Anna Government Arts and Science College gives an
overview of computer graphics systems in some detail. It begins with the overall
architecture of computer graphics systems in order to place into context how
such graphical applications are built and executed. Output primitives discussed
in this book are the basic elements used in constructing an image. Also, there
is a discussion about 2D geometric transformations for manipulating
two-dimensional objects. It contains parts on the graphical user interface and
the methods of interactive input that are very important when one is designing
graphics applications that should be friendly to users. Geometric and modeling
transformations concerning 3D graphics are dealt with in the book at the
description of how to create and modify three-dimensional objects. Hence, the
resource is helpful in studying both the basic issues of computer graphics
systems and its applications.
Author(s): Arignar Anna Government Arts and Science College,
Karaikal, Puducherry
The
set of lecture notes provides an overview of some important topics related to
computer graphics. It starts with the application of computer graphics,
extending to various areas where graphical techniques are indispensable. The
lecture notes discuss the basic algorithms for drawing lines like Bresenham's
algorithm and go further to give details on two-dimensional transformation, such
as scaling, rotation, and translation. Concepts about 2D viewing and
representation of 3D objects with their transformation have been discussed. This
is done by explaining methods for visible-surface detection. Finally, an
understanding of some general concepts of the way dynamic visual content is
produced and manipulated in computer animation is provided.
The
following are the notes from Clinton L. Jeffery on aspects in both the
theoretical and practical aspects of computer graphics. An introduction to
hardware in graphics and frame buffers is given first, followed by the
description of line drawing techniques and the parameters for API. Next come
color indices, colormaps, and raster operations-forming the very basics
necessary to understand color and graphics management. These notes also extend
to the UI graphics primitives, region filling, and advanced concepts such as the
Golden Rectangle. There is great emphasis on OpenGL, GLU, and GLUT, which really
establishes modern graphics programming. Other topics involve the Phong shading
model, texture mapping, and 3D model file formats that make these notes
comprehensive toward understanding the principles underlying many practical
applications in computer graphics.
Notes
from Seoul National University, this set provides an excellent introduction to
some of the more theoretical and practical aspects of computer graphics. It
covers the more basic areas of scan conversion and clipping - both important
areas in rendering and image processing. Detailed discussions on Windows
programming, sampling techniques, 2D and 3D geometric transformations, and
viewing methods are included. The curriculum also covers DirectX for device
creation and vertex rendering, hidden surface removal, and matrix usage. It
considers texture mapping and lighting, curve, and surface modeling. The
material gains a good understanding of both fixed and programmable pipelines and
thus would be useful to students and professionals interested in practical
implementation related to computer graphics technologies.
These
lecture notes, by Prof. Wojciech Matusik and Prof. Fredo Durand, summarize the
algorithms, software, and hardware used in computer graphics. The notes will
introduce essential concepts: ray tracing and the graphics pipeline, to render
realistic images. Further, various transformations will be introduced, along
with the generation of shadows and texture mapping. Further topics in the
curriculum include methods of sampling, global illumination, and splines in
order to give a wide view on rendering and image synthesis, while animation and
color theory are added to the completion of visual representation understanding.
These notes are ideal for those seeking indepth studies of advanced graphics
techniques and their applications, from basic principles to complex rendering
and illumination models.
Author(s): Prof. Wojciech Matusik and Prof.
Fredo Durand