This note introduces the student to the fundamental tools,
techniques, and concepts employed in musculoskeletal biomechanics research.
Topics covered includes: History of Biomechanics, Viscoelasticity, Joint
Coordinate Systems, Cell Mechanics, Bone, Muscle, Joints, Spine, Hip, Shoulder,
and Elbow.
This book covers many aspects of human
musculoskeletal biomechanics. Topics range from image processing to interpret
range of motion and/or diseases, to subject specific temporomandibular joint,
spinal units, braces to control scoliosis, hand functions, spine anthropometric
analyses along with finite element analyses.
This PDF covers the following topics
related to Biomechanics in Sport : Muscle Action in Sport and Exercise,
Locomotion, Jumping and Aerial Movement, Throwing and Hitting, Injury Prevention
and Rehabilitation, Special Olympic Sports.
Biomechanics is
the study of the structure, function and motion of the mechanical aspects of
biological systems, at any level from whole organisms to organs, cells and cell
organelles, using the methods of mechanics. This PDF covers the following topics
related to Biomechanics : Fluid Mechanics, Human Locomotion, Hard
and Soft Tissue Mechanics, Kinesiology of Sports.
Author(s): Sathyabama Institute of Science and Technology
This book focuses on experimental
praxis and clinical findings. The first section is devoted to Injury and
clinical biomechanics including overview of the biomechanics of musculoskeletal
injury, distraction osteogenesis in mandible, or consequences of drilling. The
next section is on Spine biomechanics with biomechanical models for upper limb
after spinal cord injury and an animal model looking at changes occurring as a
consequence of spinal cord injury. Section Musculoskeletal Biomechanics includes
the chapter which is devoted to dynamical stability of lumbo-pelvi-femoral
complex which involves analysis of relationship among appropriate anatomical
structures in this region. The fourth section is on Human and Animal
Biomechanics with contributions from foot biomechanics and chewing rhythms in
mammals, or adaptations of bats.
This
note introduce the scientific principles and laws underlying the field of
biomechanics and describes how biomechanical principles can be applied to
understanding and analyzing the causes of human movements and their affects on
the body. Topics covered includes: Statics, Gravity and Forces, Levers and
Moments of Force, Dry Friction, Kinematics, Kinetics, Impulse and Momentum,
Work, Energy and Power, Fluid Mechanics, Gait Analysis.
This course develops and applies scaling laws and
the methods of continuum mechanics to biomechanical phenomena over a range of
length scales. This lecture note explains the following topics: structure of
tissues and the molecular basis for macroscopic properties, chemical and
electrical effects on mechanical behavior, cell mechanics, motility and
adhesion, biomembranes, biomolecular mechanics and molecular motors.
Experimental methods for probing structures at the tissue, cellular, and
molecular levels will also be investigated.
Author(s): Prof. Roger D. Kamm, Prof.
Patrick Doyle and Maxine Jonas